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A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in
low-collisionality, low-� plasmas possessing relatively weak magnetic shear is developed. The
model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium
current gradient effects. The problem is solved in three asymptotically matched regions. The “inner
region” contains the island. However, the island emits electrostatic drift-acoustic waves that
propagate into the surrounding “intermediate region,” where they are absorbed by the plasma. Since
the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice
versa, giving rise to strong velocity shear in the region immediately surrounding the island. The
intermediate region is matched to the surrounding “outer region,” in which ideal
magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies
between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The
ion polarization current is stabilizing, and increases with increasing island width. Finally, the
hypersonic branch of isolated island solutions ceases to exist above a certain critical island width.
Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the
so-called “sonic” solution branch. © 2007 American Institute of Physics. �DOI: 10.1063/1.2811928�

I. INTRODUCTION

Tearing modes1 are slowly growing macroscopic plasma
instabilities that often limit fusion plasma performance in
magnetic confinement devices, such as tokamaks, which rely
on nested toroidal magnetic flux surfaces.2 As the name sug-
gests, “tearing” modes tear and reconnect magnetic field-
lines, in the process converting nested toroidal flux surfaces
into nonaxisymmetric configurations containing rotating
chains of narrow �in the radial direction� helical magnetic
islands.3 Such islands degrade plasma confinement because
heat and particles are able to travel radially from one side of
an island to another by flowing along magnetic field-lines,
which is a relatively fast process, instead of having to diffuse
across magnetic flux surfaces, which is a relatively slow
process.4 It is therefore important for fusion scientists to gain
a thorough understanding of the physics of magnetic
islands—particularly of those factors that cause such islands
to either grow or decay. Furthermore, given the macroscopic
nature of magnetic islands, and their relatively weak time
dependence, it is natural to investigate them using some form
of fluid theory.5–8

As is well known, the simple single-fluid magnetohydro-
dynamical �MHD� closure of plasma fluid equations leads to
a relatively poor description of slowly growing macroscopic
instabilities in the high-temperature plasmas typically found
in modern-day tokamaks.9–12 A far better description is ob-
tained using the more complicated two-fluid drift-MHD
closure.11,12 Recent research has established that there are
two main classes of magnetic island solutions within the con-
text of two-fluid drift-MHD theory. Sonic island solutions are
characterized by a flattened electron number density profile
within the magnetic separatrix, a relatively large radial
width, a propagation velocity close to that of the unperturbed

local ion fluid, and a relatively weak coupling to drift-
acoustic waves.13–16 On the other hand, hypersonic island
solutions are characterized by a nonflattened density profile
within the magnetic separatrix, a relatively small radial
width, a propagation velocity close to that of the unperturbed
local electron fluid, and a relatively strong coupling to drift-
acoustic waves.13–15 Recent computer simulations suggest
that the sonic branch of solutions ceases to exist below some
critical island width, whereas the hypersonic branch ceases
to exist above a second, somewhat larger, critical width.13,14

The disappearance of one branch of solutions is associated
with a bifurcation to the other branch.13,14

This paper is concerned with the hypersonic branch of
island solutions. Employing a reduced four-field model17 of
the plasma dynamics, and building on previous results,18–20 a
semi-analytic theory is developed that exploits the peculiar
properties of hypersonic islands. The main aims of this
theory are, firstly, to determine the island propagation veloc-
ity relative to the local ion and electron fluids, secondly, to
find the magnitude and sign of the ion polarization term ap-
pearing in the Rutherford island width evolution equation,3,7

and thirdly, to determine whether there exists a critical island
width above which the hypersonic branch of solutions ceases
to exist.

II. FOUR-FIELD MODEL

A. Introduction

Consider a steady-state magnetic island in two-
dimensional slab geometry. The magnetic field in the vicinity
of the island is assumed to be dominated by a uniform con-
stant guide-field directed along the z axis. Furthermore,
� /�z�0. Equilibrium quantities vary in the x direction only.
All mean flows are in the y direction. The system is periodic
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in the y direction, with periodicity length Ly. The electron
temperature takes the constant value Te. The ions are cold
�compared to the electrons� and singly charged. Finally, there
is a uniform equilibrium density gradient, a uniform
z-directed equilibrium current density �generating a sheared
equilibrium By that passes through zero at x=0�, and zero
shear in the equilibrium E�B velocity.

B. Normalization

For the sake of clarity, we initially adopt a conventional
normalization scheme. Hence, all lengths are normalized to
the magnetic shear length Ls �i.e., the gradient scale-length of
the equilibrium By�. All magnetic field strengths are normal-
ized to that of the guide field Bz �which is equivalent to the
equilibrium value of By at �x�=Ls�. Finally, all times are nor-
malized to the shear-Alfvèn time �A=Ls��0ne0mi /Bz, and all
velocities to the shear-Alfvèn velocity VA=Ls /�A. Here, ne0

is the background electron number density, and mi the ion
mass.

