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ABSTRACT

A theoretical model is developed to describe the quasilinear
evolution of tearing modes 1in configurations where many modes are
unstable at a particular resonant surface. An expression for the
positive definite anomalous resistivity is derived and used to study

the self-consistent diffusion of the equilibrium magnetic field. It is

shown that the anomalous diffusion can be much faster than the -

collisional diffusion at a low level of magnetic fluctuations.



I. INTRODUCTION

Tearing modes are driven unstable by the gradient of the current
density in magnetized plasmas and lead to the formation of magnetic
islands which can destroy the equilibrium configuration or enhance the
transport of particles and energy.l_3 The nonlinear evolution of
tearing modes has been studied in two different regimes. In the
Rutherford regime4, the initial exponential growth of a single mode
saturates when the width of magnetic island w becomes of the order of
the width A of the tearing layer, i.e., w ~ X0€2/5. Here X, is the
width x  of the current layer, e = TA/Tr, where T, = Xo/VA_ is the
Alfvén characteristic time, T, = uoxg/n is the resistive diffusion
time, and n is the plasma resistivity. In the nonlinear stage, W
increases linearly in time modifying the equilibrium field until the
available magnetic free energy vanishes.” A different regime can occur
when two or more modes at different rational surfaces grow
simultaneously due to linear coupling introduced by the equilibrium
geometry.6 Initially, each individual mode grows exponentially, reaches
saturation, and enters the Rutherford regime. However, when the
separated islands grow sufficiently large fo touch each other, there
occurs a destabilization of the interacting modes and the growth again
becomes fas£ leading to the formation of regions with stochastic
magnetic field lines.

These two nonlinear regimes are relevant to confinement
configurations where the mode rational surfaces, given by k . B=0,
occur at well separated locations inside the plasma column for

different values of the wavenumber k, This may be the typical

situation in tokamaks where the toroidal component Bt of the confining
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magnetic field B 1is approximately constant and the value of the
poloidal compdnent Bp increases monotonically from the magnetic axis to
the plasma boundary. The mode rational surface for each E occurs where
the pitch of the helical perturbation matches the pitch of the helical
magnetic field liﬁe. However, in confinement configurations where one
component of the magnetic field vanishes at some position other thaﬁ
the magnetic axis, the resonance surfaces for all modes with E parallel
to the wvanishing component occur at the same position. Typical
examples are the current sheet with a guide field7, the field
configuration in the current penetration phase of tokamakss, and the
reversed-field pinch.9 In this case, a one~dimensional spectrum of
modes with different values of k can grow simultaneously and interfere
strongly with each other. In this regime, it is not clear whether the
nonlinear evolution of each mode will proceed into the Rutherford
regime. In this paper we study this problem by developing a
quasilinear theory appropriate to the many mode case.
The physical mechanisms involved in the collisional tearing

1-12 Let us consider a plane current sheet

instabilities are well known.
parallel to a guide magnetic field Eo’ The magnetic field produced by
the plasma current has opposite signs on the two sides of the sheet.
Around the point where this field vanishes, magnetic perturbations
induce an electric field parallel to By This field drives a large
parallel current due to the electron motion which is, however, limited
by the resistivity. The ion response to the electric field is due to
the ExB and polarization drifts. The polarization current is

perpendicular to the magnetic field B_ and combines with the perturbed

electron current parallel to B, to provide charge neutrality. The
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resulting perturbed field configuration is formed by a chain of

magnetic islands. The overall fluid motion is made of convective cells

with fluid entering the islands at the X-points and exiting them at the
O-points. We expect that the interaction of many modes will modify the
growth of an individual island through a diffusion process that changes
the equilibrium configuration.

