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A thermodynamic model of a plasma boundary layer, characterized by enhanced temperature
contrasts and “maximum entropy production,” is proposed. The system shows bifurcation if the heat
flux entering through the inner boundary exceeds a critical value. The state with a larger temperature
contrast !larger entropy production" sustains a self-organized flow. An inverse cascade of energy is
proposed as the underlying physical mechanism for the realization of such a heat engine.
© 2008 American Institute of Physics. #DOI: 10.1063/1.2890189$

I. INTRODUCTION

Two seemingly opposite “principles” have been formu-
lated to accord “entropy” a controlling role even in the non-
equilibrium thermodynamics of macroscopic systems. The
first, the principle of minimum entropy production, has
proven to be a highly successful ansatz, powerful enough to
predict a variety of self-organized structures in nonlinear
systems.1 The second, the principle of maximum entropy pro-
duction, first proposed by Paltridge,2 also seems to work
rather well for some fluid systems that may maximize the
entropy production by simultaneously enhancing temperature
inhomogeneity. Paltridge and co-workers3–5 invoked this
concept to explain the heat transport between warm tropics
and cool high latitudes of the Earth; other planets also appear
to prefer maximizing the entropy production.6 Ozawa et al.7

pointed out that the maximum entropy production may be a
general consequence of fluid-mechanical instabilities !such
as Bénard convection or Kelvin–Helmholtz instabilities" that
can work as a heat engine. Dewar8 developed a statistical-
mechanical model of nonequilibrium flux-driven systems,
where the maximum entropy production is related to the
most probable “paths” of transitions.

It is quite obvious that something so counterintuitive as
the principle of maximum entropy production, must be an-
chored in processes that must necessarily lead to quasiequi-
librium states which maximally depart from thermal equilib-
rium. States that maximize temperature gradients seem tailor
made for such processes. Since the standard fluid mechanical
instabilities seem to be able to create such states, one won-
ders if there is a greater generality to the phenomenon:
Would, for example, fluidlike instabilities in electromagnetic
systems also conspire to create states with sharp gradients?
And if yes, will it be reasonable to try to understand such
states as maximizing entropy-production?

In this paper we attempt to bring into this general fold
one of the most spectacular expressions of self-organization
manifested in the high-confinement, high pressure gradient
tokamak discharges, the H-mode, or discharges with an in-
ternal transport barrier !ITB".9 It is tempting to enquire if the
gross features of phenomena of this genre could be “pre-
dicted” and explained by the principle of maximum entropy

production. We carry out such an enquiry by studying the
thermodynamics of a simple generic model of a fluid bound-
ary layer !region with large gradients" in which a specified
heat flux enters form the left while the right boundary is kept
at a fixed temperature by a heat bath. We will show that the
system exhibits bifurcation; two distinct stable states of tem-
perature distribution are possible. The total heat flux is the
controlling parameter; when it is greater than a critical value,
the system favors the state with a larger temperature contrast.
We will also proffer a set of feasibility arguments; in particu-
lar, we will discuss how such purely thermodynamic consid-
erations !devoid of electromagnetism" could be relevant to
H-modes and ITBs formed in tokamak plasmas.

II. THERMODYNAMIC RELATIONS

We start with the first law of thermodynamics

dU = !Q − !W , !1"

relating the change in internal energy dU with !Q, the heat
absorbed and !W, the work done by the system. We will
distinguish between the changes in state variables and other
general variables; the former !latter" will be denoted by
dX !!Y". In this notation, the second law is written as
!Q=T!dS−!Si" with T and S as temperature and entropy,
respectively. The quantity !Si!"0" denotes internal entropy
production. Introducing a positive constant Tref measuring a
reference temperature, we may rewrite Eq. !1" as

!W = !Q − TrefdS − !dU − TrefdS"

= %1 −
Tref

T
&!Q − Tref!Si − !dU − TrefdS" . !2"

The first term on the right-hand side of Eq. !2" gives the
maximum work achievable in a reversible process !Carnot’s
theorem". The second term !−Tref!Si#0", proportional to the
internal entropy production, diminishes !W in an irreversible
process. The third term !dU−TrefdS", consisting of exact
forms, does not contribute to the integral over any closed
“cycle.”

