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Abstract: The propagation characteristics of a subwavelength plasmonic
crystal are studied based on its complex Bloch band structure. Photonic
crystal bands are generated with an alternative 2D Finite Element Method
formulation in which the Bloch wave problem is reduced to a quadratic
eigenvalue system for the Bloch wavevector amplitude k. This method
constitutes an efficient and convenient alternative to nonlinear search
methods normally employed in the calculation of photonic bands when
dispersive materials are involved. The method yields complex wavevector
Bloch modes that determine the wave-scattering characteristics of finite
crystals. This is evidenced in a comparison between the band structure of
the square-lattice plasmonic crystal and scattering transfer-functions from
a corresponding finite crystal slab. We report on a wave interference effect
that leads to transmission resonances similar to Fano resonances, as well as
on the isotropy of the crystal’s negative index band. Our results indicate that
effective propagation constants obtained from scattering simulations may
not always be directly related to individual crystal Bloch bands.
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1. Introduction

The study of the optical properties of Photonic Crystals (PCs) has relied on the generation
of Bloch-mode photonic band structures. Information such as the existence of forbidden band
gaps, phase and group velocity, group velocity dispersion, photonic densities of states, prop-
agation anisotropy, etc. may be conveniently obtained by inspection or manipulation of the
computed propagation bands [1, 2]. A commonly adopted approach for the calculation of PC
band structures using frequency-domain methods consists in obtaining the allowed propagation
frequencies ω for specific Bloch k−vectors as eigenvalues of an electromagnetic wave equa-
tion defined in a unit-cell of the periodic medium. If the PC incorporates only dispersionless
materials (i.e., the dielectric constant ε(ω) constant for all frequencies), the problem is reduced
to a linear generalized eigenvalue system of the form Akxk = ω2Bkxk [1–4].
An important class of metamaterials composed of a periodic arrangement of metallic inclu-

sions in a dielectric host, or Subwavelength Plasmonic Crystals (SPCs) [5–7], are particularly
useful in the UV and optical frequency ranges, where the permittivity of the constitutive metal
inclusions displays a plasma-like dispersion. In [5], such structures were shown to display a
negative refractive index propagation band in a subwavelength regime (∼ λ/10), and simula-
tions in fact predicted the possibility of subwavelength-resolution focusing. In this case, the full
variation of the metallic permittivities must be taken into account, which results in a nonliear
equation of the form Ak(ω)xk = ω2Bk(ω)xk, or, more generally, Tk(ω)xk = 0. Solutions to
this type of problem are generally obtained through iterative algorithms -normally extensions
of algorithms for linear problems [8], or developments from Newton’s Method [9]- in which
successive approximations of ω are computed within a chosen convergence domain. Successful
and efficient convergence usually requires a good initial guess; in addition matrix T(ω) and,
depending on the method, its derivatives, must be recalculated at several frequencies within the
search domain, causing the solution process to be time-consuming and computationally inten-
sive. Hence, for this reason, band structure diagrams are not abundant in the metamaterials and
plasmonic crystals literature.
Here, we revisit the Finite Element Method (FEM) formulation for the calculation of 2D

photonic crystal bands developed by Hiett et al. [4]. This method is shown to yield a quadratic
eigenvalue equation in the Bloch k-vector magnitude; frequency in this case is a parameter,
so that material dispersion is readily taken into account. While the quadratic eigenvalue equa-
tion is nonlinear, it is a more tractable problem than the general nonlinear case above, and
can yield solutions more efficiently. In addition, this formulation inherently yields bands of
purely imaginary- and complex-wavevector Bloch modes, which may be particularly hard to
obtain with nonlinear search routines. Imaginary k modes are generally available at the pho-
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tonic bandgap frequencies and play an important role in representing the evanescent field in-
side a finite or semi-infinite PC slab under external excitation. This has been suggested in [10],
in which an equivalent formulation to that presented here, based on the plane-wave expan-
sion method [3], was used to calculate imaginary k bandgap modes in PCs composed of non-
dispersive, purely dielectric materials. On the other hand, modes with complex, rather than
purely imaginary, k-vectors may also exist within, and even outside, bandgap regions that have
considerable influence in the transmission and reflection transfer functions of finite plasmonic
crystals.
In Sec. 2, we derive the FEM formulation for the plasmonic crystal eigenvalue problem fol-