C. Model equations

In the island rest frame �� /�t�0�, the �conventionally
normalized� “four-field” equations take the familiar form17

0 = �� − n,�� + �J , �1�

0 = ��,n� + �V + �2J,�� + D�2n , �2�

0 = ��,U� + �J,�� + ��2U , �3�

0 = ��,V� + ��n,�� + 	�2V , �4�

U = �2� , �5�

J = 1 + �2� , �6�

where

�A,B� � �A � �B · ẑ . �7�

Here, �=Az /BzLs, �=−
 /BzLsVA, n=−�����ne /ne0�, and
V=����Vzi /VA�, where Az is the z component of the mag-
netic vector potential, 
 the electric scalar potential, �ne

the perturbed electron number density, and Vzi the z compo-
nent of the ion fluid velocity. Moreover, � is the �normalized�
ion sonic radius, whereas � is �half� the plasma beta. �In
other words, �=�s /Ls and �=�0ne0Te /Bz

2, where �s

= �Te /mi�1/2 / �eBz /mi� and e is the magnitude of the electron
charge.� Finally, � is the �normalized� plasma resistivity, D
the �normalized� perpendicular particle diffusivity, � the
�normalized� perpendicular ion viscosity, while 	 param-
etrizes the effect of ion-ion collisions on the parallel flow.
�Note that the true parallel ion viscosity is neglected in the
above equations.� The parameters �, D, �, 	, �, and � are all
assumed to be uniform constants.

D. Boundary conditions

The following tearing parity constraints are adopted for
the various fields appearing in Eqs. �1�–�6�: �, J, and V are
even in x, whereas �, U, and n are odd. This implies that
�� /�x=�J /�x=�V /�x=�=U=n=0 at x=0. The boundary
conditions at large �x� are

�n/�x → − V�, �8�

��/�x → − V��1 + v� + v�� �x�� , �9�

�U/�x,J,V → 0, �10�

� → − 1
2x2 + w2 cos  . �11�

Here, V�=����Ls /Ln� is the �normalized� electron diamag-
netic velocity, Ln the equilibrium density gradient scale-
length �which is assumed to be much less than Ls�, and 
=ky, where k=2��Ls /Ly�. Moreover, v� is termed the
“asymptotic slip-velocity,” and v�� the “asymptotic slip-
velocity gradient.” The asymptotic slip-velocity measures the
deviation of the island propagation velocity from that of the
unperturbed local electron fluid, whereas the asymptotic slip-
velocity gradient parametrizes the net external force acting
on the island region �which is proportional to �v�� �. Of
course, the net external force is zero for an isolated island
that is not interacting with an external magnetic perturbation
or a resistive wall.21 Finally, the quantity w measures the
�normalized� island width in the x direction �assuming that
the island is constant-��.

E. Renormalization

We are interested in island solutions for which w��. We
also expect all �normalized� velocities in our problem to be
of order V�. It is therefore convenient to renormalize our
equations such that x=�x̂, w=�ŵ, v�� = v̂�� /�, �=�V��̂, n
=�V�n̂, U= �V� /��Û, J= �V� /��2Ĵ, �=�2�̂, V=V�

2V̂, C
= �̂�� /�2kV��, D̂= �D /�2kV��, �̂= �� /�2kV��, 	̂= �	 /�2kV��,
and

�̂ =
�

�n
2 , �12�

�n =
Ln

Ls
. �13�

Here, C is the well-known collisionality parameter of Drake
et al.22 It follows that our renormalized equations take the
form

0 = ��̂ − n̂,�̂� + CĴ , �14�

0 = ��̂, n̂� + �V̂ + Ĵ,�̂� + D̂�2n̂ , �15�

0 = ��̂,Û� + �Ĵ,�̂� + �̂�2Û , �16�

0 = ��̂,V̂� + �n
2�n̂,�̂� + 	̂�2V̂ , �17�
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Û = �2�̂ , �18�

�2�̂ = − 1 + �̂Ĵ , �19�

where

�A,B� � AxB − ABx, �20�

�2A � Axx + �k��2A. �21�

Here, the subscripts x and  denote � /�x̂ and � /�, respec-
tively. Note that the system is periodic in , with period 2�.
The boundary conditions at x̂=0 are �x=Jx=Vx=�=n=U
=0, whereas the boundary conditions at �x̂�→� become

n̂x → − 1, �22�

�̂x → − 1 − v� − v̂�� �x̂� , �23�

Ûx, Ĵ,V̂ → 0, �24�

�̂ → − 1
2 x̂2 + ŵ2 cos  . �25�

F. Ordering scheme

The primary ordering scheme adopted in this paper is

1 � �̂ �26�

and

1 � �n
2 � D̂,�̂,	̂ � C . �27�

This is equivalent to a large-aspect-ratio, low-beta, low-
collisionality ordering in which the island is much wider than
a typical drift-tearing linear layer.

Equations �19�, �25�, and �26� yield

�̂�x̂,� = − 1
2 x̂2 + ŵ2 cos  + O��̂� . �28�

In other words, our ordering scheme implies the well-known
“constant-� approximation.”3 It follows, from Eq. �28�, that
the magnetic separatrix lies at �x̂�=2ŵ cos� /2�, and thus that
the island width parameter ŵ represents one quarter of the
�renormalized� full separatrix width �in the x̂ direction�. The
region inside the separatrix corresponds to �̂�−ŵ2, whereas
the region outside the separatrix corresponds to �̂�−ŵ2.