For an open fluid !plasma" system, one could define the
thermodynamic variables !!W, !Q, U, S, etc." for each mass
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element; these will be called “specific energy,” “specific en-
tropy,” and so on. Their variations !dX or !Y" are calculated
along the streamline. Writing the time derivative of an exact
!nonexact" variable as dX /dt !Ẏ", the rate of work done is
found from Eq. !2",

Ẇ = %1 −
Tref

T
&Q̇ − TrefṠi −

d

dt
!U − TrefS" . !3"

Integrating Eq. !3" over a domain $ !fixed", we obtain a
macroscopic energy balance relation. Denoting by dM the
mass element, the total amount of some state variable X
!evaluated for a unit mass" is given by X̄='XdM. Note that
this representation uses the Lagrangian frame !dM moves
with the fluid". To evaluate the time derivative of X̄, it is
convenient to use the Eulerian frame. With defining the mass
density %, we may write dM =%d3x, where d3x is the volume
element !Lebesgue measure" of the laboratory frame. We ob-
serve, using the mass conservation law #% /#t+$ · !v%"=0
!v is the flow velocity",

d

dt
X̄ = (

$

#

#t
!X%"d3x

= (
$
) #

#t
!X%" + $ · !vX%"*d3x − (

$

$ · !vX%"d3x

= (
$
% #

#t
X + v · $X&%d3x − (

#$

!n · v"%Xd2x

= (
$
% d

dt
X&dM − (

#$

!n · v"%Xd2x , !4"

where n is the unit normal vector, directed outward, on the
boundary #$, and dX /dt=#X /#t+v ·$X is the convective
!Lagrangian" derivative. If we assume that the mass flow is
confined in the domain, !n ·v"%X must vanish on the bound-
ary. In what follows, we omit the mass flow through the
boundary.

In a “quasistationary state” !could be far from thermal
equilibrium", a sufficiently long-term average of a state vari-
able must be constant. Hence, we may assume that the vol-
ume integral of the state variables !U and S" are constant.
Integrating Eq. !3" over all fluid elements, then, yields

( ẆdM =( %1 −
Tref

T
&Q̇dM − Tref( ṠidM . !5"

Generally, the variations of nonexact variables may take
finite values even in a quasistationary state. Indeed, Eq. !5"
gives the estimate of the long-term average work !power" of
a quasistationary thermodynamic engine.

III. QUASISTATIC LAYER SYSTEM

We will now study the thermodynamics of an idealized
plasma “layer” bounded from the inside by an internal core
plasma, and from the outside by a cold heat bath. We will
specify the total heat flux F1 entering the layer through the
inner boundary &1 in contact with the core plasma. The tem-
perature of the outer boundary &0 is fixed by the temperature

T0 of the heat bath. The inner-boundary temperature T1
!whose value measures the layer temperature gradients",
however, is the essential parameter that needs to be deter-
mined. The outer-boundary heat flux F0 must balance F1 in a
quasisteady state !then, we write F1=F0=F".

We neglect the mass flow across both boundaries. Con-
sequently the boundary terms in Eq. !4" go to zero. We as-
sume that Ẇ works only internally to drive a flow in $ !the
energy transformation between the thermal energy and the
mechanical energy of collective motion may be represented
by Ẇ or its dual Q̇=Ẇ". The entropy production Ṡi is,
by definition, internal in the domain. However, the layer
may exchange the heat Q̇ with the exterior. In terms of the
heat flow vector f !Q̇%=−$ · f", 1 /Tref times the first term
on the right-hand side of Eq. !5" may be manipulated as
!dM =%d3x",

(
$
% 1

Tref
−

1
T
&Q̇%d3x = − (

#$
% 1

Tref
−

1
T
&n · fd2x

− (
$

f · $% 1
T
&d3x

= )% 1
Tref

−
1
T1
&F1 − % 1

Tref
−

1
T0
&F0*

− (
$

ṠDdM , !6"

where we have denoted #f ·$!1 /T"$= ṠD% !T and n · f are as-
sumed to be constant on both boundaries". The first term of
Eq. !6" represents the “entropy emission rate” through the
boundaries. The second term in Eq. !6" is the “entropy pro-
duction rate” due to the !irreversible" energy flow f.