lowing similar steps as [4]. This formulation is implemented in a simple way with the COMSOL
Finite Elements package [11] and used to produce the photonic bands presented in Sec. 3, for a
square-lattice SPC displaying a negative refraction band [5,6]. In these references, the negative
refraction band was calculated only along one of the high-symmetry crystal directions; in the
present article, the photonic bands are obtained over the entire irreducible first Brillouin zone,
such that the isotropy of the negative refraction band near k = 0 is revealed. A comparison
between scattering data from a finite SPC and its band diagram is also performed, in which
the role of the multiple existing Bloch modes (including those with imaginary and complex
wavevectors) is determined. In particular, we report on the existence of resonances in transmis-
sion through a finite crystal slab that stem from the coexistence of two SPC bands in the same
frequency range, being similar in origin and character to Fano resonances [12]. In Sec. 4 we
present conclusions.

2. Finite-element method

We consider a periodic 2D medium with electromagnetic waves propagating in the xy plane.
Solutions to Maxwell’s equations are classified as either TE (H=Hzẑ, where H is the magnetic
field) or TM (E= Ezẑ, where E is the electric field), with the respective z-components obeying
the wave equation

∇ · p∇φ +
ω2

c2
qφ = 0. (1)

For TE waves, φ =Hz, p= 1/ε , q= 1 and ε is the electric permittivity; for TM waves, φ =Hz,
p= 1, q= ε . In Eq.(1), ω/c is the vacuum angular wavenumber.
The medium is periodic, and hence ε(r+T) = ε(r), where T is a lattice translation vector.

From Bloch’s theorem we consider solutions φ(r) = u(r)exp(−ik · r), with u(r+T) = u(r)
and k in the first Brillouin zone. Along with Eq.(1), this leads to:

∇ · (p∇u)− i∇ · (pku)− ik · p∇u− k2pu= −
ω2

c2
qu (2)

Following the Galerkin procedure to reduce Eq.(1) to a weighted-residuals expression [13], we
multiply that equation on both sides by a weight function w(r), and note that

∇ · (p∇u) = ∇ · [p(∇u)w]− p∇u ·∇w (3)

and
∇ · (pku)w= ∇ · (pkuw)−k · (pu∇w) (4)

to arrive at

∇ · [p(∇u)w]−p∇u ·∇w− i∇ · (pkuw)+

ik · {pu∇w− [p(∇u)w]}− k2puw= (5)

−
ω2

c2
quw
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This expression is integrated over a closed domain Γ with boundary δΓ that covers one unit cell
of the periodic medium (the integration domain may actually extend over an integer number
of unit cells). Making use of the Divergence theorem, the following weak-form expression is
obtained:

∫

Γ
p∇u ·∇wdΓ+ k2

∫

Γ
puwdΓ+

−ik
{

∫

Γ
puk̂ ·∇wdΓ−

∫

Γ
pk̂ · (∇u)wdΓ

}

= (6)

=
ω2

c2
∫

Γ
quwdΓ+

∮

δΓ
pw(∇u− iku) · n̂dδΓ

In Eq.(6), n̂ is the outward normal unit vector to the boundary δΓ. Since u is periodic, the line
integral vanishes. The resulting integrodifferential equation may be transformed into matrix
format by following the usual FEM discretization procedure [4, 13]: the domain Γ is divided
into several triangular subdomains (elements) in which locally supported expansion functions
are defined; u is expanded in terms of such functions within each element; w is taken to be each
one of the local expansion functions inside each element; and the material parameters p and q
are allowed to be constant inside each element. Then the following quadratic matrix eigenvalue
equation in k results:

[

A−
ω2

c2
D

]

u= ik (C−B)u+ k2Cu. (7)