We discuss the basic equations that describe the evolution of
tearing modes in Sec. II. In Sec. III we derive the quasilinear
equations for the many mode case and obtain a diffusion equation for
the magnetic flux involving an anomalous resistivity. The explicit
form for the anomalous resistivity is derived in Sec. IV from the
solution of the linear stability problem. It is then shown that the
anomalous resistivity is always positive for a quasilinear spectrum of
tearing modes. The positive resistivity of tearing modes derived here
is in contrast to the negative reéistivity' derived by Biskamp and
Welter!3 from a secondary spectrum of incompressible two-dimensional
resistive magnetohydrodynamic turbulence. In Sec. V we analyze further
the nature of the anomalous transport by considering the métion of test
particles in the quasilinear spectrum. The discussion and conclusions

are presented in Sec. VI.
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II. NONLINEAR TEARING MODE EQUATIONS
We consider a two-dimensional equilibrium configuration with the
magnetic field given by BOE + By(x)§, where B, = const and By(x)
reverses sign somewhere inside the plasma as shown in Fig. 1. The
electromagnetic perturbations éésociated with tearing modes are
conveniently described in terms of the magnetic flux function
¢(%—component of the vector potential) and the electrostatic potential

¢.10—11 The perturbed electric field E and the total magnetic field B

(equilibrium plus perturbed) are given in terms of ¢ and ¢ by

- - 3 »

E=-Vo+c2 (1)
and

B=2zx Vy+ Bz . (2)

According to the physical mechanisms discussed in the
introduction, the basic equations governing the evolution of tearing
modes can be simply derived from Ampere’s law, V x B = y,j, Ohm’s law,

. . . - > g
E + v xB=n.j, and the quasineutrality condition, V « j = 0. Here j
is the plasma current density and N. 1is the plasma collisional
resistivity which is assumed constant. Substituting Eq. (2) into

R
Ampere’s law, we obtain

2

Vey = Uoj" ’ (3)

where j" is the component of the current density parallel to the
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magnetic field. The parallel component of the electric field is given
by E, = E « B/B; substituting this into Ohm’s law and using Eq. (1), it

follows that

~ %, 1
9z B

S [¢;1’)] +'§‘§= ncj" > (4)

where we have defined the Poisson brackets

3A 3B _ 5A 9B

AB] = -2 —-__—- _—
[4,B] x 9y 9y ox

Finally, we recall that the current density perpendicular to the field

lines is given by the ion polarization current,

myn 3E, 1 36
= = - v, =2 | (5)
g2 ot v2 L5t :
o) oV A

where m; is the ion mass, n is the plasma density, and v, = B /vy nm,
P A o} o i

1

is the Alfvén velocity. Thus, the conservation of charge in the

quasineutral approximation,

> > > ’
V'j=V'jl+B°V(j"/BO)=0,

can be written

33
12v2%=3—z"+]3iw,\72w1 , | (6)
uOVA [o} .



where we have used Eq. (3).

Equations (4) and (6) are the basic equations describing the
nonlinear evolution of the ¢ and ¢ fields. 1In the following, we will
consider only two-dimensional perturbations. In this case, using

Eq. (3) and 3/3z = 0, Eqs. (4) and (6) reduce to

oy . 1 _ e 2 '
T +——Bo [¢,9] = _uo' vy (7)
and
1 29 _ 1 2
— Vo 3, Lo, V991 , (8)

respectively. The term [¢,y]/B, in Eq. (7) is the convective part
v e+ VY of the total time derivative of {. To see this, we recall that
the main fluid motion is given by the ExB drift. Using Eq. (1), it

follows that the drift velocity is given to the lowest order by

zx Vo (9)

and thus [¢,9]/B, = v « Vy.

Equations (7) and (8) plus the appropriate boundary conditions
constitute a mixed initial value and boundary value nonlinear problem
which cannot be solved analytically. 1In the following we will solve
this problem under the condition of weak nonlinearity or, equivalently,

in the quasilinear approximation. Before introducing the quaslinear
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approximation we derive the basic conservation laws that follow from
Egqs. (7) and (8).

Integrating ¢ times Eq. (7) over the entire plasma cross-section

and using the following property of the Poisson  bracket

Wl6,9] = [6,9%]/2, we obtain

2 n ' |
o Jaxay L - - = Jaxay(Tp)? - (10
(o]

This equation governs the resistive diffusion of the poloidal flux
which occurs on the resistive time scale Tpe
To obtain the rate of energy dissipation, we first define the

magnetic energy as

- 1 2
W _-EE; fdxdy(V¢) (11)

and the fluid kinetic energy as

nm; 5 1

T = fdxdy-z— = [dxdy(Ve)? . (12)

2uovA

Then, multiplying Eq. (7) by Vzw and Eq. (8) by ¢, integrating the
resulting equations over the entire plasma cross-section, and adding

the results, we get the energy conservation equation

d __ e 2442 Y . : |
5 (g + T = ;Efdxdy(v W+ 95va nds, (13)
(o}
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where the last term represents the energy transported away from the
plasma. For instability, it is necessary that dT/dt > 0; it is easy to
see that this corresponds to fdxdyj"Eﬁ > 0, vwhere Eﬁ is thé
electrostatic part of the parallel component of the electric field. If
the system is isolated, the last term in Eq. (13) vanishes and the

instability can grow only if the magnetic energy can decrease.