Hereafter, we set the reference temperature Tref=T0 !the
heat bath temperature". Using Eq. !6" transforms Eq. !5" to

( ẆdM = %1 −
T0

T1
&F1 − T0( !ṠD + Ṡi"dM . !7"

If the heat were to transport only by diffusion in a sta-
tionary medium !viz., Ẇ=0", the entropy production !and,
thus, the entropy emission" is minimized10 for the “harmonic
heat flow” !$ · f=0", i.e., Eq. !7" holds with Ẇ=0 and Ṡi=0.

In a general quasisteady state, the mechanical energy
!plasma flow energy; in the rest of the paper, the work done,
and the excitation-dissipation of the flow will be used ex-
changeably" must saturate, and thus, 'ẆdM =0 !by the first
law of thermodynamics, 'ẆdM =F1−F0, and, in a quasi-
steady state, F1=F0=F". However, local Ẇ may remain non-
zero. Excitation !Ẇ'0" and dissipation !Ẇ(0" of flow may
occur at different space-time locations, and they might have
different scales associated with them; the scale separation
between excitation and dissipation processes will be dis-
cussed in Sec. VI. In the macroscopic energy balance equa-
tion !7", the influence of the flow on heat transport may be
accounted by the entropy production term '!ṠD+ Ṡi"dM. We
note that, in an initial transient phase, F0 may be smaller than
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F1 and there is power available to generate flows !'ẆdM
=F1−F0". Then, entropy production will increase to balance
the “heat-engine drive” as a quasisteady state is approached.

If one were to invoke the ansatz of “maximum entropy
production” the internal entropy production term must ac-
quire the largest accessible value. Although in a transient
phase, the entropy production rate !energy dissipation rate"
may assume any arbitrary value, in a quasistationary state, it
is bound by the total entropy emission #that is proportional to
the first term on the right-hand side of Eq. !7"$; the factor
!1−T0 /T1" insures that the entropy emission increases as the
difference between T1 and T0 increases. Maximum entropy
production is, therefore, fundamentally tied to maximum
temperature inhomogeneity. At the same time, the factor
!1−T0 /T1" scales the maximum work that can be done by the
heat engine. Since work done is synonymous with changes in
the flow energy, and the maximum entropy production and
the maximum work done are controlled by the same tem-
perature difference factor, it follows that entropy production
will be maximized, if in the layer, a large temperature inho-
mogeneity is excited/maintained/accompanied by large
plasma flows. Such a quasistate, if found to be stable, will be
surely far from thermal equilibrium, and will need to be sus-
tained by an external input, for example, the heat flux enter-
ing the layer from the core plasma.

IV. MODEL OF HEAT TRANSPORT

In order to maximize temperature inhomogeneity, the
system must involve a mechanism that can fight and over-
come processes like heat diffusion that tend to minimize the
temperature inhomogeneity !diminishing the entropy produc-
tion". To work out some details of such a general “mecha-
nism,” it is helpful to dwell on an example drawn from the
tokamak H-mode experiments where it is found that the tran-
sition to a high gradient state is always accompanied with the
generation of a strong sheared flow. We understand that this
qualitative thermodynamic model cannot even pretend to
capture the complicated physics of the H-mode transition,
but we believe that this transition does share some of the
defining characteristics of the model layer problem that we
are investigating. Consequently, this mode of enquiry may
shed some conceptual light on this very important phenom-
enon.

Let us imagine a scenario in which some generic flow
!collective motion of particles" acts to sustain the tempera-
ture inhomogeneity !bringing about an excess of entropy
production". If the flow can enhance the temperature con-
trasts, the power Ẇ available for driving the flow increases;
this positive feedback can, then, become the cause of a trans-
port barrier.

For a transparent formulation of the problem, let us in-
voke a simple transport model in which the temperature dif-
ference between the inner and the outer boundary is con-
trolled by a flow dependent heat diffusivity !and the entering
heat flux F" via

T1!P" − T0 = )!P"F , !8"

where P is the power to drive the flow !to be determined
later as a function of F", T1!P" is the inner boundary tem-
perature that is a function of P !and, thus, of F", and )!P" is
the impedance !inverse diffusivity". Although we have high-
lighted the P dependence of ), it could be a function of other
system parameters.