We also adopt the long-wavelength ordering

k� � 1, �29�

which implies that

�2A 	 Axx. �30�

G. Overview of solution

We shall solve our problem in three asymptotically
matched regions. The “inner region” extends over �x̂���n

−1/2,
whereas the “intermediate region” extends over �x̂�� ŵ. Our
island solution is matched to a conventional ideal-MHD so-
lution at the edge of the intermediate region.1,3 The inner
region contains the island, and is thus nonlinear. However,

the intermediate region is linear. In fact, the magnetic island
acts as an “antenna” that radiates drift-acoustic waves into
the intermediate region, where they are absorbed by the
plasma.15,19 These waves carry momentum, giving rise to a
net exchange of momentum between the two regions.

III. INNER REGION

A. Basic equations

Temporarily neglecting hats, for the sake of clarity, and
making use of the ordering assumptions introduced in Sec.
II F, the renormalized equations �14�–�19� reduce to

0 = �� − n,�� + CJ , �31�

0 = ��,n� + �V + J,�� + Dnxx, �32�

0 = ��,U� + �J,�� + �Uxx, �33�

0 = ��,V� + �n
2�n,�� + 	Vxx, �34�

�xx = U , �35�

� = − 1
2x2 + w2 cos  �36�

in the inner region; i.e., �x���n
−1/2.

Let

� = − x + �� , �37�

n = − x + �n . �38�

It is easily seen that if w�O�1�, then our ordering scheme
requires that

� � O�1� , �39�

��,�n,V,U,J � O��n
2� . �40�

The boundary conditions at large �x� are

��x → − vi − vi��x� , �41�

�nx,Ūx,V̄, J̄ → 0, �42�

where �¯� denotes an average over  at constant x. Here, the
constants vi and vi� are the asymptotic slip-velocity and slip-
velocity gradient, respectively, at the edge of the inner re-
gion. Note that these are not necessarily the same as the
corresponding quantities at the edge of the intermediate re-
gion, because of the momentum exchange between the two
regions.

B. Analysis

To lowest order in �n
2, Eqs. �31�–�35� give

0 = ��� − �n,�� + CJ , �43�

0 = ��n − ��,x� + �V + J,�� + D�nxx, �44�

0 = �U,x� + �J,�� + �Uxx, �45�
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0 = �V + �n
2�,x� + 	Vxx, �46�

with U=��xx. Each of the above equations yields an equilib-
rium constraint �obtained by neglecting transport terms� and
a solubility condition, obtained by averaging away all terms
except transport terms.

Equation �46� gives the equilibrium constraint

V = − �n
2w2 cos  + F�x� , �47�

and the solubility condition

Fxx = 0. �48�

The only even �in x� solution of the above equation that
satisfies the boundary condition V̄→0 at large �x� is

F = 0. �49�

Hence,

V = − �n
2w2 cos  . �50�

Equation �43� gives the equilibrium constraint

�n = �� + H��� , �51�

plus the solubility condition


J� = 0. �52�

Here, the flux-surface average operator 
¯� is defined as3


f�s,�,��

� �
f�s,�,�

�x�
d

2�
, � � − w2,

�
−0

0 f�s,�,� + f�− s,�,�
2�x�

d

2�
, � � − w2,�

�53�

where s=sgn�x�, x�s ,� ,0�=0, and the integrals are per-
formed at constant �.

Equation �44� can be written

0 = �− H�x − �n
2w2 cos  + J,�� + D���xx + Hxx� + O�C� ,

�54�

where � denotes d /d�. This expression, combined with the
solubility condition �52�, yields the equilibrium constraint

J = H�x̃ +
�n

2

2
x2̃ , �55�

as well as the solubility condition


��xx + Hxx� = 0. �56�

Here,

f̃ � f − 
f�/
1� . �57�

Finally, Eqs. �44� and �45� can be combined to give

0 = �U − H − �n
2w2x cos ,x� + �Uxx − D���xx + Hxx�

+ O�C� . �58�

This equation yields the equilibrium constraint

U = ��xx = H��� + K�x� + �n
2w2x cos  , �59�

and the solubility condition

0 = Sc−1���xx + H̄xx� − �H̄xx + Kxx� , �60�

where Sc=� /D is the so-called “Schmidt number.”16

C. Determination of profile functions

The unknown profile functions H��� and K�x�, are de-
termined by the solubility conditions �56� and �60�, respec-
tively.

Equation �56� can be written

d

d�
�
x2�H� + 
xv�� = 0, �61�

where

v = − ��x. �62�

Integration yields

H���� = �− s� 
xv� + vc


x2�
� , � � − w2,

0, � � − w2,
� �63�

since H��� is an odd function of x, and must therefore be
zero inside the magnetic separatrix. Here, vc is a constant.

