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Many astrophysical plasmas and some laboratory plasmas are relativistic: either

the thermal speed or the local bulk flow in some frame approaches the speed of

light. Often, such plasmas are magnetized in the sense that the Larmor radius is

smaller than any gradient scale length of interest. Conventionally, relativistic MHD

is employed to treat relativistic, magnetized plasmas; however, MHD requires the

collision time to be shorter than any other time scale in the system. Thus, MHD

employs the thermodynamic equilibrium form of the stress tensor, neglecting pressure

anisotropy and heat flow parallel to the magnetic field. Recent work has attempted to

remedy these shortcomings. This paper re-examines the closure question and finds

a more complete theory, which yields a more physical and self-consistent closure.

Beginning with exact moments of the kinetic equation, we derive a closed set of

Lorentz-covariant fluid equations for a magnetized plasma allowing for pressure and

heat flow anisotropy. Basic predictions of the model, especially of the dispersion

relation’s dependence upon relativistic temperature, are examined.

I. INTRODUCTION

A plasma is relativistic if either the thermal speed—the rms speed of the individual

particles—measured in the fluid rest-frame, or the local bulk flow measured in some relevant

frame approach the speed of light. Such plasmas are ubiquitous in astrophysical phenomena

(eg, galactic and extra-galactic jets [6], accretion discs of active galactic nuclei [12], and

electron-positron-ion plasmas in the early universe [3], [16]; and in some laboratory fusion

experiments.

Often (eg [1], [4], [11]), relativistic plasmas of interest are magnetized—meaning the dy-

namics are dominated by the magnetic field. The dynamics of such plasmas are typically

described with magnetohydrodynamics (MHD), which captures the large-scale electromag-

netic features of a magnetized plasma (eg, E ×B drifts). A relativistic MHD closure has
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been presented by Anile [2]. Despite MHD’s success at capturing some of the large scale

physics, MHD plasmas are based on the use of a stress tensor whose origin is based on

thermodynamic considerations (thermal equilibrium) rather than electrodynamics, in which

electromagnetic forces dominate.

Chew, Goldberger, and Low [5] (CGL) present an early departure from the conventional

MHD treatment of the stress tensor by allowing gyrotropic pressure: the CGL tensor dif-

ferentiates between pressures parallel and perpendicular to the magnetic field. However,

CGL neglects to include heat flow parallel to the magnetic field, which can be rapid in low

collisionallity plasmas. Partly for this reason, the double adiabatic assumption used by CGL

to achieve closure is not valid in many physical situations.

Hazeltine and Mahajan [7] (hereafter referred to as I ) attempted a more physical rela-

tivistic closure with gyrotropic pressure and parallel heat flow. However, close scrutiny of

the Hazeltine-Mahajan model revealed fundamental deficiencies. The details of the deficien-

cies are covered in § II. The closure method employed in I uses the stress tensor as the

constitutive relation for the fluid closure. The form of the stress tensor is derived from exact

fluid equations together with orderings characterizing a magnetized plasma. Predictably,

such an approach does not provide a closed system. Closure is achieved through a represen-

tative distribution function, consistent with relativity, magnetization, pressure anisotropy,

and heat flow.

To achieve our closure, we take an approach parallel to I ; we use I as a guide in the

search for a more physical and self-consistent relativistic, magnetized fluid closure.

II. CRITIQUE OF HAZELTINE AND MAHAJAN (2002)

We begin by discussing the covariant fluid closure of I . We refer the reader to I and other

related papers to observe the full treatment of the system rather than re-iterating both the

relativistic closure and the non-relativistic limit here.

Study of the closure presented yielded several major shortcomings of the original model:

1. The first and most pertinent deficiency is apparent from the linearized, non-relativistic

equations of motion. It is manifested by examining the electro-static response of the

electron pressure anisotropy, ∆pe = pe
‖ − pe

⊥. Parallel (perpendicular) here refers to

being parallel (perpendicular) to the magnetic field. One finds that ∆pe ∼ mi/me,
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leading to grossly exaggerated estimates of the electron anisotropy under the typical

MHD assumption of vanishing electron inertia. Such anomalous scaling of the pressure

anisotropy is not observed in conventional MHD or kinetic MHD.

The source of the anomalous scaling of the pressure anisotropy is the use of a single

parallel heat flow, Q‖, rather than separating the parallel heat flow into the parallel

flow of parallel heat, q‖, and the parallel flow of perpendicular heat, q⊥. When a

single heat flow is used, the evolution of parallel and perpendicular pressure are both

coupled to parallel gradients of the heat flow, and the evolution of the single heat flow is

driven by parallel pressure gradients. Using separate heat flows results in the expected

evolution of the pressures and heat flows, namely dp‖/dt ∼ ∇‖q‖, dp⊥/dt ∼ ∇‖q⊥,

dq‖/dt ∼ ∇‖p‖, and dq⊥/dt ∼ ∇‖p⊥.

Though separating the two forms of parallel heat is relatively common in the liter-

ature (see eg [5], [13], [15]), the distinction between the heat flows does not appear

in the stress tensor, which forms the constitutive relation for a fluid plasma closure.

Therefore, I attempts a closure involving the single heat flow, which corresponds to

the sum: Q‖ = q‖ + q⊥.

Including separate heat flows involves modifying the distribution used in I and using

higher-order moment equations to obtain evolution equations for the two heat flows.

However, the stress tensor is not changed.

Relatedly, I does a very poor job predicting the onset of the mirror instability. The

source of this error is the unusual coupling of the pressures and heat flows noted above.

The use of a relativistic bi-Maxwellian accurate to first order in the pressure anisotropy

provides a better estimate of the mirror instability but still does not agree fully with

kinetic MHD. However, a relativistic bi-Maxwellian retaining second-order pressure

anisotropy terms captures the correct mirror instability. Note that, keeping accuracy

to this order is reasonable since the fourth-rank moment (energy-weighted stress) will

naturally have terms second-order in the anisotropy.

2. Examining the thermodynamics of I leads to a thermodynamic temperature of the

following form:

T =

(
p + 2

3
∆p

)2

n
(
p + 4

3
∆p

) ,
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where p is the scalar pressure and ∆p is the pressure anisotropy. This form makes

thermodynamic calculations awkward and can lead to confusion with the more typical

definition of the thermodynamic temperature, T = p/n.

Also in I , the enthalpy density, h, is defined to be

h = u + p‖,

where u is the internal energy density. Typically, enthalpy is defined to be h = u + p.