IITI. QUASILINEAR EQUATIONS

To study the evolution of tearing modes in the weak nonlinear
regime, let us derive the quasilinear equations from Egs. (7) and (8)
following an approach similar to the one described in Ref. (14). Any
quantity A 1is split in an average plus a perturbation,

A(x,y,t) = <A> + 8A, where

> =L faya : (14)
L
y
SA = % Ap (%) exp[iky + ftyk(t')dt'] R (15)

and Ly is the periodic length in the §—direction. Substituting
P =<Y>+ 8y and ¢ = <¢> + 8¢ into Eqs. (7) and (8) and taking the
average of the resulting equations, we obtain the equations for <y> and

<¢>,

n 2
2%¢ s> = —= 7Y
Ay o ax?

K

1 9
= 2 16
t Bo 9x (16)
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and

2
. L~ R I (17)

V3 axz ot ox dy

where we have used the following property of the Poisson brackets

5 of 5 3¢
— — = — f —_— . ]-
w oy & " By (18)

<[f’g]> ==
To derive the quasilinear equations for &y and &8¢, we subtract the
averaged eqs. (16) and (17) from the original equations for ¢ and ¢,

respectively, and neglect high-~order mode coupling terms. We obtain

sy |, 1 1 _Te 9 '

o +——BO [ 6¢,<P>1] +B—O [<¢>, 8y] N Ve sy (19)
and

L2 2% L sy V] + = <, TR sy] . (20)

u vl 3t B, B,

The term [<¢>,dy] represents the influence of equilibrium flows on
the linear behavior of tearing modes. Although this term is usually
neglected, it can have a stabilizing or destabilizing effect on tearing
modes and also influence its quasilinear evolution.l4716 14
particular, in the presence of a background turbulence of ideal

magnetohydrodynamic waves with <¢> # 0, the tearing modes may become
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more unstable.l’1% y{ere we consider the quasilinear evolution of a
spectrum of pure tearing modes, neglecting the equilibrium diffusive
flow. Accordingly, the effect of <¢> vanishes, as will be shown in

Sec. IV.

A. Evolution equation of the poloidal flux <y>

In the nonlinear stage of a single tearing mode, the width Wi of a
magnetic island increases in time, modifying the equilibrium field
until the available magnetic energy vanishes .10 In the presence of a
spectrum of tearing modes, the rate of change of <{> in Eq. (16)
depends not only on the collisional resistivity N, but  also on the
anomalous flUX'F% = v, 9> caused by the nonlinear interaction of the
modes. To show -the effect of the anomalous transport of flux F%
explicitly, let us evaluate the nonlinear term in Eq. (16). From the

general expression for the perturbations 6y and 8¢ given by Eq. (15)

and the definition of the average in Eq. (l4), we have

_,é; 4%59 SY> == E k(¢§wk - ¢kw§) exp(zftykdt') . 21)

F& =
v o y By &

Substituting this into Eq. (16), we obtain

a<y> _ Oy oA one
= = - with Fy Fy+ Fy s (22)

where the fluxes F% and F% are given by
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k t ’
F% = —ZE-EZ Im(¢§¢k) exp(zf Yedt”) (23)
and
[ nC 3<1P> '
Fy = b X (24)

The cross correlation Z k Im(¢§¢k) must be calculated from the
quasilinear system of Eqs. (19) and (20). Making the long wavelength
approximation, azwk/axz >> kzwk, which is appropriate for

incompressible tearing modesl, Eq. (19) reduces to

e 32 K K> .k < 6>
Y - = 1 — - 1 — . 25
( Ho 3X2J¢k B, ¥ ox BO Y ox : (25)