Here, u is a vector containing the (complex) coefficients of the expansion of u, and matrices
A through D may be individually related to each integral in Eq.(6) by inspection. The results
in Sec. 3 are all calculated using second-order Lagrange elements. Explicit expressions for the
matrices in this case can be found in [13]. The eigenvalue equation may be solved at a fixed
frequency ω (and thus fixed ε(ω)) and k-vector direction. The eigenvalue itself is the k-vector
amplitude, k. Due to the periodicity of the system, Re{k} is expected to be periodic in k-space.
Note that, for real ε , all matrices are Hermitian, so that the eigenvalues k are either purely real
or are complex conjugate pairs (k, k̄) [14]. The most common way of solving the Quadratic
Eigenvalue Problem is by linearization, which results in a (linear) system twice the original
size [10,14]. Other possibilities are to use nonlinear iterative methods such as Nonlinear Inverse
Iteration or Rayleigh Coefficient Iteration [8].

3. Rectangular array plasmonic crystal

Here, the TE polarization (magnetic field perpendicular to the crystal plane) band structure of
the plasmonic crystal studied in [5, 6], consisting of a 2D rectangular array of infinite metallic
cylinders in air, is analyzed. The metal permittivity was considered to follow the Drude model
where ε = 1−ω2p/ω(ω − iωc), with ωp the plasma frequency and ωc the damping frequency
related to the mean electron collision rate. The square unit cell has a lattice parameter a =
c/ωp and the cylinder radii are R = 0.45a. All of our results below are given in terms of the
normalized frequency Ω= ω/ωp.
For comparison, the transmission (t) and reflection (r) coefficients for plane-waves incident

on a finite (i.e., with N of unit cells) crystal slab were obtained using the same technique as
described in [15]. The incident plane wavew is in the Γ− X direction of the square-lattice
Brillouin zone. Furthermone, an effective index neff is calculated using expressions from the
scattering-parameter technique of Smith et al. [15, 16], i.e.:
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neff =
lnY (ω)

iωΔ/c
(8)

with
X ≡ (1− r2+ t2)/2t (9)

and
Y ≡ X±

√

1−X2 (10)

These expressions model a 1D Fabry-Pérot cavity for waves propagating with a single wavevec-
tor at each frequency. This in principle precludes their direct application in situations when mul-
tiple waves associated with different k−vectors exist simultaneously - for instance in systems
displaying Fano-type resonances as shown below.
Figure 1 shows the calculated band diagram in the Γ-X direction of the square lattice irre-

ducible Brillouin zone, with ωc = 0, in terms of both kr and ki (k = kr + iki). Modes for which
ki = 0 are marked with crosses, while complex-k modes are marked with circles and triangles.
Duplicates of such eigensolutions are also produced by the formulation, with k′r = kr±2m ·π/a
(kr in the first B.Z., m= 1,2, ...) and identical ki. Such solutions only arise because they satisfy
the established periodic boundary conditions at the edges of the unit-cell; they do not partici-
pate in the Bloch-mode expansion of the total field in the crystal. Notice as well that since the
calculated bands are for a crystal with zero damping losses (wc = 0), the existence of complex
eigenvalues is completely unrelated to power dissipation.
Same as in the case of completely dielectric photonic crystals, real-k modes extend over

the entire crystal, with a phase evolution given by the k(Ω) dispersion and with no amplitude
variation apart from that of the periodic Bloch envelope. In Fig. 1, purely real eigenvalues are
found in the ranges Ω≈ 0.2−0.36 and Ω≈ 0.54−0.6.
It has been suggested that imaginary k modes play an important role in representing the