Again, there is nothing inherently incorrect with this definition, but it can also lead

to confusion.

These shortcomings are addressed here by modifying the distribution in I to approxi-

mate a non-relativistic bi-Maxwellian expanded for small pressure anisotropy with only

first-order terms retained, and by making a small modification to the (0, 0) component

of the stress tensor.

3. Approximate parallel and perpendicular projection operators were used in I as anni-

hilators of the gyroscale portions of the exact moment equations to derive evolution

equations for the parameters of the fluid system. Use of these operators leads to nearly

redundant evolution equations which only agree in the non-relativistic limit. Thus,

the redundancy leads to spurious instabilities in the moderate to ultra-relativistic

temperature regimes of linear theory. This issue is solved by replacing the projection

operators with more fundamental annihilators and discussed further in § IVB.

4. The form of the relativistic heat flux evolution equation provided in I omits relevant

terms from the gyrophase dependent portion due to an ordering error. Also, the

non-relativistic form of the closure presented in Hazeltine and Mahajan (2002b/c)

contains algebraic errors which, when combined with the omission noted above, lead

to an incorrect evolution equation for the parallel heat flux.

III. RELATIVISTIC PLASMA CONCEPTS

Here, we review some basic properties of relativistic electromagnetic theory, define what

it means for a plasma to be magnetized, discuss some of the consequences of magnetization,
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and present the moments used in our theory. Because the majority of this material was

covered in I , the present treatment is brief.

We use the Einstein summation convention throughout, with Greek indices running from

0 to 3 and Roman indices from 1 to 3. Boldface type typically represents the 3-vector portion

of a 4-vector, for instance an arbitrary 4-vector Cµ may be written as Cµ = (C0,C). All

speeds are normalized to the speed of light, so that c = 1. We use ηµν = diag{−1, 1, 1, 1}
as the signature for our Minkowski tensor.

A. Magnetized Plasma

We make use of the following Lorentz scalars formed from the Faraday tensor, F , and its

dual, F :

1

2
FµνF

µν = B2 − E2 ≡ W (1)

1

2
FµνFνµ = E ·B ≡ λW. (2)

The latter relation is of significant importance because λ, or equivalently E‖, will be a small

parameter of our theory.

Two conditions must be satisfied for our plasma to be considered magnetized:

1. The two electromagnetic field invariants must satisfy

W > 0, (3)

λ ¿ 1. (4)

2. The thermal gyroradius must be small compared to any gradient scale length:

δ ¿ 1, (5)

where δ is the ratio of the thermal gyroradius of any plasma species to any gradient

scale length.

We assume the ordering λ ∼ δ for convenience. We will implicitly use this definition of a

magnetized plasma throughout the following analysis.
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B. Quasi-Projectors

As is typical in a magnetized plasma, notions of parallel and perpendicular to the field

play important roles. Thus, we need a covariant meaning for parallel and perpendicular.

Such a meaning is provided by

eν
µ ≡ −Fµκ

F κν

W
, (6)

bν
µ ≡ ην

µ − eν
µ. (7)

e and b become approximate perpendicular and parallel projection operators in the mag-

netized limit. In a frame in which the transverse electric field vanishes (a subset of the

instantaneous rest-frame (R)), the action of e and b on an arbitrary 4-vector Cµ = (C0,C)

is given by

bµκCκ|R = (C0,C‖), (8)

eµκCκ|R = (0,C⊥). (9)

‖ and ⊥ have the typical three-dimensional meaning: C‖ = BB · C/B2 = bb · C, C⊥ =

C−C‖, where b is the standard abbreviation b ≡ B/B.

Gradients of the projection operators will be used implicitly later in our analysis. Thus,

we present their forms. To do so, we begin by recalling the Maxwell stress tensor

Θαβ = Fα
κ F κβ − 1

4
ηαβFκλF

κλ

and observe

eαβ =
ηαβ

2
+

Θαβ

W
,

bαβ =
ηαβ

2
− Θαβ

W
.

Maxwell’s equations (13) and (14) presented in the following section imply

∂νΘ
µν = −F µκJκ,
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where ∂ν = ∂
∂xν . Thus, it is straightforward to show

∂νb
ν
µ =

Fµν

W
Jν +

(
1

2
ην

µ − bν
µ

)
∂ν log W, (10)

∂νe
ν
µ = −Fµν

W
Jν +

(
1

2
ην

µ − eν
µ

)
∂ν log W. (11)

C. Closing Maxwell’s Equations

Since plasmas are strongly coupled to the electromagnetic field, we must consider a closure

involving Maxwell’s equations. The coupling of the electromagnetic field to a plasma enters

a fluid description through the second-moment equation, which constitutes the conservation

of energy-momentum (Tsikanshvili et al. (1992)). In relativistic form, the second-moment

equation takes the form

∂νT µν − F µνJν = 0, (12)

where T represents the the total (summed over all species) energy-momentum tensor for the

plasma and Jν is the current density 4-vector. Thus, the second-moment equation is used

as a constitutive relation for magnetized plasmas, providing closure to Maxwell’s equations:

∂νF
µν = Jµ, (13)

∂γFαβ + ∂αFβγ + ∂βFγα = 0. (14)

It remains to compute the the current density in a magnetized plasma.

Equation (12), when composed with F µ
κ , provides two components of the current density

eµνJν = −F µ
κ

W
∂νT κν . (15)

There are two independent components because the perpendicular quasi-projector has a

two-dimensional null space. Charge conservation

∂νJ
ν = 0 (16)

and quasi-neutrality

JνUν = 0 (17)
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provide the two remaining components of the current density, where Uµ = (γ, γV) is the local

4-velocity of the fluid, with γ2 = (1− V 2)
−1

the relativistic dilation factor. That equation

(17) provides a good representation of quasi-neutrality will be presented in § IIID.

We conclude that knowing the plasma stress tensor, and thus the current density, is

sufficient to close Maxwell’s equations.

D. Moments

Our analysis involves moments up to and including the fourth rank. We express each

moment in terms of the distribution funtion f(x, p), where p represents the four-momentum

pµ:

Γα =

∫
d3p

p0
fpα, (18)

T αβ =

∫
d3p

p0
fpαpβ, (19)

Mαβγ =

∫
d3p

p0
fpαpβpγ, (20)

Rαβγδ =

∫
d3p

p0
fpαpβpγpδ. (21)

Here, d3p
p0 represents the invariant momentum-space volume, where

p0 =
√

m2 + p2. (22)

Γα is the 4-vector fluid particle-flux density, T αβ is the stress-energy tensor, Mαβγ is typically

referred to as the stress flow tensor, and Rαβγδ will be referred to as the energy-weighted

stress tensor.