Using the general expression for 8y, Eq. (15), in Eq. (17), we obtain

2 _
1 %> . ->
“sza 9x ot
where
2 2 %

e o a q)k 8 IPk: .
@) = 1) k(Y —= - ¥ ), ’ (27)
C g T ke ax2 : :

t ' . )
where Pe(x,t) P (%) exp(f Yedt’) . Substituting: Eq. (26) into
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Eq. (25), multiplying the resulting equation by ¢§, and calculating F&,

the diffusion equation (22) for <y> becomes

_ BFw(x,t)

ox

R 8 [ﬂ(X_’t_)_ _a% <] = , (28)

ot ox Uy

where

uok% | 4y (x,£)12

n(x,t) = n, + ng(x,t) = n, + 2 > (29)
kK, 1kvi ¢ e,
and
) 3%y, / x> |
ki = = ———— . (30)
Y

The second term on the right-hand side of Eq. (29) is the:

anomalous resistivity n, due to the electromagnetic perturbations
associated with the tearing modes. Because these perturbations are
localized in a narrow layer around the singular surface, n, represents
an increase in the value of the resistivity in that layer and thus
causes an enhanced diffusion of <Y> over the classical value. The

magnitude of n, depends on the amplitude of the spectrum ]¢k|2.
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B. Solution of the linear equations
To calculate the anomalous resistivity Ny, we have to solve the
linear Egs. (19) and (20) to self-consistently determine the growth
rate v, and the "perpendicular wavenumber k)". ‘Evaluating the four
Poisson braékets appearing in Egs. (19) and (20), we find the following

set of equations relating the Fourier amplitudes Y and ¢p:

52

_dik oK L kX Me _ 2
Y 5, x by lBO = ¢k+uo (a? T (31)
and
SRS R S X3 S S .S P oS
“o"fx ax2 k By ox3 k By 3 Tgx2

The term 3¢>/9x in Eq. (31) represents the effect of equilibrium
flows. When this term is kept, the eigenfunctions ¢k and Y do not
have a definite pai:ity.14 In this case, the quantity € (t) defined by
Eq. (26) can be nonzero. As mentioned earlier, we assume here that
<¢> = 0 at t=0 and this leads to the vanishing of €(t). )

The solutions of Egs. (31) and (32) are well-known,ls21 In this
section we reproduce the basic results' required to obtain the
relationships needed for the anomalous flux F?p. “The boundary layer
procedure for solving Eqs. (31) and (32) ‘is to consider a resistive

layer around the point where d<¢>/dx vanishes surrounded by an ideal

region where resistive and inertial effects are negligible. The
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eigenvalue Yy is determined by the asymptotic matching of the solutions

of the relevant equations in the two regions;

1. External MHD region
The equation to be solved in the ideal region is obtained by
taking Yy = n, = ¢ = 0. Then, from Eq. (32) we obtain a simplified

version of Newcomb’s equationzo,

2
A% (2 + 33<y>/ a3

- T Yo =0 . (33)

For tearing modes, the solution of Eq. (33) is continuous at the
singular point and has discontinuous first derivatives. The amount of

discontinuity is specified by the parameter

My
dx I+ dx |-

A (k) = ”
ko

’ (34)

where Y., 1s the value of the ) at the singular point. The value of
A’(k) depends on the profile of the equilibrium current density. The
solution of Eq. (33) for a simple equilibrium model is presented in

Sec. VI.
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2. Resistive layer
We assume that the equilibrium profile is such that By(x) vanishes
linearly at the singular point x=0. Then, in the resistive layer
around the origin, the equilibrium flux function <{> can be represented
by <> = ngz/ZXO, where B; is a constant. Following boundary layer
theory, we rescale the va;iables inside the resistive layer to make the
small terms in Egs. (31) and (32) that are proportional to n. and v of
the order of the other terms. The relevant small parameter in these

equations is € = TA/Tr, where the Alfvén time and the resistive time

are defined by

2
- JRATI T} nX

T, = %1 and .= —2 (35)
A B0 r Ne

The rescaling of the inner layer variables 1is carried out by defining

the following order one normalized quantities:

BY &
A= g8 o =1 e X s
€ TA'Y s k 1l € Bo - Cbk
E= e, g = e - ) s (36)
o

where a, b, ¢, and d are constants to be determined and Yo 1s the
amplitude of b at x=0. Substituting the normalized quantities just

defined into Egs. (31) and (32), we obtain
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1-a-2b+d  d% gy

b+c €
\pk = € E@k'i' (37)
0 R ac2
and
2 2.2 2
Ao - k™% Eb--c—2a+dE 4"y (38)
D
ag2 22 ag2

to lowest order in the parameter €. To have all terms of the same
order, we require that a = 3/5 and b=d = ¢ = 2/5.21 Then Eqs. (37)

and (38) reduce to

2
4%y £
= My, (1 = —) (39)
a2 heo o
and
2 2.2 2.2
d*eo kx5 k“x2 ,
_dgz S k= - By (40)

The solution! 2l of Eq. (40) is given by

¢ko

—— x(2) , - (4D

8 () =

where
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2.2
k®xs 1/4
—) & (42)

1/2 - g2
x(z) = zf / (l—4t2) 1/4 o2 F dt with z = (
0
We note that y(z) >0 for z >0 and the limiting forms of x(z) are
3

x(z) = 0.6z —'%T - 0.062° + ... for |z] << 1

and -

R

x(z) =2+ 2 4 ... for jz| 3> 1 . (43)
Z ZS

The eigenvalue A(k) is obtained by equating the discontinuity in
the logarithmic derivative of wkl for £ » £ ©» to the external value of

A’ (k) properly normalized to the inner layer variables. The result

11510,21

4/5 -
Ay = [E8) o p)] / (2x2Hl/5 (44)

wT(3/4)

and thus, v(k) 83/5A(k)/TA from Eq. (36) with a = 3/5.
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IV. ANOMALOUS RESISTIVITY

We have now all the quantities required to calculate the anomalous

resistivity given by Eq. (29). Using Egs. (36) and (41), we obtain

) 2

k] gyl [ Yo |

A L vy — /2 (kx) ¥P(2) . (45)
BZ (B9x,)?

Substituting Eq. (41) into Eq. (39) and using the definition of the
normalized quantities, Eq. (36), the second derivative of U, and ki

[Eq. (30)] can be calculated giving

[1 - zx(z)]e72/5

"
oro|>

where z is given by Eq. (42). Calculating the fluctuation propagator

(Yk + nckﬁ/uo) occurring in Eq. (29) for n(x,t) we find

Y+ ki g =-gi (3/5 - /511 - 2x(2)1) = wzx() . (46)

It is now evident from Egs. (36), (39), and (41) that there is no
phaSé shift between ¥ and dzwk/dx2 for the eigenfunctions. That the
same is true for the solution outside the resistive layer follows
directly from Eq. (33). Thus, the qﬁantityw@%(t) defined in Eq. (27)

vanishes identically.

Substituting Eqs. (46) and”%%(t)_= O‘iqﬁo‘Eq.A(ZQ), we obtain the -

expression for the anomalous resistivity
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2
()2
na(x,t) = 2¢71/5 Po¥o ) (¢k° ) /2 () X2 (47)
Ak x,BY %

where we have'used the definition of 1,.. Given an equilibrium profile,
specified by the equilibrium flux function <{>, we calculate A’(k) to
determine A(k,t). Then n,(x,t) can be determined as a function of x
for a given fluctuation spectrum (wko/xoBg). The relevant equations to
calculate n(x,t) are Eqs. (33), (34), (36), (42), and (44).

The overall characteristics of n (x,t) follow from the behavior of
x(z). Considering A“(k) # 0 and using Eqs. (42) and (43), we obtain
n, ~ l/x2 for |z| >> 1 and ny = const for |z| <K 1. Thus, the function
na(x,t) is peaked at x=0 and decays rapidly as |[x| + « for fixed t. At
marginal stability, i.e., A’(k) +0 for fixed x and t, we have
z ~ A_l/4 + o and thus, ng ~ A >0. This means that only‘ unstable
modes »contribute to the anomalous resistivity. Furthermore, it 1is
clear from Eq. (47) that n, is always positive.