Integration of Eq. �60�, making use of the boundary con-
ditions �nx, Ūx→0 as �x�→�, gives

Kx = xH�¯ − Sc−1�v̄ + xH�¯ � . �64�

Finally, taking the x-derivative of Eq. �59�, we obtain

vxx = xH� − Kx − �n
2w2 cos  �65�

or

vxx = Sc−1�v̄ − Ḡ� − �G − Ḡ� − �n
2w2 cos  , �66�

where

G = − xH� = ��x�� 
xv� + vc


x2�
� , � � − w2,

0, � � − w2.
� �67�

It remains to determine the constant vc. Now, at large �x�,
we expect

H���� → s�h1 + h0�− 2��−1/2 + O��−1�� �68�

and

G = − xH� → − h1�x� − h0 + O�x−1� . �69�

Thus, substituting into Eq. �66�, and making use of the
boundary condition �41�, we obtain

vxx → Sc−1�vi + h0 + �vi� + h1��x�� − �n
2w2 cos  + O�x−1� .

�70�

The boundary condition �41� can only be satisfied if h0

=−vi, and h1=−vi�. Hence,
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v → vi + vi��x� −
�n

2

2
w2x2 cos  �71�

as �x�→�. Now, since −x2 /2=�−w2 cos , and a flux-
surface average is carried out at constant �, we can write


xv� → vi + vi��x� + �n
2w2�� − w2 cos �cos  + O�x−1� ,

�72�

which reduces to


xv� → vi + vi��x� −
�n

2w4

2
. �73�

Thus, it follows from Eqs. �67� and �69� that

vc =
�n

2w4

2
. �74�

D. Final scheme

Our final system of equations in the inner region is

vxx = Sc−1�v̄ − Ḡ� − �G − Ḡ� − �n
2w2 cos  , �75�

and

G = ��x�� 
xv� + �n
2w4/2


x2�
� , � � − w2,

0, � � − w2,
� �76�

subject to the boundary conditions

vx = 0 �77�

at x=0, and

v → vi + vi��x� −
�n

2

2
w2x2 cos  �78�

as �x�→�. Of course, v�x ,� is periodic in , with period 2�.
Recall that 
¯� denotes a flux-surface average �see Eq. �53��,
whereas �¯� denotes a  average at constant x. The above
equations can be solved via iteration. Note that �with �n, w,
and Sc fixed� the solution to our inner region equations con-
tains only a single free parameter, which can be taken to be
the value of v̄ at x=0.

The current density in the inner region is written

J = − G̃ +
�n

2

2
x2̃ . �79�

Observe that J does not go to zero as �x�→�, as is necessary
in order to match our island solution to a conventional ideal-
MHD solution at very large �x�. It follows that there must
exist a region �termed the “intermediate region”� sandwiched
between the inner and the ideal-MHD regions, in which J
decays to zero.

Note, finally, that

�nx = G − v →
�n

2

2
w2x2 cos  �80�

as �x�→�.

IV. INTERMEDIATE REGION

A. Linearization

The intermediate region extends over �x̂�� ŵ. It follows
that we can linearize Eqs. �14�–�19� in this region. Again
temporarily neglecting hats, for the sake of clarity, we can
write

��x,� = − x + ���x� + �̆�x�ei, �81�

n�x,� = − x + n̆�x�ei, �82�

U�x,� = Ū�x� + Ŭ�x�ei, �83�

V�x,� = V̆�x�ei, �84�

J�x,� = J̆�x�ei, �85�

��x,� = − 1
2x2 + w2ei, �86�

where all “ ˘” terms are of first order �i.e., O�w2 /x2��. The
absence of a �n�x� term in Eq. �82� is consistent with the
asymptotic behavior of �n at the edge of the inner region
exhibited in Eq. �80�.

Neglecting the transport terms, linearization of Eqs.
�14�–�19� yields

xJ̆ = �v̄ − �n
2x2���̆ −

w2

x
� , �87�

�̆xx = v̄xx�̆ + xJ̆ , �88�

which give

�̆xx − v̄xx�̆ − �v̄ − �n
2x2��̆ = − �v̄ − �n

2x2�
w2

x
�89�

and

J̆ =
�̆xx − v̄xx�̆

x
, �90�

where v̄�x�=−��x�x�. Here, it is assumed that �v̄��1. Equa-
tion �89� is solved subject to the boundary conditions

�̆ → 0 �91�

as x→0, and

�̆ →
w2

x
�92�

as �x � →�. It follows from Eq. �90� that

J̆ → 0 �93�

as �x�→�. �Here, we assume that v̄xx→0 as �x�→�, since
there is no equilibrium velocity shear.� Equations �92� and
�93� demonstrate that the island solution in the intermediate
region can be successfully matched to an ideal-MHD solu-
tion at very large �x�. �The conventional linear ideal-MHD
solution to the problem is simply J̆=0 and �̆=w2 /x.1,3�
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B. Damping of drift-acoustic waves