Determination of the function )!P" will require rather
involved analysis and computational studies. But that is not
the aim of this effort. Instead, we proceed by constructing an
explicitly solvable but reasonable model to extract the nec-
essary conditions on )!P" that might produce a new state—a
flow-dominated transport barrier, for example. For this pur-
pose, we assume a simple parameterization of )!P",

)!P" = )0 + )1!P" = )0 + aP , !9"

where a is a constant. We shall see below that a positive a
!increasing the effective inverse diffusivity, and thus, de-
creasing the prevailing diffusivity" can be the harbinger of a
phase transition.

The baseline impedance )0=)!0" characterizes the am-
bient state in the absence of flows. Naturally this coefficient
varies from system to system and is, in general, complicated
and often unknown. The “diffusion” in a tokamak, for ex-
ample, is known to be anomalous !driven by ambient turbu-
lent fluctuations" yielding much higher heat-transfer rates as
compared to the purely collisional transport rates. When we
apply this model to tokamaks, the turbulent diffusive heat
transport will define the reference or the “ground state.” To
develop the main features of our model, however, we do not
need to know much about )0; it is fully equivalent to speci-
fying the reference inner boundary temperature

TD + T1!0" = T0 + )0F , !10"

attained by the flowless ambient state. We assume that the
inter-relationships are defined by Fick’s law, F=D*T /*x,
where *x is the layer thickness and D !=*x /)0" is the heat
diffusion coefficient !assuming a slab geometry and constant
D, the heat flux of the diffusion is f=−D$T that is a constant
vector". The entropy production associated with this diffu-
sion process is 'ṠDdM = !T 0

−1−T D
−1"F.

All we are interested in, from now on, is to demonstrate
that additional processes, like self-generated flows !possibly
through an instability" allow us to reach solutions for which
T1!P""TD'T0. Using Eqs. !8"–!10", we eliminate )0 to ar-
rive at

T1!P" = TD + aPF . !11"

The model !8" and !9" can be represented by an equiva-
lent circuit shown in Fig. 1, where TD may be considered as
an intermediate temperature !voltage" between two different
impedances, )0 and )1!P". However, we are not considering
separate “regions” in the layer for both impedances.

The next step is to estimate the power P available
to generate the flow. We must subtract the power wasted
through the ubiquitous entropy production in a diffusive
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process, T0#T 0
−1−T D

−1$F, from the maximum power
Pmax= #1−T0 /T1!P"$F available in an ideal Carnot process
!6",

P = Pmax − T0% 1
T0

−
1

TD
&F = T0% 1

TD
−

1
T1!P"&F . !12"

However, not all of this P can appear as the flow energy
because of inherent damping mechanisms !additional en-
tropy production". The coefficient a multiplying P in Eq. !9"
can be viewed as some sort of an efficiency factor, and scales
the overall influence of the flow on the thermal transport.

Equations !11" and !12" are simultaneous in T1 and P,
we can solve them for either. We first solve for T1 deter-
mined by

T1 = TD + aF2% T0

TD
−

T0

T1
& , !13"

or equivalently,

*T* =
aF2T0*T*

!TD + *T*"TD
+ g!*T*" , !14"

where *T*+T1−TD measures the temperature increase
!caused by the flows" at the inner boundary from its diffusive
reference value. There are two solutions of Eq. !13":

T1 =,TD,

aF2T0/TD.
!15"

The first is simply the reference diffusive one and occurs
when P=0.

It is the second solution, capable of supporting a higher
temperature contrast !T1'TD" as shown below, that is the
primary object of our search; it is accompanied by, in fact, is
driven by a finite P, and its very definition T1'TD turns out
to be exactly the “bifurcation” condition. The graphical so-
lution of Eq. !14" for *T*, shown in Fig. 2, illustrates how
the second solution can emerge in *T*'0. When the graph
of y=g!*T*" goes over that of y=*T* near the origin
*T*=0, they will intersect at some point in *T*'0, yield-
ing a solution of Eq. !14". This condition reads as

g!!0" =
aF2T0

TD
2 ' 1, !16"

where the ! denotes differentiation with respect to *T*. Re-
membering that TD=T0+)0F contains F, the condition !16"
translates as !for a'0"

F ' Fmin +
T0

-T0a − )0

. !17"

For positive heat flow into the layer from the inner
boundary !F'0", the threshold condition !17" is meaningful
only if the edge temperature T0 is sufficiently high so that

T0 '
)0

2

a
!18"

is satisfied. It is interesting that in this model, a very cold
outer edge could prevent the transition even for arbitrary
amounts of heat flux input into the layer.