Let us estimate the magnitude of n, as compared to Ne for a simple

equilibrium model. The full width of a magnetic island, in the thin

" island approximation, is given by

(t) [1/2
W = 4 (eol®) L2 (48)

02<y>/ ax?

where 82<w>/3x2 is calculated at =x=0. Using the approximation
<P = B§x2/2xo, valid inside the resistive layer, in Eq. (48), we

obtain




-21~

Yo 1 k2
5= T (;_) . (49)
XOBy 0

Substituting this relationship into Eq. (47), dividing both sides by

M., and using the definitions of ¢ and 1., weé get

Tla(x,t) - 8_6/5 2 (iﬂ_li)l* A11</2 (kXo) X(Z) . . (50)
KRN 27 K %o z

The factor 3—6/5/27 is very large for typical values of the inverse
magnetic Reynolds number e. However, the width W of the magnetic
islands associated with individual unstable modes is much smaller than
X, for the quasilinear calculation to remain valid.

For a given fluctuation spectrum the magnitude of na/nc depends on
the form factor S(k) = VA(k) (kx,) x(z)/z. Let - us consider
A"(k) = 15(1 - kx_ )/x,, as shown in Fig. 2. This is a good model for
actual configurations. 1In Fig. 2 we show the corresponding S(k)
calculated at x=0, where N, 1is maximum. The form factor S(k) has a
single maximum and vanishes at kxo = 0 and kxy = 1. The same type of
dependence is obtained for other models of A’(k). The wavenumber
dependence of A(k) and S(k) for the Harris equilibrium is shown in
Fig. 3. Usually, the largest growth rates occur for kxo + 0; however,
since S(k) vanishes in this limit, the contribution of this part of the
spectrum to the anomalous resistivity is not necessarily larger than
the contribution from shorter wavelengths kxo ~ 1/2. The maximum value

of 8(k) is a number of order one. Thus, considering ¢ = 10"3—10-4, it
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is clear from Eq. (50) that na/nc can be greater thaﬁ unity for a

spectrﬁm of thin islands, IWk/xO[ <K< 1.

V. MOTION OF THE PARTICLES

To obtain a more direct understanding of the anomalous transport
mechanism described by the quasilinear equations we consider the motion
of test particles e,» m, in the spectrum of tearing modes. The
trajectory of the test particle is given by the guiding center
equations of motion d.r = v"(g/B) + (§x§)/B2 and dyv = (ea/ma)E". For
the two-dimensional system considered, z is an ignorable coordinate and

the equations of motion reduce to

dv® e e

I o o 3y 1
= — By = — (&= [¢,9])
dt my I m, ‘3t B

o
dx*__ 1 3¢ _ I 3
dt B, 9y By, 9y
Q,

dy®* 1 8¢, VI 8y

= . L4 - T 51
dt B, 8x o &’ (51)

where the small polarization and curvature drifts are neglected.

. From the analysis in Sec. III the formulas for the tearing mode

fields are

W30 | preosn (7 + 7% coscy + gy (52)
BOX [ L(0)] ]’.g BOX k

yo y*o
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and

oy, Foe 0 L wle)

B : T ) 1/2
o A k ByXo (kxo)

X
XGZ—

k] sin(ky + Bp) , (53)

using Eqs. (36)-(42) and defining Ay = sz/SXoAﬁ/4/(kxo)l/2.
Thermal electrons have V¥ >> ¢ and their x,y motion from Eq. (51)

reduces to

sin(ky + By)

dt B

o k

o
BY
e v"By(x)

dt B,

. (54)

For constant v the motion in Eq. (54) is extensively studied in the
literature on the stochasticity of magnetic field lines and the
associated anomalous diffusion of electrons. In the 1limit
Y <K k"v" = kv"By/B0 the fields are essentially static with respect to
the electron motion and the results of Rechester et al.?? are directly
.applicable.