Equation �89� is a driven wave equation that describes
how electrostatic drift-acoustic waves11,12 are excited by the
island in the inner region, and then propagate into the inter-
mediate region. In order to uniquely determine the solution
in the intermediate region, we need to either adopt an “out-
going wave” boundary condition at large �x�,23,24 or to add
some form of wave damping to our model. It is more con-
venient to do the latter. Linearizing Eq. �16�, and retaining
the perpendicular viscosity, we obtain

�̆xx + i��̆xxxx = v̄xx + xJ̆ . �94�

However, it is clear from Eq. �89� that �2 /�x2→−�n
2x2 at

large �x�. Hence, we get

�̆xx 	
v̄xx�̆ + xJ̆

1 − i��n
2x2 . �95�

This suggests that we should modify Eq. �89�, by writing

�̆xx − v̄xx�̆ − �v̄ −
�n

2x2

1 − i��n
2x2��̆ = − �v̄ −

�n
2x2

1 − i��n
2x2�w2

x

�96�

in order to mimic the damping effect of perpendicular vis-
cosity on drift-acoustic waves at large �x�. Note that only
those terms that are important at large �x� have been modi-
fied. The boundary conditions remain the same. Strictly
speaking, our analysis should also take into account the
damping effect of the other transport coefficients D and 	
�the effect of the collisionality parameter C is negligible,
according to our ordering scheme�. However, for the sake of
simplicity, we shall neglect this additional damping.

C. Force balance

The mean velocity profile in the intermediate region, i.e.,
v̄�x�, is determined from quasilinear force balance; i.e.,

0 =
1

2
Im��̆xx�̆x

*� −
w2

2
Im�J̆� + �v̄xx. �97�

The first term on the right-hand side of the above equation
represents the mean Reynolds stress force in the y direction,
the second term the mean j�B force, and the third term the
mean viscous force. Equations �96� and �97� can be com-
bined to give

v̄xx =
1

2

�n
4x2

1 + ���n
2x2�2 �w2 − x�̆�2. �98�

This equation is solved subject to the boundary conditions

v̄ → vi + vi��x� �99�

as x→0, and

v̄ → v� + v�� �x� �100�

as �x�→�. Equation �98� describes how momentum carried
by drift-acoustic waves radiated by the island is absorbed in
the intermediate region, and modifies the mean velocity pro-
file.

D. Final scheme

Our final system of equations in the intermediate region
is

�̆xx − v̄xx�̆ − �v̄ −
�n

2x2

1 − i��n
2x2��̆

= − �v̄ −
�n

2x2

1 − i��n
2x2�w2

x
�101�

and

v̄xx =
1

2

�n
4x2

1 + ���n
2x2�2 �w2 − x�̆�2. �102�

The boundary conditions are

�̆ → 0, �103�

v̄ → vi + vi��x� �104�

as x→0, and

�̆ →
w2

x
, �105�

v̄ → v� + v�� �x� �106�

as �x�→�. The perturbed current is given by

J̆ =
�̆xx − v̄xx�̆

x
. �107�

The above set of equations can be solved via iteration.

V. OVERALL SOLUTION

The overall solution to our problem is obtained by gen-
erating a solution in the inner region, as described in Sec.
III D, and then finding a matching solution in the intermedi-
ate region, as described in Sec. IV D. Note that, with ŵ, �n,
�̂, and Sc fixed, our overall solution contains a single free
parameter, which can be taken to be the value of v̄ at x=0.
For an isolated island, which is not interacting with an ex-
ternal magnetic perturbation or a resistive wall, this free pa-
rameter is fixed by the zero force constraint21

v�� = 0. �108�

Hence, the inner and intermediate solutions described in
Secs. III D and IV D, together with the above constraint,
uniquely determine the island solution as a function of ŵ, �n,
�̂, and Sc.

It is helpful to define the parameter v0= v̄�0�. The differ-
ence between the �normalized� mean ion and electron fluid
flow velocities at the rational surface �x=0� is V��1+v0�.
Hence, v0 is a measure of the degree of density flattening
inside the island, with v0=0 corresponding to no flattening,
and v0=−1 corresponding to complete flattening.

If Vp is the island phase velocity, Ve the unperturbed
local electron fluid velocity, and Vi the unperturbed local ion
fluid velocity, then
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Vp − Ve

Ve − Vi
= v�. �109�

Observe that if v� is negative �as will turn out to be the
case�, then the island phase velocity lies between those of the
unperturbed local electron and ion fluid velocities. However,
our ordering scheme ensures that �v���1. Hence, the island
still propagates with a velocity which is much closer to that
of the unperturbed local electron fluid than the unperturbed
local ion fluid, as one would expect for a hypersonic island.

Finally, the Rutherford island width evolution equation
takes the form3,7

dw

dt
� ���s +

�

�n
2ŵ2Jc, �110�

where �� is the linear tearing stability index,1 and

Jc = �
0

�

Kc�x̂�dx̂ , �111�

with

Kc = �− �2/��  �− G̃ + ��n
2/2�x̂2̃�cos d , x̂ � x̂c,

− 2 Re�J̆� , x̂ � x̂c.
�
�112�

Here, 1� x̂c��n
−1/2 is the boundary between the inner and

intermediate regions. Note that if Jc�0 �as will turn out to
be the case� then the final term in Eq. �110� is stabilizing.