The exact moments of the collisionless kinetic equation associated with the four requisite

moments for our analysis represent particle conservation, momentum evolution, stress-flow

evolution, and energy-weighted stress evolution:

∂αΓα = 0, (23)
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∂αTαβ = eF βαΓα, (24)

∂αMαβγ = e
(
F βνT γ

ν + F γνT β
ν

)
, (25)

∂αRαβγδ = e
(
F βνMγδ

ν + F γνMβδ
ν + F δνMβγ

ν

)
. (26)

Note in the second and higher moment equations, the left hand side involves the macro-

scopic scale, while the right hand side deals with the short gyroscale. Thus, the small-

gyroradius limit is obtained formally by allowing the charge to become arbitrarily large,

e →∞.

No restrictions on the size of higher order moments is assumed. Our analysis does not

require higher moments because we only need those corresponding to the scalar coefficients

appearing in the energy-momentum tensor. This tensor provides the framework for the

closure of the plasma-Maxwell system.

At this point, we restrict our analysis to a plasma with a single ion species in the interest

of simplicity. We define the Lorentz scalar Γ0
R =

∫
d3pfR to be the rest-frame density, nR,

and define the fluid velocity of a species to be

Uµ = Γµ/nR. (27)

In order to satisfy quasi-neutrality, we require, to leading order, the electrons and ions

have the same rest-frame densities, and reside in the same approximate rest-frame to avoid

arbitrarily large current densities; we do not restrict plasma flow, however. Equation (17)

then follows as the leading order expression of quasi-neutrality.

E. Gyro-Ordering

We must now determine evolution equations for the four components of the flux density.

First, we note that all moments can be expanded in the form

Γµ = Γµ
(0) + Γµ

(1),
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where the parenthetical subscript refers to the order of the term with respect to the gyrora-

dius (δ). Thus, equation (24) provides

F µν
(0)Γ(0)µ = 0, (28)

where we distinguish the lowest order Faraday tensor, F µν
(0) ≡ F µν

(
E‖ = 0

)
, from its first-

order counterpart

F µν
(1) ≡ F µν − F µν

(0) ∝ E‖.

Recalling the action of the Faraday tensor on a four-vector, equation (28) implies

Γ0
(0)E + Γ(0) ×B = 0, (29)

which reproduces the familiar MHD Ohm’s law, E + V ×B = 0. As such, equation (28)

fixes the two perpendicular components of the flow. The particle conservation law, equation

(23), fixes another of the components.

At this point, we drop the ordering subscripts and use Γµ and Uµ to refer to the zeroth-

order fields from this point on. Similarly, we drop the ordering subscript from the Faraday

tensor where it is nonessential. We can now write the flow in the form

Γµ = γnR

(
1,V‖ + VE

)
, (30)

where VE = E × b/B, V‖ = bb · V , and γ is evaluated at the lowest order flow velocity.

Before moving on, we note that equation (24) has become

∂νT
µν
(0) = eF µν

(0)Γ(1)ν + eF µν
(1)Γ(0)ν (31)

taking gyro-ordering of the moments and the Faraday tensor into account.

The remainder of this paper is devoted to computing the stress tensor. Conventional

MHD avoids this issue by assuming the stress tensor has the thermodynamic equilibrium

form

T µν = pηµν + hUµU ν , (32)

where p is the pressure and h the enthalpy density. This form only pertains to the highly

collisional regime in which thermal relaxation occurs more rapidly than any other process
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of interest. Thus, our analysis can be viewed as taking place in a regime of much lower

collisionallity. We ignore collisions altogether and compute the stress tensor subject to

electromagnetic forces alone.

IV. COVARIANT EVOLUTION EQUATIONS

A. Magnetized Stress

We use the magnetized limit of equation (25) to find

FανT β
ν + F βνTα

ν = 0. (33)

We use indicial symmetry of the stress tensor, antisymmetry of the Faraday tensor, along

with properties of the projection operators to conclude the stress tensor must have the

following form:

Tαβ = pηαβ + hUαUβ +
1

3
∆p

(
2kαkβ − eαβ

)

+ Q‖
(
kαUβ + Uαkβ

)
,

(34)

where p = (p‖ + 2p⊥)/3, ∆p = p‖ − p⊥, Q‖, and h are Lorentz scalars corresponding to

pressure, pressure anisotropy, total parallel heat flow, and enthalpy density respectively. We

differentiate between the parallel flow of parallel heat, q‖, and the parallel flow of perpen-

dicular heat, q⊥, with Q‖ = q‖ + q⊥ and ∆Q‖ = 2
5
q‖ − 3

5
q⊥. It is important to note that

this distinction does not enter at this order in the moment equations. The total parallel

heat flow is the only distinct component that appears in the stress tensor. This stress tensor

differs from that in I primarily in notation. Here, the enthalpy presented corresponds to

the standard thermodynamic definition, h = u + p, where u = T 00
R is the energy density. In

I , h = u + p‖.

kµ must satisfy eαβkβ = 0 to satisfy force balance and Uαkα = 0 to preserve the sig-

nificance of p‖ and p⊥. These constraints on kµ leave free only one component, which
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corresponds to the Lorentz boosted unit vector b. Thus,

kα =
FαβUβ√

W

= γ

√
W

B2

(
B2

W
V‖, b +

B2

W
V‖VE +

E‖
W

E

)
.

(35)

Two evolution equations are provided by equation (31), once we identify an annihilator of

the Γ(1)ν term. Appropriate choices in the magnetized limit are k and U , since kν (Uν) F κν ∼
δ. We find

kκ∂νT
κν = enR

B√
W

E‖ (36)

and

Uκ∂νT
κν = 0. (37)

These equations advance the parallel momentum and total scalar pressure/energy respec-

tively.

B. Subtleties of Annihilator Choice

The evolution equations in I make use of the projection operators as annihilators of the

gyroscale dependent portions of the moment equations, (18) - (21). This annihilator choice

leads to subtle inconsistencies in the derived evolution equations, resulting from implicit,

redundant use of evolution equations. Further, the inconsistencies cause spurious instabilities

to develop in the linear theory for moderate to ultra-relativistic temperatures.