Thermal ions have Vb << ¢ and move with the ExB motion. From

Eqs. (51) and (53) the ExB motion reduces to
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dxi (o) X
Vg = o = - x(=) cos(ky + B8,)
dt TA K BOx, By k

< el/5 ; (0 (e ) L/ 21374

. - =1/5 1/2
dyl X € ll’k(t)Ak , X .
y T gt Wk Box, B k

The motion in Eq. (55) describes convection about a superposition of
randomly phased convective cells of scale (Ax,Ay) = (Ak,n/k). The
convection patterns bring plasma and magnetic flux ¢ into and out of
the resistive layer. During this flow the net magnetic flux convected

across the surface x = const is readily calculated from Eqs. (52) and

(55) as

/s
a B oo (%ot P (£) 2
0 = o = - 5B §
y>o
1/ ) V2 y(55) <cosPxy + 8> (56)

k

which reduces to

o<
a 5

=
<o
i

with n (x,t) given by Eq. (47).
From the point of view of the electron motion, the anomalous
resistivity may be viewed as the effect of following the meandering

magnetic field lines, which changes the local E" = E«B/B, accelerating
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the electrons from the ambient field <E>. From Eq. (4) the mean

parallel electric field is

<P 9 K> ) K P
+___ = - — -
ot 9% x ¥ ot ox ( a  ax ) (57)

<E ]|> =
Thus, in the regime where N, >> Ne the quasilinear evolution of the
flux <{y> assures that the mean parallel electric field accelerating the
electrons vanishes. The collective effect of the tearing mode is to
produce an effective anomalous resistivity mechanism that prevents the

acceleration of the electrons from the strong ambient electriec field

<E> = z 8<y>/ ot

VI. CONCLUSIONS

We investigatg the quasilinear evolution of a spectrum of tearing
modes produced by a local current sheet. The‘problem is formulated in
terms of the two dimensional nonlinear Eqs. (7) and (8) derived from
incompressible resistive magnetohydrodynamics. We neglect the effects
of density and temperature gradients and finite ion gyroradius. The
two quasilinear fluxes that govern the evolution of the background are
<wa> and <j By>. From the asymptotic boundary layer solution of the
problem we calculate these fluxes showing that <szX> = 0 for initial
equilibria with vanishing velocity fields.

The quasilinear wvalue for the transport of poloidal flux
F% = v P> = - n, K>/ dx 1is calculated in Eq. (29) and reduced in
Eq. (47). From the structure of tearing mode wave functions we show
that the anomélous resistivity na(x,t) is positive definite. The

positivity of n,(x,t) follows from the particular &§v - &B correlations
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established in a tearing mode and is not satisfied by other &z - 8B
fluctuations. In a related work?3 we show the relationship between the
positive anomalous resistivity of tearing modes with the negative
anomalous resistivity of a different form of resistive
magnetohydrodynamic turbulence recently analyzed by Biskamp and
Welter.l3 In Ref. 23 extension of the present theory to the
collisionless regime is discussed.

The quasilinear theory presented here predicts that n, > Ne for
magnetic fluctuation levels that exceed <(8§7B§)2>1/2 ~ 53/5, or
expressed in terms of a mean turbulent magnetic island width #, the
condition becomes ﬁYxo ~ 83/10, which is the same (to within 81/10) as
the condition that the turbulent island width equals the tearing layer
width xoez/s. At this level of turbulence the condition that the
quasilinear time scale T_, = n/xg be long compared with the linear time

ql
3/5 is well satisfied.

scale t)/¢

At higher fluctuation levels (6373; > 53/5) the quasilinear
evolution of <{> is faster than the collisional evolution. To estimate
the maximum anomaly na/nc we take the amplitude 1limit given by the

breakdown of the quasilinear ordering yt_, >> 1, separating equilibrium

ql
and fluctuation time scales. At this limit where the two time scales

merge the turbulent island width is ﬁyxo ~ 31/5 and the anomalous

resistivity exceeds the collisional resistivity by approximately

o =2/5
n/n, ~ ¢ .

It appears straightforward to investigate further the evolution of
the poloidal flux <{> and the fluctuation spectrum <¢§> by performing

numerical simulations based on the quasilinear equations derived in

this work.
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FIGURE CAPTIONS

1.

Equilibrium configuration with field reversal.

Form factor S(k) = VA (kxo)(x/z) [See Eq. (47)] plotted against kx
for x A" (k) = 15(1 - kx ).

Normalized growth rate A(k) and form factor S(k) for

xo, A (k) = 2(1 - kzxg)/kxo, corresponding to the Harris current .

sheet model.
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Fig. 1
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