VI. NUMERICAL RESULTS

The scheme outlined in the previous section has been
implemented numerically.

Figures 1–4 illustrate the properties of a typical isolated

�i.e., v̂�� =0� island solution. Figure 1 shows the ion fluid
velocity profile v�x̂ ,� in the inner region. �Recall that the
ion fluid velocity �normalized to the election diamagnetic
velocity� in the island frame is Vi=1+v�x̂ ,�.� It can be seen
that the profile is completely continuous, and has a finite
gradient at large �x̂�. Figure 1 also shows the electron fluid
velocity profile �normalized to the electron diamagnetic ve-
locity�, i.e., Ve=G�x̂ ,�, through the island O-point �in the
island frame�. It is evident that the electron velocity profile is
discontinuous across the island separatrix; i.e., it is zero in-
side, and finite immediately outside, the separatrix. Of
course, this discontinuity in the electron fluid velocity profile
could be resolved by adding a small amount of electron vis-
cosity �i.e., hyperviscosity� to our model equations. Note,
however, that the discontinuity does not give rise to a finite
contribution to the ion polarization term in the Rutherford
island width evolution equation �unlike the similar disconti-

FIG. 1. Velocity profiles in the inner region for an isolated hypersonic island
solution characterized by �n=0.1, �̂=0.001, Sc=1.0, and ŵ=0.1. The solid
curve shows the mean ion fluid velocity profile v̄�x̂�, whereas the short-
dashed curves show the ion fluid velocity profile v�x̂ ,�, through the island
O- and X-points �i.e., at =0 and �, respectively�. The long-dashed curve
shows the electron fluid velocity profile G�x̂ ,� through the island O-point.

FIG. 2. The mean ion velocity profile v̄�x̂� in the intermediate region for the
isolated island solution shown in Fig. 1.

FIG. 3. The force density acting in the intermediate region due to the ab-
sorption of drift-acoustic waves emitted by the island, as parametrized by
v̄xx�x̂�, for the isolated island solution shown in Fig. 1.
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nuity in the ion fluid velocity profile typically found in sonic
island solutions25� because the electron fluid possesses neg-
ligible inertia. Figure 2 shows the mean ion fluid velocity
profile in the intermediate region. It can be seen that the
profile has zero gradient at large �x̂�, as must be the case for
an isolated island upon which no external force acts. Figure 3
shows the force density acting in the intermediate region due
to the absorption of drift-acoustic waves emitted by the is-
land, as parametrized by v̄xx�x̂�. This force density is respon-
sible for reducing the finite gradient in the ion fluid velocity
profile at the edge of the inner region to zero at the edge of
the intermediate region. Finally, Fig. 4 shows the perturbed
current density in the intermediate region. Observe that this
current density decays to zero at the edge of the intermediate
region.

Figure 5 shows the flattening parameter v0 as a function
of the island width parameter ŵ for a series of isolated island
solutions with the same values of �n, �̂, and Sc. It can be

seen that v0 is negative, indicating that sound-waves do in-
deed flatten, rather than steepen, the density profile inside the
island separatrix. Note, however, that �v0��1, which implies
that the flattening effect is relatively small �recall that v0=0
corresponds to no flattening, and v0=−1 to complete flatten-
ing�, as we would expect for a hypersonic island. According
to Fig. 5, the magnitude of the flattening parameter increases
rapidly with increasing island width. However, there exists a
certain critical �normalized� island width ŵmax, above which
there are no more solutions. Figure 6 demonstrates that this
is a real effect, and not just a numerical artifact due, for
instance, to any lack of convergence of our iterative solution
method. Indeed, it can be seen from Fig. 6 that, below the
critical island width, there are two isolated island solutions.
These are indicated by the intersection of the force curve
v̂�� �v0� with the horizontal axis. However, only one of these
solutions �i.e., the one in which v̂�� goes from being positive
to negative as v0 decreases� is dynamical stable. The other is
dynamically unstable, and, therefore, unphysical. Above the
critical island width, the force curve does not intersect the
horizontal axis at all, and there are, thus, no isolated island
solutions. It follows that the disappearance of our isolated
island solution, as ŵ increases, is a consequence of the con-
vergence and mutual annihilation of the aforementioned
stable and unstable island solutions.

Figure 7 demonstrates that the flattening parameter v0

fits the scaling law

v0 = − 0.27ŵ+3.00�n
+1.50�̂−1.00Sc+1.00 �113�

very well. The only deviation is at values of �v0� which are
sufficiently large that ŵ→ ŵmax. Hence, the above scaling
law holds whenever the island width lies significantly below
the critical width.

Figure 8 demonstrates that the velocity parameter v� fits
the scaling law

FIG. 4. The perturbed current density J̆ in the intermediate region for the
isolated island solution shown in Fig. 1. The solid and dotted curves show
the real and imaginary parts of J̆, respectively.