Consider first the parallel projection operator. We can write the operator in terms of Uµ

and kµ as bµν = kµkν − UµUν +O (λ2). Similarly, we can write eµν = ηµν + UµU ν − kµkν +

O (λ2). If we operate on the third rank moment equation, (20), with UµU ν , the resulting

equation would be an evolution equation for the total energy which agrees with that found

at the second rank, (37), only in the non-relativistic limit. Therefore, operating with bµν

would result in the implicit usage of a redundant energy equation that disagrees with the

lower rank derived equation in all but the non-relativistic limit. The redundancy continues

to higher order and with usage of the perpendicular operator. Thus, we avoid using the

projection operators as annihilators in favor of more fundamental tensors in our system, Uµ

and kµ.
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C. Magnetized Stress Flow

The expression for Mαβγ given in I does not allow for separate parallel and perpendicular

heat flows. The three auxiliary parameters appearing in the stress flow tensor employed in

I only permit dependence of the stress flow on p‖, p⊥, and Q‖. We modify the model for

the stress flow t include an additional auxiliary parameter (m4 in what follows) to permit

the freedom of having two parallel heat flows.

In the magnetized limit, the fourth-rank conservation law determines the form of the

stress-flow tensor

F (ακ M βγ)
κ = 0, (38)

where the super(sub)-script parentheses indicate indicial symmetrization over non-

contracted indices:

η(αβ U γ) ≡ ηαβUγ + ηαγUβ + ηβγUα.

We are also constrained by the definition of the stress-flow (equation (20)) and particle flux

(equation (18)). From the definitions, it can be seen that contracting two indices of the

stress-flow reduces to the momentum flux

Mαγ
α = −m2nRUγ. (39)

Given the above two constraints and assuming the only 4-vectors appearing in the stress-flow

are Uµ and kµ, the stress-flow must have the form

Mαβγ = m2nRUαUβUγ +
∑

k

mkM
αβγ
k , (40)

where

Mαβγ
1 = η(αβ U γ) + 6UαUβUγ, (41)

Mαβγ
2 = b(αβ U γ) + 4UαUβUγ, (42)

Mαβγ
3 = η(αβ k γ) + 6U (α Uβk γ), (43)

Mαβγ
4 = b(αβ k γ) − 2

3
η(αβ k γ), (44)
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and the mk are scalars to be determined later. The Mk also satisfy Mαγ
kα = 0, so that the

second constraint above is satisfied.

We construct an evolution equations for the magnetized stress-flow by finding annihilators

for the right-hand side of equation (25). Two such equations are:

kαkβ∂κM
καβ = 2e

B√
W

Q‖E‖, (45)

(Uαkβ + Uβkα) ∂κM
καβ = −2e

B√
W

E‖

(
h +

2

3
∆p

)
. (46)

These equations can be considered to advance the parallel pressure and total parallel heat

flow respectively.

We note that we cannot evolve the two parallel heat flows individually at this order. This

is because evolving the separate heat flows requires a time-like (0-component) derivative of

the elements of the stress flow containing each parallel heat flow. It will become clear after

evaluating the mk that such separation is not possible in this order.

The mk appearing in the stress flow can be taken to be auxiliary parameters of our system.

Thus, we will need to express them in terms of the dynamical variables appearing in our

system. As such, it is convenient to examine the instantaneous rest frame components of

the stress flow in terms of the mk, which are listed in Appendix A.

D. Magnetized Energy-Weighted Stress

We construct the energy-weighted stress tensor in much the same way as the three pre-

vious tensors. We begin with the constraint provided by the fifth-rank conservation law in

the magnetized limit

F (ακ Rβγδ)
κ = 0. (47)

Our second constraint follows from the definitions of the energy-weighted stress (equation

(21)) and the stress (equation (19)) when contracting two indices of the energy-weighted

stress

Rαγδ
α = −m2T γδ (48)
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Our third constraint follows from contracting all four indices of the energy-weighted stress

Rαβ
αβ = m2ρ, (49)

where −ρ = T α
α = −u + 3p.

Unlike the third rank tensor whose indicial symmetrization is straightforward, the fourth

rank tensor will have unique symmetrizations based on each tensor’s construction, which

are given in Appendix B.

The following expression gives the simplest fourth-rank tensor that satisfies the above

constraints, without introducing new independent variables

Rαβγδ = m2
[
U (α UβT γδ) + 8pUαUβUγU δ

− Q‖k
(α UβUγU δ)

]
+

∑

k

rkR
αβγδ
k ,

(50)

where

Rαβγδ
1 = η(αβ ηγ δ) + 6η(αβ UγU δ)

+ 48UαUβUγU δ,
(51)

Rαβγδ
2 = η(αβ bγ δ) + 8b(αβ UγU δ) + 2η(αβ UγU δ)

+ 64UαUβUγU δ,
(52)

Rαβγδ
3 = η(αβ Uγk δ) − 8U (α kβkγk δ), (53)

Rαβγδ
4 = b(αβ Uγk δ) − 6U (α kβkγk δ), (54)

Rαβγδ
5 = e(αβ bγδ) + 2e(αβ UγU δ)

+ 2b(αβ UγU δ) + 16UαUβUγU δ.
(55)

It can be seen that the Rαγδ
kα = 0 so that Rαγδ

α = −m2T γδ and Rαβ
αβ = m2ρ. The extra

terms multiplying m2 in equation (50) account for over counting certain elements of T αβ

due to symmetry conditions on R.



16

Again, we construct evolution equations for the energy-weighted stress by identifying

annihilators of the right-hand side of equation (26)

kαkβkδ∂γR
αβγδ = 3e

B√
W

E‖ (m1 + m2) . (56)

This can be viewed as evolving the parallel component of the parallel heat flow.

As in the stress flow tensor, the rk can be viewed as auxiliary parameters. Thus, we need

to express them in terms of the rest-frame components of the energy-weighted stress. Such

expressions are provided in Appendix A.

We now have evolution equations for nR, p, p‖, Q‖, q‖, and the three vector components

of Γµ. We will take these to be our set of dynamical variables. We consider the enthalpy,

h, to be an auxiliary parameter in much the same way we treat the mk and rk as auxiliary

parameters. Thus, our fluid system is nearly closed; however, we still need to evaluate the

auxiliary parameters in terms of the dynamical variables. For this, we need a distribution

function.