decaying field inside a finite or semi-infinite PC upon wave incidence at bandgap frequen-
cies [10]. The inference that the imaginary part of the Bloch wavevector relates to the field
decay rate in this situation is supported by our analysis. In Fig. 1, non-real eigenvalues may be
either purely imaginary (kr = 0), or complex. Modes with purely imaginary k (found in the in-
tervals Ω= 0.43−0.52 and Ω= 0.6−0.61) have no phase variation across a unit-cell, and are
non-propagating. Complex k modes, on the other hand, present a phase variation concomitant
with an exponential amplitude decay (or growth), which translate into interference effects in
scattering from a finite crystal. In Fig. 1, complex k modes with |kr| < π/a are found between
Ω = 0.36 and 0.43, and between Ω = 0.52 and 0.54. Bands with ki marked with triangles in
Fig. 1(c) have real parts at the Brillouin zone boundaries, kr =±π/a, such that the phase varies
in full cycles across a unit cell. These solutions will henceforth be referred to as zone-boundary
modes.
Figure 2(a) shows the transmission and reflection coefficients for a crystal with N = 4 and

ωc/ωp = 0.001. In Figs. 2(b) and (c), the band structure with kr and ki on the horizontal axis are
presented once again. The superimposed thick curves are the effective k-vectors keff = Ω ·neff,
with effective index neff obtained from from Eq. (8). A clear correspondence exists between the
high-reflectivity band in the frequency range Ω = 0.36− 0.54 and the exclusive existence of
non-real-k modes in Figs. 2(b) and 2(c). The correspondence between the the purely real band
at Ω <≈ 0.36 and keff is also apparent - in this case, disregarding high-decay-rate kr = ±π
modes, only single propagating modes are available at each frequency, which is an assumption
of the neff expression, as pointed out above. In the range Ω≈ 0.43−0.56, keff coincides almost
exactly with the lowest-decay-rate purely imaginary Bloch band. We infer that the waves travel-
ling through the slab suffer an exponential attenuation given by the lower-amplitude imaginary
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Fig. 1. (a)Square-lattice plasmonic crystal band structure as function of kr. (b) Band struc-
ture as function of ki. Crosses indicate bands with ki = 0; circles, ki '= 0; and triangles,
kr = ±π/a, ki '= 0

Bloch k. In addition, waves related to the larger ki modes either are not as strongly excited, or
simply decay too quickly to be meaningful in the determination of keff.
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Fig. 2. (a)Amplitude-squared transmission and reflection coefficients, (b) Band structure as
function of kr and (c) Band structure as function of ki for a .

The keff resonances observed in the interval Ω≈ 0.53−0.6, are associated with Fabry-Pérot
resonances of waves related to the purely real band within this range. It is apparent, however,
that the complete transmission transfer function also involves the coexisting purely imaginary
band. Evidence for this is that the imaginary part of keff follows the ki band (see Fig. 2(c)), rather
than tending to zero. Furthermore, the transmission transfer functions for the N = 4 structure in
Fig. 3(b) can be roughly approximated by a function of the form t(Ω) =α(Ω)+ i ·β (Ω) ·tFP(Ω),
with tFP(Ω) the Fabry-Pérot cavity transmission coefficient. Examples of this may be seen in
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Fig. 3(a), in which the transmission coefficient amplitude |t| for 4- and 3-unit cell structures
are compared to those obtained from the expression above, under the following conditions: the
Fabry-Pérot cavity single-pass phase varied as kr ·N ·a, with kr from the purely real band (N is
the number of unit cells); the cavity reflection coefficient was taken as r = 0.92; β = 0.5; the
term α(Ω)was made to vary as exp(−ki ·N ·a), where ki is from the purely imaginary band; the
total transmission was normalized to its maximum value. General features such as sharp peaks
(related to resonances of tFP) and alternating maxima and minima in-between sharp resonances
(related to minima of tFP with phases of respectively odd and even multiples of π/2), are similar
in both numerical and analytical curves, and for both cavity lengths. Thus, the terms α(Ω) and
β (Ω) may be related to the amplitudes of two waves at the output side of the slab: one which
is transmitted without a phase change, corresponding to the purely imaginary k-vector Bloch
mode, and a second that propagates dispersively given by the real-k band, leading to the Fabry-
Pérot resonances. In this case, both purely real and imaginary bands have relevant contributions
to the field within the finite slab and thus a strong influence on keff. Conversely, neff obtained
from Eq.(8) does not allow one to discern the propagation characteristics of the different SPC
modes. Notice as well that from Fig. 3(b), transmission resonances are quite sharp with null
damping losses (ωc = 0), with peaks approaching unity. Introduction of even small damping
(ωc = 0.001ωp) causes strong degradation of the resonance quality factor. The asymmetric
shape of the transmission transfer function around resonant peaks is similar to that of Fano
absorption lineshapes, which in quantum systems arise from the interference of a discrete state
with a continuum [12]. The transmission resonances presented here have a similar origin to
these, namely the interference between waves forming the Fabry-Pérot resonant peaks and the
continuum formed by the evanescent waves.