Notice that the existence or the essential nature of the
bifurcation of solutions does not depend on the detailed
shape of the function )!P", as long as )!!P"'0. For an )!P"
more general than Eq. !9", the bifurcation condition !16"
becomes

g!!0" =
)!!0"F2T0

!T0 + )0F"2 =
)!!0"F2T0

TD
2 ' 1, !19"

and the minimum heat flux and the minimum temperature are
given by replacing a by )!!0" in Eqs. !17" and !18", respec-
tively.

V. STABILITY OF THE BIFURCATED STATE

The stability of each equilibrium point is determined by
evaluating the response of T1 to a perturbation !T. We can
imagine the following chain of events:

T 1 T D T 0

W diffusion

flow

Z

∆T*

F

. .
Q’

FIG. 1. Equivalent diagram of a heat engine in a boundary layer. If
*T*'0, the heat engine can work to drive flow !P is the power driving the
flow; Q̇! is the dissipated power; in steady state, P= Q̇!". The flow produces
an additional “nonlinear impedance” Z=)1!P" that sustains the temperature
contrast *T* yielding a free energy to drive the flow itself.

!T*

F=1

F=10

5 10

5

10

y

FIG. 2. Bifurcation of solutions #intersections of the graphs y=g!*T*" and
y=*T*$. If g!!0"'1, we have the second branch of solutions with
*T*'0. In this graph, parameters are T0=1, a=2, )0=1, and F=1, 10.
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!T → !P = F
T0

T1
2!T

→ !) = aF
T0

T1
2!T

→ !T1 = aF2T0

T1
2!T + +!T .

If +'1 !+(1", the equilibrium temperature T1 is unstable
!stable", because the perturbation is amplified !diminished".
If this cycle of processes takes a period of time ,, the evo-
lution of the perturbation may be written as !T!t"=e-t!T!0"
with -= !log +" /,.

Let us first examine the stability of the trivial state T1
=TD=T0+)0F. Below the bifurcation point, i.e., aF2T0 /TD

2

#1 #see Eq. !16"$,

+ + aF2T0

T1
2 #

TD
2

T1
2 = 1

!equality holds at the bifurcation point", the trivial state is
stable. For fluxes above the bifurcation threshold, however,
the trivial state becomes unstable. On the other hand, the
high T1!'TD" state !T1=aF2T0 /TD", if it exists, is always
stable, because we have

+ + aF2T0

T1
2 =

TD

T1
( 1.

VI. MULTISCALE FLOW-TURBULENCE
SYSTEM

The working of the model “heat engine” we constructed
to sharpen temperature gradients in a plasma layer, depends
on the concurrent expression of two contradictory processes:
the processes that create disorder !maximum entropy produc-
tion" and processes that create order !generation of flows".
The sharper temperature gradients result because the coher-
ent flow suppresses the ambient turbulence-caused diffusive
heat transport, which, in the language used in this paper is
equivalent to an increased impedance #)!P"')0$.

One is, of course, more familiar with the “principle” of
“minimum entropy production” widely applied to explain
self-organization of “ordered structures;” the flow being the
ordered structure. In this narrative, large entropy production
is believed to destroy coherent structures and the system is
pushed toward a disordered state.

One is forced to ask, then: What is it that we have done
differently? What is the essential ingredient that enables the
simultaneous enhancement of entropy production, and the
channeling of energy into ordered motion !flow"?

Going back to the essentials of the model, we note that
the only possible new element that could impart this non-
standard behavior to the engine is our choice of the inner
boundary condition; instead of specifying the temperature T1
at the inner boundary, we have chosen to specify the amount
of heat flux F entering the layer. In fact it is F that brings in
the energy that would be eventually channeled into an or-

dered flow; unless F is large enough !larger than a threshold
value", the engine does not work, i.e., the high temperature-
contrast state is not accessible.