FIG. 5. The flattening parameter v0 as a function of the island width param-
eter ŵ, for a series of isolated island solutions characterized by �n=0.1, �̂
=0.001, and Sc=1.0.

FIG. 6. The force parameter v̂�� as a function of the flattening parameter v0,
for a series of island solutions characterized by �n=0.1, �̂=0.001, Sc=1.0,
and the same value of ŵ. The solid curve shows the subcritical case ŵ
=0.1320, whereas the dashed curve shows the supercritical case ŵ=0.1322.
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v� = − 0.27ŵ+3.00�n
+1.50�̂−1.00Sc+1.00

− 0.24ŵ+4.00�n
+0.66�̂−1.33 �114�

very well. Again, the only deviation is at values of �v�� that
are sufficiently large that ŵ→ ŵmax. Hence, the above scaling
law also holds whenever the island width lies significantly
below the critical width. Note that v� is negative, indicating
that the island propagation velocity lies between the unper-
turbed local electron and ion fluid velocities.

Figure 9 demonstrates that the stability parameter Jc fits
the scaling law

Jc = − 1.5ŵ+2.00�n
+1.50 + 1.4ŵ+1.00v0

+1.00 �115�

very well. In this case, the scaling law holds even when ŵ
→ ŵmax. It can be seen from Eq. �110� that the first term on

the right-hand side of the above scaling law gives rise to a
linear stabilizing term in the Rutherford island width evolu-
tion equation of the form −1.5��n

−1/2. This term is due to
coupling to drift-acoustic waves, and was first obtained ana-
lytically in Ref. 26. The fact that our numerical scheme ex-
actly reproduces this analytic result indicates that our method
of finding the outgoing wave solution in the intermediate
region by damping drift-acoustic waves at large �x̂� �see Sec.
IV B� is essentially correct. The second term on the right-
hand side of the above scaling law gives rise to a nonlinear
stabilizing term in the Rutherford island width evolution
equation. This term is due to the ion polarization current
generated by the slight flattening of the density profile inside
the island separatrix.

Finally, Fig. 10 demonstrates that the maximum island

FIG. 7. The flattening parameter v0 �vertical axis� vs the scaling v0

=−0.27ŵ+3.00�n
+1.50�̂−1.00Sc+1.00 �horizontal axis� for a selection of isolated

island solutions with ŵ in the range 10−3 to 0.132, �n
2 in the range 10−3 to

10−1, �̂ in the range 10−3 to 10−1, and Sc in the range 1.0 to 10.0.

FIG. 8. The velocity parameter v� �vertical axis� vs the scaling v�

=−0.27ŵ+3.00�n
+1.50�̂−1.00Sc+1.00−0.24ŵ+4.00�n

+0.66�̂−1.33 �horizontal axis� for a
selection of isolated island solutions with ŵ in the range 10−3 to 0.132, �n

2 in
the range 10−3 to 10−1, �̂ in the range 10−3 to 10−1, and Sc in the range 1.0
to 10.0.

FIG. 9. The stability parameter Jc �vertical axis� vs the scaling Jc

=−1.5ŵ2.00�n
1.50+1.4ŵv0 �horizontal axis� for a selection of isolated island

solutions with ŵ in the range 10−3 to 0.132, �n
2 in the range 10−3 to 10−1, �̂

in the range 10−3 to 10−1, and Sc in the range 1.0 to 10.0.

FIG. 10. The maximum island width parameter ŵmax �vertical axis� vs the
scaling ŵmax=0.9�n

−0.16�̂+0.33Sc−0.33 �horizontal axis� for a selection of iso-
lated island solutions with �n

2 in the range 2.5�10−3 to 0.16, �̂ in the range
5�10−4 to 5.66�10−3, and Sc in the range 1.0 to 8.0.
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width parameter ŵmax fits the scaling law

ŵmax = 0.9�n
−0.16�̂+0.33Sc−0.33 �116�

to a reasonable approximation.

VII. SUMMARY AND DISCUSSION

By definition, hypersonic drift-tearing magnetic islands
are too narrow for sound waves to effectively flatten the
electron number density within the island separatrix. Such
islands tend to propagate with a velocity close to that of the
unperturbed local electron fluid. By contrast, sonic magnetic
islands are sufficiently wide for sound waves to flatten the
density within the separatrix, and tend to propagate with a
velocity close to that of the unperturbed local ion fluid.