V. DISTRIBUTION FUNCTION

A. Choosing a Distribution

Since we have auxiliary parameters not yet related to our dynamical variables, we require

a distribution function to close our fluid system. Any lowest order distribution chosen must:

be gyrotropic, solve the drift-kinetic equation, and reproduce the stress tensor, equation

(34). Satisfying the first requirement is straightforward. The second is difficult to imple-

ment in a fluid treatment and typically abandons the fluid point of view in favor of kinetic

MHD, making the drift-kinetic equation part of the closure [10], [14]. The third requirement

restricts us to any of a class of distributions that reproduce the stress tensor.

Therefore, we choose a representative distribution from the equivalence class of distri-

butions reproducing the stress tensor, capable of also representing the fluid equations of

motion. The parameters in the distribution are proportional to the dynamical variables of

the fluid system and evolve according to the fluid equations. We use such a parameterized

distribution in place of the drift-kinetic equation to close our system.
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B. Explicit Form

After examining previous literature [13], [15], it became clear in non-relativistic theory,

a bi-Maxwellian (or two-temperature Maxwellian) is a good choice for capturing features of

kinetic theory in a fluid approach. As such, our distribution can be considered the relativistic

analog of the non-relativistic bi-Maxwellian. Our distribution has the form

f (x, p) = fM

{
1 + ∆̂ + (∆ + ∆∗) pαeαβpβ

+
(
∆ + ∆

∗)
pαbαβpβ

+ pαpβpγpδ

(
∆̃kαkβkγkδ + ∆̃∗eαβeγδ

+ ∆̃∗∗kαkβeγδ
)

+ Qαbαβpβ

[
1 + Q̂

+ pµ (eµν + Qkµkν) pν ]} ,

(57)

where fM is a relativistic Maxwellian. The ∆ scalars describe pressure anisotropy, while the

Q scalars measure heat flow. Thus, our distribution can be parametrized by our dynamical

variables: nR, p‖, p⊥, q‖, and q⊥. The form of our distribution mirrors that found in I only

in the first three terms and the last term multiplying the square brackets. Note that we do

not simply write the distribution in the standard non-relativistic form with the directional

temperature dependence in the exponent. If we were to make such an attempt, evaluating

moments of the distribution would become intractable.

Recall that a relativistic Maxwellian has the following form

fM(x, p) = NMeUµP µ/T ,

where P µ = pµ + eAµ is the canonical momentum, UµP
µ defines the invariant energy, T (x)

the scalar temperature, and NM(x) the scalar normalization factor. In the rest frame, we

have

fMR = NMe−P 0/T .

Moments of the rest frame Maxwellian have the form

∫ ∞

0

ds√
1 + s2

s2ne−ζ
√

1+s2
=

1 · 3 · · · (2n− 1)Kn(ζ)

ζn
,



18

where Kn is the nth MacDonald function, s = |p|/m, and ζ = m/T . We can now compute

the normalization factor

NM =
nReΦ/T

4πm2TK2(ζ)
,

where Φ = A0 is the electrostatic potential. Thus, the rest frame Maxwellian is

fMR =
nRe−p0/T

4πm2TK2(ζ)
(58)

Returning to evaluating the parameters of our distribution, we compare our distribution

to the non-relativistic bi-Maxwellian expanded for small pressure anisotropy to determine

∆∗/∆, ∆∗/∆, ∆̃∗/∆̃, and ∆̃∗∗/∆̃. Doing so yields

f (x, p) = fM

{
1 + ∆̂ + ∆

(
pαeαβpβ − 2pαbαβpβ

)

+ ∆
(
pαeαβpβ + 4pαbαβpβ

)

+ ∆̃pαpβpγpδ

(
4kαkβkγkδ + eαβeγδ

− 4kαkβeγδ
)

+ Qαbαβpβ

[
1 + Q̂

+ pµ (eµν + Qkµkν) pν ]} .

For reference, expanding a bi-Maxwellian for small pressure anisotropy yields

f (x, v) =
N

p⊥p
1/2
‖

exp

[
−mn

2

(
v2
⊥

p⊥
+

v2
‖

p‖

)]

=
N

p3/2
e−

mnv2

p

[
1− mn∆p

6p2

(
v2
⊥ − 2v2

‖
)

+
∆p2

6p2
− mn∆p2

18p3

(
v2
⊥ + 4v2

‖
)

+
1

72

(
mn∆p

p2

)2 (
4v4
‖ + v4

⊥ − 4v2
‖v

2
⊥
)
]

,

where N is the normalization factor, v is the particle velocity, p‖ and p⊥ refer the the

parallel and perpendicular pressure, and p and ∆p refer to the scalar pressure and pressure

anisotropy.

In the instantaneous rest-frame with coordinates oriented such that B = (0, 0, B), our
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distribution reduces to

fR (x, p) = fMR

{
1 + ∆̂ +

∆

m2

(
p2
⊥ − 2p2

‖
)

+
∆

m2

(
p2
⊥ + 4p2

‖
)

+
∆̃

m4

(
4p4
‖

+ p4
⊥ − 4p2

⊥p2
‖
)

+
Q3p3

m

[
1 + Q̂

+
p2
⊥

m2
+ Q

p2
‖

m2

]}
,

(59)

where p‖ and p⊥ here refer to parallel and perpendicular components of momenta.

C. Scalar Moments

We choose ∆̂ and Q̂ to ensure that the rest-frame density is Maxwellian and the rest-

frame flow velocity vanishes. ∆ and ∆ are chosen so that p = nT = 1
3
(T 33

R + 2T 11
R ) and

∆p = T 33
R −T 11

R . ∆̃ is chosen by matching the non-relativistic limit (ζ = m/T →∞) of R1133
R

to its bi-Maxwellian counterpart, m
n
p‖p⊥. Q3 is chosen to satisfy T 03

R = Q‖, and Q is chosen

by matching the non-relativistic limits of the elements of the stress flow tensor involving heat

flow to their bi-Maxwellian counterparts, ie M003
R = 2mQ‖ = M333

R +2M113
R = 2mq‖+2mq⊥.

Thus, in the rest-frame, the distribution function becomes

fR(x, p) = fMR

{
1− 1

6

∆p

p

ζK2

K3

(
p2
⊥

m2
−

2p2
‖

m2

)

+
1

6

∆p2

p2

K4

K2

− 1

18

∆p2

p2

ζK4

K3

(
p2
⊥

m2
+ 4

p2
‖

m2

)

+
1

72

∆p2

p2
ζ2

(
4

p4
‖

m4
+

p4
⊥

m4
− 4

p2
‖p

2
⊥

m4

)

+
nRp‖
p2

K2

K3K

[
K3

ζK2

Q‖ −
(

q‖
3

p2
‖

m2

+
q⊥
2

p2
⊥

m2

)]}
.