0.54 0.56 0.58 0.6
0

0.5

1

Ω

|t|

N=4N=4

0.54 0.56 0.58 0.6
0

0.5
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0.54 0.56 0.58 0.6
0

0.5
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|t|

N=4

(a)

0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

0.2

0.4

0.6

0.8

1

Ω

|t|
2

(b)

Fig. 3. (a) Comparison between numerically calculated transmission coefficient amplitudes
for 3- and 4-unit-cell crystal slabs (thin lines) and the analytical expression |t(Ω)| = A ·
|exp(−ki(Ω) ·N ·a)+ i ·β · tFP(ki(Ω) ·N ·a)| (thick lines), with ki(Ω) and kr(Ω) taken from
the purely real and imaginary Bloch bands respectively. (b)Amplitude and phase of the
transmission transfer function for the 4-unit-cell crystal with ωc/ωp = 0.001 (thick line)
and ωc = 0 (thin line).

Finally, it is important to point out that the upper real-k bands discussed above are negative
refraction bands, with group velocity vg of opposite sign to the phase velocity ω/k; however,
as shown in [5,6], the smallest number of rods that can be meaningfully analyzed in the search
for optical magnetism is four, since each rod must be surrounded by other rods to create a
magnetically active resonance.
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In the range Ω ≈ 0.36−0.43, the transmitted power is extremely low, yet the transfer func-
tion presents a series of anti-resonances corresponding to the observed peaks in Im{keff} with
concomitant step-transitions in Re{keff}. At the same time, disregarding the resonances, both
real and imaginary parts of the effective wavevector closely follow the corresponding photonic
bands. Hence, this behavior has an origin similar to the resonances discussed above, given the
existence of two evanescent Bloch bands, as seen in Figs. 1(a) and 1(b).
We next analyze the effects or small damping losses in the calculated band structure. In

Fig. 4(a) and 4(b), the real and imaginary k bands for a lossless and a lossy structure with
ωc/ωp = 0.001 are compared. A noticeable difference between the two cases is the disappear-
ance of the the small bandgap centered at Ω ≈ 0.36. Whereas in the lossless case the purely
real kr-bands reach the Brillouin zone boundary at gap frequencies, in the lossy structure the
corresponding bands do not reach kr = π/a, turning around at some kmax < π/a where the
group velocity defined as vg = dω/dkr becomes infinite. Notice that in the lossless case the
group velocity as defined above is infinite throughout the photonic bandgap, since kr = π/a
everywhere in this range. It is apparent that the band turn-around observed in the lossy crystal
case is caused by a less-efficient Bragg wave-interference in the presence of damping losses.
This effect was also observed in [17], for photonic crystals containing polaritonic inclusions.
It must be pointed out that within the bandgap frequency region, the group velocity as defined
above does not correspond to the velocity with which an incident wavepacket would traverse a
finite length of the SPC, so that vg > c does not imply superluminal propagation [18].
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Fig. 4. (a) Band structure for (a)kr and (b)ki. Dots correspond toωc = 0, crosses toωc/ωp =
0.001.