We have constructed a fully self-consistent theory of iso-
lated, long-wavelength, hypersonic, drift-tearing magnetic is-
lands in low-�, low-collisionality plasmas possessing rela-
tively weak magnetic shear. The theory assumes both slab
geometry and cold ions, and neglects electron temperature
and equilibrium current gradient effects. The problem is
solved in three asymptotically matched regions. The width of
the inner region is of the order of the island width, which, in
turn, is of the order of the ion sonic radius �s. In the inner
region, the problem boils down to a nonlinear second-order
partial differential equation which can be solved via iteration
�see Sec. III D�. Note that the perturbed current does not go
to zero at the edge of the inner region. The width of the
intermediate region is of order �Ls /Ln�1/2�s. Here, Ls is the
magnetic shear length, and Ln the density gradient scale-
length. It is assumed that Ln�Ls. In the intermediate region,
the problem reduces to a nonlinear second-order ordinary
differential equation that can also be solved via iteration �see
Sec. IV D�. This equation describes how the island emits
electrostatic drift-acoustic waves that propagate into the in-
termediate region, where they are absorbed by the plasma.
Since the waves carry momentum, the inner region exerts a
force on the intermediate region, and the intermediate region
exerts an equal and opposite force on the inner region. One
consequence of this force is the presence of a finite gradient
in the ion fluid velocity profile at the edge of the inner re-
gion. The gradient in the ion fluid velocity profile is, of
course, zero at the edge of the intermediate region, since the
island is assumed to be isolated �i.e., there is assumed to be
zero net external force acting on the island region�. Hence,
there is strong shear in the ion fluid velocity profile across
the intermediate region �see Fig. 2�. Finally, the perturbed
current decays to zero at the edge of the intermediate region,
allowing the island solution to be matched to a conventional
linear ideal-MHD solution.

Our most important result is that the hypersonic branch
of island solutions ceases to exist above a certain critical
island width,13,14 which we estimate to be

ŵmax = 0.9�n
−1/6D̂+1/3, �117�

where ŵ=W / �4�s�, �n=Ln /Ls, D̂= �D�A /k�s
3� / �̂1/2, and �̂

=� /�n
2. Here, W is the full island width, D the perpendicular

particle diffusivity, �A the shear-Alfvèn time, k the island
wave-number, and � �half� the plasma beta. Note that D̂1/2

� ŵmax��n
−1/2 �since our ordering scheme implies that D̂

��n
2�1�. The significance of this inequality is that D̂1/2 is a

typical linear layer width for the drift-tearing mode �normal-
ized to �s�, whereas �n

−1/2 is the width of the intermediate
region �normalized to �s�. It follows that our hypersonic is-
lands are typically much wider than a linear drift-tearing
layer, but much narrower than the intermediate region, as has
been assumed throughout this paper. Finally, if the island
width exceeds the critical width then we hypothesize that
there is a bifurcation to the sonic branch of solutions.13,14

The island phase velocity Vp is found to approximately
satisfy

Vp − Ve

Ve − Vi
= − 0.27ŵ3�n

3/2D̂−1 − 0.24ŵ4�n
2/3D̂−4/3Sc−4/3.

�118�

Here, Vi and Ve are the unperturbed local ion and electron
fluid velocities, respectively. Moreover, Sc=� /D, where � is
the perpendicular ion viscosity. Making use of Eq. �117�, we
can see that the maximum value of the first term on the
right-hand side of the above equation is of order �n�1,
whereas the maximum value of the second term is of order
Sc−4/3. Since we have assumed, throughout this paper, that
the island phase velocity lies relatively close to that of the
unperturbed local electron fluid �which implies that the mag-
nitude of the right-hand side of the above equation is much
less than unity�, it follows that when Sc�1, our theory
breaks down at large island widths. However, there is no
problem when Sc�1. The fact that the right-hand side of the
above equation is negative implies that the island propagates
between the velocities of the unperturbed local electron and
ion fluids.

Finally, the Rutherford island width evolution equation
is found to take the approximate form

dW

dt
� ���s − 1.5��n

−1/2 − 0.38��n
−1/2ŵ2D̂−1. �119�

Here, �� is the linear tearing stability index. The final two
terms on the right-hand side of the above equation represent
the stabilizing influence of coupling to drift-acoustic waves,
and the stabilizing influence of the ion polarization current,
respectively. The former term is linear, and is well
known.24,26 The latter term, however, is nonlinear, and grows
rapidly in magnitude as the island width increases. Indeed,
this term dominates the linear term as soon as the island
enters the nonlinear regime; i.e., as soon as ŵ� D̂1/2.

The analysis in this paper makes use of the constant-�
approximation, which is valid provided that �����1, where
� is the jump in the logarithmic derivative of � across the
nonideal MHD region, and � is the width of this region. It
follows, from the previous analysis, that ���n

−1/2�s, and
��s���n

−1/2ŵ2D̂−1, with ŵ��n
−1/6D̂1/3. Hence, the constant-�

approximation is holds when �̂��n
2 / D̂�1/3�1. However, we

have already assumed that D̂��n
2. Thus, we require
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1 �
D̂

�n
2 � �̂3. �120�

Note that it is possible for the above condition to be satisfied,
since �̂�1, by assumption.

One very interesting aspect of our hypersonic island so-
lution is the presence of strong velocity shear in the region
immediately surrounding the island �see Fig. 2�. It is possible
that this shear may become sufficiently large to quench
plasma turbulence in the vicinity of the island.24

There are, of course, many important physical effects
missing from our model. These include electron temperature
and equilibrium current gradients, high-� effects, high-
collisionality effects, ion diamagnetism, finite ion orbit
widths, magnetic field-line curvature, neoclassical viscosity,
ion Landau damping, and plasma turbulence. We shall at-
tempt to incorporating some of these effects into our model
in future publications.
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