Since the high temperature-contrast state is the final
product of the heat engine, the factor measuring the
temperature-contrast, !1−T0 /T1" scales the strength of the
two seemingly contradictory constituent processes: the Car-
not efficiency for generating mechanical energy !flow", and
the entropy production !emission". Such a state of affairs
could pertain if, for instance, the dissipation mechanisms that
create the total entropy !including the “damping” of the flow
Q̇!= P" were independent of the mechanisms that convert the
“free energy” into an ordered flow.

The two opposing mechanisms could, indeed, act inde-
pendently and simultaneously if the “domains” of their effi-
cient operation were nonoverlapping. We propose that a re-
course to scale-separation does precisely what is needed: !1"
the total entropy production is dominated by small scale per-
turbations with a large damping rate !.L−2; L: eddy size"
keeping the eddy amplitudes !sacrifice for the dissipation" to
be very small. !2" The flow, being a coherent macroscopic
structure, is created in the large scale, perhaps, from an in-
stability driven by the entering heat flux F; its creation/
characteristics are not affected by the short scale dissipation
responsible for entropy production.

Thus the existence of a scale-hierarchy allows the sys-
tem to transition to a state that can maintain order while
maximizing disorder. This transition is an expression of self-
organization of the “heat engine;” the self-organization, most
likely, taking place through the so-called “dual-cascade” pro-
cess investigated in two-dimensional !2D" turbulence. Using
this approach, Hasegawa and Wakatani11 predicted self-
organization of “zonal flows” in electrostatic turbulence of
plasmas.

The canonical example of two-dimensional turbulence,
however, is provided by the 2D Navier–Stokes system12

where the dual cascade is facilitated by the existence of two
different ideal constants of motion, the energy, and the en-
strophy. When fluctuations are excited !by an instability" at
an intermediate range of wave numbers, the energy and the
enstrophy move in opposite directions in the wave number:
the energy transfers, through the inverse cascade route, to-
ward larger scales !gets ordered", while the enstrophy goes to
the small-scale dissipation range !gets disordered". At the
large-scale, a flow self-organizes, and the stretching effect
suppresses turbulent transport. It should be noted that these
processes have been shown to function only in a 2D fluid; in
three dimensions !3D" the vortex-tube stretching effect vio-
lates the ideal conservation of the enstrophy. A 3D tokamak
plasma, however, has an advantage over the 3D neutral fluid;
the strong axial magnetic field imparts an effective 2D be-
havior to the confined plasma so that simpler 2D fluid like
considerations could be relevant to H-mode layers and ITBs.

In the standard approach for exploring the large-scale
structure of the flow, one sets up a variational principle; a
constrained minimization of enstrophy while keeping the en-
ergy constant !as well as the total angular momentum".11,12

The minimum enstrophy principles, naturally, implies “mini-
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mum entropy production” because the dissipation is propor-
tional to the enstrophy.

In our model, however, the conventional variational
principle is essentially stood on its head; the relevant new
principle will constitute a dual13 or an antitheses of the old
one; one must maximize the energy for some reference value
of the enstrophy. As mentioned above, the boundary condi-
tion, specifying the heat flux, is the key to our departure from
the standard picture and, hence, the cause for the new varia-
tional principle. In an open system where the entering heat
flux F is given, the entropy production rate is bounded,

( !ṠD + Ṡi"dM = % 1
T0

−
1
T1
&F =

F2)!P"
T0#T0 + F)!P"$

(
F

T0
.

Hence, the enstrophy !dissipation" is bounded, supplying us
a constraint while we maximize the energy. Under the as-
sumption that )!!P"'0, maximization of P !energy" raises
the entropy production to its maximum.

The maximum entropy production yields a most “disor-
dered” state in the small-scale, while an ordered flow with
the maximum energy appears in the large-scale of the hier-
archy.

Thus the working of this somewhat peculiar “heat en-
gine” described in this paper can be understood in the back-
drop of processes and ideas that have been invoked to study
a variety of self-organizing systems. Special and distinguish-
ing feature of this system is that when the entering heat flux
F exceeds a well-defined threshold, a transition to a stable
state with enhanced temperature gradients occurs. Simple
thermodynamics can capture the essential qualitative features
of the transition as well as of the new state.
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