As mentioned above, in the lossless case, the matrices involved are Hermitian, such that
eigenvalues are either purely real or come in complex conjugate pairs. The latter case is ob-
served in Ω = 0.36− 0.43, where two degenerate modes at each kr exist. The degeneracy
is evident from the opening of bifurcations in ki at Ω ≈ 0.36 and splitting of ki bands in
Ω= 0.36−0.43 due to small damping losses. The singled-out band in Fig. 4(a) is a perturbed
version of a zone-boundary band that exists atΩ! 0.365 in the lossless case. AboveΩ! 0.365,
the latter ceases to be a zone-boundary band, and becomes a degenerate complex-k band. This
transition is evident in the departure of the perturbed band from kr = π/a and its merging with
a second complex-k band around Ω= 0.36.
Finally, to show that the method may be conveniently applied to the generation of bands in

arbitrary directions in the k-vector space, Figs. 5 and 6 display, respectively, the low-frequency
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and two high-frequency purely real-k bands. These diagrams were obtained simply by changing
the direction of the unit k-vector in Eq. (6).
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Fig. 5. Low-frequency, purely real bands of the square-lattice plasmonic crystal over the
first Brillouin zone.

Figure 5 shows that the lowest purely real band is highly isotropic at lower frequencies,
however becomes anisotropic as the photonic bandgap is approached. Figure 6 shows slices of
the upper real bands, which in reality form a closed surface. The negative group velocity band
Ω = 0.57−0.6 is highly isotropic near its top, thus making the square array of circular rods a
perfectly isotropic negative-index metamaterial for the range of frequencies Ω= 0.58−0.6.
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Fig. 6. High-frequency, purely real bands of the square-lattice plasmonic crystal over the
first Brillouin zone.
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On the other hand, the longitudinal-wave, or Bulk Plasmon, band near Ω= 0.0.61 predicted
in [5] displays very strong anisotropy near the Γ-point. This anisotropy is apparent in Fig. 7,
where the Bulk Plasmon band was plotted for the Γ−M (0◦) and Γ−X (45◦) directions.

Fig. 7. Bulk Plasmon band along Γ−M (0◦) and Γ−X (45◦) directions.

It is important to notice that, in [5] and [6], the origin of the negative refraction band above
was related to the hybridization of quasi-static multipole resonances of the plasmonic rods in
close proximity to each other. Over the negative-index band, the lattice constant is ∼ λ/10,
where λ is the vacuum wavelength. Thus we believe that negative refraction occurs in the long-
wavelength rather than in the Bragg diffraction regime.

4. Conclusions

The Finite-Element formulation presented in Section 2 is convenient for the calculation o pho-
tonic band structures of periodic metamaterials composed of dispersive materials. The for-
mulation yields a quadratic eigenvalue equation system that may be easily implemented with
commercial, generic Finite-Element packages such as COMSOLMultiphysics, and that may be
more efficiently solved than the general nonlinear eigenvalue problem that is normally solved in
the metamaterials community. In addition, calculation of bands in arbitrary directions in k-space
simply involves determination of the components of the unit k-vector, which is convenient for
the analysis of medium anisotropy.
An important advantage associated with solving the quadratic eigenvalue problem is that it

yields Bloch eigenmodes with not only real but also complex wavevectors, which, as suggested
in [10], may be associated with many effects observed in the scattering of waves from finite
crystals, especially at, but not limited to, bandgap frequency ranges. A clear indication of this
in fact is the existence of the Fano-type resonances in transmission as shown in Section 3.
It is clear from the analysis in Section 3 that the effective index neff determined from Eq.(8)

via scattering from finite crystals will not completely coincide with effective indices of par-
ticular Bloch modes when multiple such modes exist that influence the scattering process at
similar levels. At the same time, just the Bloch band structure by itself does not give an im-
mediately clear picture of wave scattering and therefore should be used with some attention in
predicting the scattering response of finite structures. At any rate, both methods may be used
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in conjunction to form a more complete understanding of the propagation characteristics of a
metamaterial.
Finally, it must be pointed out that alternative formulations to the present finite element-based

one presented in this article may also lead to quadratic eigenvalue equations, see for instance
the plane-wave expansion formulation used in [10].
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