(60)

where p and ∆p refer to pressure and pressure anisotropy, while p‖ and p⊥ refer to parallel

and perpendicular momenta. Explicitly, the scalar components of the distribution are

ζ = mnR/p, (61)
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∆̂ =
1

6

K4

K2

∆p2

p2
, (62)

∆ = −1

6

K2

K3

ζ2 ∆p

mnR

, (63)

∆ = − 1

18

K4

K3

ζ
∆p2

p2
, (64)

∆̃ =
ζ2

72

∆p2

p2
. (65)

Q̂ = − K3

ζK2

2Q‖
q⊥

− 1 (66)

Q3 = −q⊥
ζ2

2mnR

K2

K3K . (67)

Q =
2

3

q‖
q⊥

, (68)

where K = K3

K2
− K4

K3
.

VI. CLOSED FLUID EQUATIONS

A. Covariant Closure Summary

We have chosen nR, V‖, p‖, p⊥, q‖, and q⊥ as the dynamical variables of our collisionless,

small gyroradius fluid system. The covariant evolution equations for the chosen dynamical

variables of our system are:

∂αΓα = 0, (69)

kκ∂νT
κν = enR

B√
W

E‖, (70)

Uκ∂νT
κν = 0, (71)

kαkβ∂κM
καβ = 2e

B√
W

Q‖E‖, (72)
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(Uαkβ + Uβkα) ∂κM
καβ = −2e

B√
W

E‖

(
h +

2

3
∆p

)
(73)

kαkβkδ∂γR
αβγδ = 3e

B√
W

E‖ (m1 + m2) , (74)

where the flux, Γα, stress, T αβ, stress flow, Mαβγ, and energy-weighted stress, Rαβγδ, are

given by equations (18)- (21) respectively, and the mk are given in Appendix A. Therefore,

equations (69)- (74) constitute a closed covariant set of fluid equations.

B. 3-Vector Form

It is often convenient to express fluid equations in 3-vector form, sacrificing explicit

Lorentz covariance. As such, we present the 3-vector form of our closed fluid system here.

We begin by noting the following identities

U ν∂ν = γ
d

dt
=

d

dτ
,

kν∂ν =
d

ds
,

where d/dt is the conventional convective derivative and τ represents the proper time.

The explicit forms of (70) and (71) can be express as

hk · γ dV

dτ
+

dp‖
ds

+
dQ‖
dτ

−Q‖
d log nR

dτ
+ Q‖k · dV

ds

− 1

6
∆p

d log W

ds
+

2

3
∆p∂µk

µ = enR
B√
W

E‖,
(75)

d

dτ
(p− h) + h

d log nR

dτ
− dQ‖

ds
− 2

3
∆pk · dV

ds

− 1

6
∆p

d log W

dτ
−Q‖γk · dV

dτ
−Q‖∂µk

µ = 0,

(76)

where

∂µk
µ =

1√
W

[
1

γ
B · d

dt
(γV)− E‖ (b×∇) · (γV)

]

− 1

2

d log W

ds
.

(77)
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From the third moment equations, we have from equations (72) and (73)

d

dτ
(m1 + m2) + (m1 + m2)

(
2k · dV

ds
− d log nR

dτ

)

+

(
m3 +

1

3
m4

)
∂µk

µ + 12m3γk · dV

dτ

−m4
d log W

ds
+ 3

d

ds

(
m3 +

1

3
m4

)

= 2e
B√
W

Q‖E‖.

(78)

d

dτ

(
5m3 − 1

3
m4

)
+

d

ds
(m1 + m2)

+ (5m1 + 3m2) γk · dV

dτ
− 1

2
m2

d log W

ds

+

(
7m3 +

1

3
m4

)
γk · dV

ds
− 6m3

d log nR

dτ

+
1

2
m4

d log W

dτ
+ m2nRγk · dV

dτ

= e
B√
W

E‖

(
h +

2

3
∆p

)
.

(79)

Turning to the energy-weighted stress, we have from equation (74)

− d

dτ
(5r3 + 3r4) +

d

ds
(3r1 + 6r2)

+ 18r1γk · dV

dτ
+ r2

(
30γk · dV

dτ
− 3

2

d

ds
log W

)

− (5r3 + 3r4)

(
− d

dτ
log nR + 3γk · dV

ds

)

+ r5

(
6γk · dV

dτ
+

3

2

d

ds
log W

)

+ 3m2p‖γk · dV

dτ
= 3e

B√
W

E‖ (m1 + m2) ,

(80)

where the rk are given in Appendix A.

C. Non-Relativistic Limit

We now present the fully non-relativistic (NR), ζ = m
T
À 1 and V‖ ∼ V⊥ ∼ ζ−1/2, form

of our closed system. Since labelling the rest-frame is somewhat inappropriate in this limit,

we use n ≡ nR. We also use the common notation ∇‖ ≡ b · ∇.
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In the NR limit, equations (69), (75), (76), (78), (79), (80), become after some

manipulation
dn

dt
+ n∇ · V = 0, (81)

mnb · dV

dt
+∇‖p‖ +

(
p⊥ − p‖

)∇‖ log B = enE‖, (82)

p‖
d

dt
log

(
p‖B2

n3

)
+ 2∇‖q‖ + 2

(
q⊥ − q‖

)∇‖ log B = 0, (83)

p⊥
d

dt
log

( p⊥
Bn

)
+∇‖q⊥ − 2q⊥∇‖ log B = 0, (84)

q‖
d

dt
log

(
q‖B3

n4

)
+

3

2

p‖
m
∇‖

p‖
n

= 0, (85)

q⊥
d

dt
log

(q⊥
n2

)
+

p‖
m
∇‖

p⊥
n
− p⊥∆p

mn
∇‖ log B = 0. (86)

The NR limit of our closure coincides with a bi-Maxwellian MHD closure in which gyro-

viscous components of the stress tensor are retained as presented by Ramos [13]. As such,

the system produces dispersion relations whose numerical coefficients coincide with those

obtained through kinetic theory, and the system correctly predicts the onset of the mirror

and firehose instabilities.

D. Linear Predictions

Having completed our closure, we now examine some basic predictions of the linearized

relativistic system. Linearizing equations (15) and (69)- (74) about an isotropic equilibrium

with no heat flow, equal electron and ion equilibrium temperatures, and non-relativistic flow

speed yields a lengthy set of equations presented fully in Appendix C. We present the

linearized version of equation (72) to compare with the non-relativistic limit of the same

equation as an example:
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− vζs

(
f(ζs) + 3

K3(ζs)

K2(ζs)

)
δn

n

+ ζs

(
f(ζs) +

K3(ζs)

K2(ζs)

)
v
δps

p
+

2

3
ζs

K4(ζs)

K3(ζs)
v
δ∆ps

p

− 3

(
1− 2

5

K4(ζs)

K3(ζs)K(ζs)

)
cos (θ)

δQ‖s
p

+ 2
K4(ζs)

K3(ζs)K(ζs)
cos (θ)

δ∆Q‖s
p

+ 2ζs
K3(ζs)

K2(ζs)
k̂⊥ · δv = 0,

(87)

− 3vζs
δn

n
+ ζsv

δp‖
p
− 6

5
cos (θ)

Q‖s
p
− 2 cos (θ)

δQ‖s
p

− 2ζsk̂⊥ · δv = 0,

(88)

where v = ω/k, k̂⊥ = k⊥/k, cos (θ) = k‖/k, v2
A = B2/µ0(mi + me)n, subscript s denotes

species, superscript T denotes a sum over the species, and

f(ζs) =

[
ζs +

K3(ζs)

K2(ζs)

(
1− ζs

K1(ζs)

K2(ζs)

)]
.

Using the full set of linear equations, we plot the phase velocity squared versus ζi (ie, the

inverse temperature) in figure (1) for v2
A = 10−6, θ = 30o, and mi/me = 1833. Also plotted

in figure (1) as the dashed lines are the linearized version of the non-relativistic equations,

(81)- (86). From lowest to highest phase speed for large ζ, we have the slow magnetosonic,

two ion acoustic, shear Alfven, fast magnetosonic, and two electron acoustic modes.

For the plotted parameters, the electron modes are the first to show significant deviation

for increasing temperature at roughly 100keV . At this temperature, the non-relativistic

theory begins to predict superluminal phase velocities for the electron acoustic modes. Also

of note, the phase velocity of the shear and slow magnetosonic Alfven modes behave quite

differently in the ultrarelativistic regime. In this regime, the correct dispersion relation is

v2 ∼
(

ζi + ζe

8

)
v2

A,

where the non-relativistic theory would simply state v2 ∼ v2
A.
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FIG. 1: Phase velocity squared versus ζi = mi/T for the general linearized evolution equations (solid) and

their non-relativistic limit (dashed) are plotted. v2
A = 10−6, θ = 30o, and mi/me = 1833

VII. SUMMARY

Maxwell’s equations are closed in a magnetized plasma when the 4-vector current can be

expressed in terms of the stress tensor,

T µν =
∑

species

T µν ,

where T µν is the stress tensor of the individual plasma species. This closure procedure is

given by equation (15) and later equations.

Thus, a closed fluid description of plasma dynamics relies on equations that fix the

evolution of the stress tensor of each plasma species. For this reason, the stress tensor is said

to provide the constitutive relation for a plasma fluid closure. We obtain our description of

the stress tensor, equation (34), via electromagnetic constraints rather than the simplier
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MHD thermodynamic arguments

Tαβ = pηαβ + hUαUβ +
1

3
∆p

(
2kαkβ − eαβ

)

+ Q‖
(
kαUβ + Uαkβ

)
,

(89)

where bαβ and eαβ are approximate projection operators introduced in §III. The fluid 4-

velocity, Uµ, and the heat flow, Q‖kµ =
(
q‖ + q⊥

)
kµ, are constrained by

F µ
ν Uν = 0, (90)

eµ
νk

ν = 0, (91)

Uνk
ν = 0. (92)

Equation (90) provides the first of our evolutionary constraints by reproducing the

familiar E×B drift. We still need evolution equations for the two remaining free components

of the flow, Γµ, which are the rest-frame density, nR, and the parallel flow, V‖. Also, from the

stress tensor, we need to evolve p = (p‖+2p⊥)/3, ∆p = p‖− p⊥, h, and the two components

of the rest-frame heat flow, q‖ and q⊥.

Quasineutrality, equation (17), requires that nR be the same for all species, while the

other quantities in the stress tensor are free to vary from species to species. Thus, we choose

the following six parameters nR, V‖, p‖, p⊥, q‖, and q⊥ as our dynamical variables. The

evolution equations for the six dynamical variables of our system in various forms are given

in §VI.

At this point in the closure, we have ten scalar auxiliary parameters which are not fixed.

These are the enthalpy density, h, the four scalar parameters, mk, of the stress flow, and

the five scalar parameters, rk, of the energy-weighted stress. We express these auxiliary

parameters via a representative distribution, which is parameterized by our dynamical vari-

ables. Thus, the distribution evolves according to equations (69)- (74), and our auxiliary

parameters can be expressed in terms of the dynamical variables, as presented in Appendix

A.

Our closure provides a more accurate physical description of relativistic, magnetized fluid

plasmas than previously presented by Hazeltine and Mahajan [7]. The system allows detailed

study of various astrophysical and laboratory plasmas at a more realistic level than MHD.

Also, in the non-relativistic limit, our closure reduces to a set of equations presented by
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Ramos [13] obtained via a bi-Maxwellian closure in which gyroviscous terms of the stress

tensor are retained. In forthcoming papers, we will explore the thermodynamic properties

of an imperfect relativistic plasma through the inclusion of collisions.
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Appendices

A. AUXILIARY PARAMETERS

Here, we list the non-vanishing rest-frame moments of the third and fourth rank in terms

of the auxiliary parameters mk and rk and express the auxiliary parameters of our system

in terms of the dynamical variables. We orient our rest-frame such that B = (0, 0, B).

The non-vanishing components of the third rank moments are

M000
R = m2nR + 3m1 + m2,

M003
R = 5m3 − 1

3
m4,

M011
R = M022

R = m1,

M033
R = m1 + m2,

M113
R = M223

R = m3 − 2

3
m4,

M333
R = 3m3 + m4.

And for the fourth rank, we have

R0000
R = m2 (u + 3p) + 15r1 + 10r2 + 4r5,
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R0011
R = R0022

R = m2p⊥ + 5r1 + r2 + r5,

R0033
R = m2p‖ + 5r1 + 8r2 + 2r5,

R0003
R = m2Q‖ − 3r3 − 3r4,

R0113
R = R0223

R = r3,

R0333
R = −5r3 − 3r4,

R1111
R = R2222

R = 3R1122
R = 3r1,

R1133
R = R2233

R = r1 + r2 + r5,

R3333
R = 3r1 + 6r2.

The auxiliary parameters of our system are determined by evaluating the rest frame

moments above via our distribution function, equation (60)

m1 = m

[
p
K3

K2

− 1

3
∆p

K4

K3

+
∆p2

p

(
1

6

K4K3

K2
2

− 4

9

K2
4

K3K2

+
5

18

K5

K2

)]
,

m2 = m∆p

[
K4

K3

− 1

3

∆p

p

(
K2

4

K3K2

− K5

K2

)]
,

m3 =
mQ‖

ζ

[
1− 2

3

K4

KK3

1 + 2Q

2 + 3Q

]
,

m4 =
mQ‖

ζ

K4

KK3

2 (1−Q)

2 + 3Q
.
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r1 =
m

nR

[
p2K3

K2

− 2

3
p∆p

K4

K3

+ ∆p2

(
1

6

K4K3

K2
2

− 5

9

K2
4

K3K2

+
1

2

K5

K2

)]
,

r2 =
1

2

m

nR

[
2p∆p

K4

K3

+ ∆p2

(
−2

3

K2
4

K3K2

+
K5

K2

)]
,

r3 =
m2

ζ

K4

K3KQ‖

(
K2 − 2

2 + 3Q

K5

K4

)
,

r4 = −2

3

m2

ζ

K4

K3KQ‖

(
4K2 − 5 + 3Q

2 + 3Q

K5

K4

)
,

r5 = −1

2

m

nR

∆p2K5

K2

,

where

K2(ζs) =
K3(ζs)

K2(ζs)
− K5(ζs)

K4(ζs)
.

We can also now express the enthalpy density in terms of our dynamical variables by look

at T 00
R = h− p

h = mnR
K3

K2

.

B. FOURTH RANK SYMMETRIZATION

The construction of Rαβγδ will involve tensors of the three following forms, aside from

fully asymmetric and fully symmetric

1. Symmetric times asymmetric, ie ηαβUγkδ. This form will have 12 terms in the sym-

metrization

A
(αβγδ)
1 = Aαβγδ + Aαβδγ + Aαδγβ + Aαδβγ

+ Aαγβδ + Aαγδβ + Aβδαγ + Aβδγα

+ Aβγαδ + Aβγδα + Aδγαβ + Aδγβα.
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2. Symmetric times symmetric, ie ηαβUγU δ. This form will have 6 terms

A
(αβγδ)
2 = Aαβγδ + Aαγβδ + Aαδβγ + Aβγαδ

+ Aβδαγ + Aδγαβ.

For the special case of a fourth rank composed of the two identical symmetric second

rank tensors, ie ηαβηγδ, only the first three terms contribute to symmetrization.

3. Third rank symmetric times a four-vector, ie kαUβUγU δ. This form has four terms

A
(αβγδ)
3 = Aαβγδ + Aβαγδ + Aγαβδ + Aδαβγ.

C. LINEARIZED EVOLUTION EQUATIONS

Here, we present the full set of linearized equations (15) and (69)- (74) about an

isotropic equilibrium with no heat flow, equal electron and ion equilibrium temperatures,

and non-relativistic flow speed:

v
δn

n
− cos (θ)δv‖ − k̂⊥ · δv = 0, (93)

ζs
K3(ζs)

K2(ζs)
vδv‖ − cos (θ)

δps

p
− 2

3
cos (θ)

δ∆ps

p

+ v
δQ‖s

p
=

iqsn

kp
E‖,

(94)

ζsf(ζs)v
δn

n
+ (1− ζsf(ζs)) v

δps

p
+ cos (θ)

δQ‖s
p

= 0,

(95)
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− vζs

(
f(ζs) + 3

K3(ζs)

K2(ζs)

)
δn

n

+ ζs

(
f(ζs) +

K3(ζs)

K2(ζs)

)
v
δps

p
+

2

3
ζs

K4(ζs)

K3(ζs)
v
δ∆ps

p

− 3

(
1− 2

5

K4(ζs)

K3(ζs)K(ζs)

)
cos (θ)

δQ‖s
p

+ 2
K4(ζs)

K3(ζs)K(ζs)
cos (θ)

δ∆Q‖s
p

+ 2ζs
K3(ζs)

K2(ζs)
k̂⊥ · δv = 0,

(96)

ζs

(
ζs + 5

K3(ζs)

K2(ζs)

)
vδv‖ + ζsf(ζs) cos (θ)

δn

n

− ζs

(
f(ζs) +

K3(ζs)

K2(ζs)

)
cos(θ)

δps

p

− 2

3
ζs

K4(ζs)

K3(ζs)
cos (θ)

δ∆ps

p

+

(
5− 2

K4(ζs)

K3(ζs)K(ζs)

)
v
δQ‖s

p

=
iqsn

kp
ζs

K3(ζs)

K2(ζs)
E‖,

(97)

(
6
K3(ζs)

K2(ζs)
+ ζs

)
vδv‖ +

(
f(ζs) +

K3(ζs)

K2(ζs)

)
cos (θ)

δn

n

−
(

f(ζs) + 2
K3(ζs)

K2(ζs)

)
cos (θ)

δps

p
− 4

3

K4(ζs)

K3(ζs)
cos (θ)

δ∆ps

p

+
v

K3(ζs)K(ζs)

(
K4(ζs)K2(ζs)− 2

5
K5(ζs)

)
δQ‖s

p

− 2

3

vK5(ζs)

K3(ζs)K(ζs)

δ∆Q‖s
p

=
iqsn

kp

K3(ζs)

K2(ζs)
E‖,

(98)

[(
ζi

K3(ζi)

K2(ζi)
+ ζe

K3(ζe)

K2(ζe)

)
v2 − (ζi + ζe)v

2
A cos (θ)2

]
δv⊥

− (ζi + ζe)v
2
Ak̂⊥

(
k̂⊥ · δv

)
− vk̂⊥

δpT

p

+
1

3

v

n
k̂⊥

δ∆pT

p
= 0.

(99)
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