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_ ABSTRACT

Electrostatic properties of density gradient drift waves (the
universal mode) in a sheared magnetic field are studied using a
two—and-one~half dimensional particle code. For the case of a single
rational surface, the drift waves are found to be stable with an
eigenmode structure that matches the linear theoretical prediction as
long as the ion resonance layer is well within the system. This
applies to both even and odd parity modes with respect to the rational
surface., The dependence on various parameters such as the shear length

is examined.
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I. INTRODUCTION

The theoretical study of collisibnless electrosfatic drift waves
driven by a density gradient (the universal mode), in a sheared
magnetic field, was initiated many | years ‘ago.l_3 It is now
theoretically argued that within the framework of linear theory,
absolutely unstable eigenmodes do not exist in slab geometry with a
single rational surface in the absence of temperature
gradients.l*_6 The stability of the universal mode in these latter
treatmentsl*_6 is due to the inclusion of nonresonant electrons in the
region about the mode rational surface. According to Refs. 7-11
convectivé amplification of drift wave packets can occur, however, for
modes near marginal stability and for sufficiently weak shear.

Aside from subtle linear stability properties, the drift wave
could easily exhibit highly nonlinear behavior. In order to
investigate this important and subtle physics problem, particle
simulations of drift instabilities were initiated in the seventies by
Lee, Okuda and coworkers.l2714  Their pioneering effort was successful
in verifying the linear theory of drift instabilities in a shearless
slab model. They found that quasilinear flattening of the density
profile saturated the instability. Their simulations with a sheared
magnetic field did not show the complete stabilization of the
instability fqr a wide range of shear strengths. The eigenmode

46

structure predicted by linear theory was not observed and in the

strongly sheared cases (LS/Ln < 28), "unstable local transients"
dominated the simulations.!* 1In the weaker shear cases (LS/Ln > 28)

much higher fluctuation levels were observed.
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As far as applications to tokamak plasmas are concerned, the
sheared slab model with a single mode rational surface might not be
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considered of interest since three-dimensional effects and toroidal

16 may allow for possible absolute instability. Nevertheless,

geometry
particle simulations of drift waves 1in a sheared slab with single
rational surface have yet to be reconciled ﬁith linear theory. Also,
the convective amplification of drift wave packets is still an open
question. For example, the amplification may be at such high 1levels
that nonlinear effects could occur prior to attainment df the predicted
value.

We have carried out several simulations of demnsity gradient driven
drift waves in order to clarify the above questions. Our simulations
are similar to previous omnes in that we wuse the guiding center
electron, full ion dynamics, electrostatic particle algorithm.l7 In
order to simplify our analysis, an exponential density gradient profile
is wused in the direction perpendicular to the magnetic field and'shear
is incorporated by having the magnetic field wvary linearly along the
density gradient. We impose boundary conditions on the electrostatic
potential at the endpoints of the simulation domain so as to allow only
odd or even parity drift eigenmodes with respect to the rational
surface. These various combinations allow us to test the effect of
simulation boundary conditions on the drift waves. We consider systems
with strong (LS/Ln < 28) and weak (LS/Ln > 28] shear and choose the
shear scale length asvwell as rational surface position so that the ion
resonance (xi o~ w*Ls/kyVi) is always within the system (x; < LX) unless
specified otherwise, This Will ensure that in our model the wave

energy supplied at the electron resonance (Xe o w*Ls/kyVe) is absorbed

s s A e e, o e



-
at the ion resonance (xi). In this way, we can hope to match the
outgoing wave boundary condition of the linear theory,z*_6 which
reflects the damping of wave energy at the ion resonance layer (the ion
shear damping). 1In the strong shear cases (LS/Ln < 28) we would 1iké
to find out if the simulation system supports the predicted, linearly
stable eigenmodes in the steady state, i.e. over long simulation time
scales. For weak shear (LS/Ln > 28) the electron and ion resonances
are more separated and it is of interest to observe the eigenmode
formation at early times.,

The organization of this paper is as follows. The simulation
configuration, model parameters and diagnostic methods are presented in
Sec. 1I. The linear theory of drift waves is briefly outlined in
Sec. III and simulation results for strongly sheared as well as weakly
sheared systems are given in Secs. IV and V, respectively. A

discussion of the results and conclusions are presented in Sec. VI.

II. SIMULATION MODEL

We describe the two-dimensional sheared plasma slab configuration
with a single rational surface and its simulation realization in this
section. The plasma parameters are defined as well as some of the
diagnostic methods used to analyze the résults.

The model used in the simulation is a two—and-one-half dimensional
(spatial dimensions (x, y), and velocity dimensions (vx, Vys vz))
electrostatic particle algorithm.17 The initial configuratiom is shown
in Fig. 1. The plasma is confined between two boundaries located at

x=0 and x = L. In the y-direction the system is periodic with
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length Ly’ A strong confining sheared magnetic field is externally

imposed with

B_BA X"'Xo,~
B=3Bylz+ (w)v], (1)

S

where X) defines the location of the rational surface and LS is the

shear length.. Therefore the wavenumber along the magnetic field is

expressed as-

k" = B . §/l§| = kY(X_XO/LS) 3 ‘ (2)

with ky

initially have an exponential density profile

= an/Ly, m= 0, il,...,iLy/Z. The plasma is assumed to

n(x) = noKLX{eXp(-KX)/[l - exp(—KLX)J} . (3)

This profile giveé a constant density gradient scéle length LD(E 1/,
with k = -n’(x)/n). Thére is no temperature gradient dimposed
initially.

The boundary condition imposed on the electrostatic potential at
the endpoints x =0 and x = LX are of two types. The first requires
¢(0) =‘0 = ¢(LX) which allows for odd parity modes with respect to the
endpoints in the simulation. The second type used _is
3¢/ 9x(x = 0) = 0 = 3¢/ Ié&x(x = Lx) which corresponds to even  parity
modes. Therefore the eigenmode parity, with respect to the rational
surface, is determined by its position relative to the endpoints. For

example, if the rational surface 1is placed at x = 0 and odd parity
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modes are imposed with respect to the boundary points, then the
eigenmodes are odd with respect to the rational surface.

For particle motion, the guiding center approximation for
electrons is used and full ion dynamics are followed. The particles
are specularly reflected at the walls in such a way as to eliminate the
sheath currents which may occur.l8 Reflection of particles implies

that there 1is mno mechanism £for net energy loss in the system. The

system size used for the strong shear simulations is
L x Ly = 64A x 32A with wunit grid spacing A. The average number
density is n, = 16/A2, ion to electron mass ratio mi/me = 100,

temperature vratio T,/T, = 1, and electron Debye length A = 2.5A or

electron thermal velocity Ve = 2.5u,,4 where w_. is the electron plasma

P

frequency. The ion Larmor radius is P; = 2.5A where p; = vi/w

pe

od and

- 1/2 . ; -
vy o= (Ti/mi) with w,; the ion cyclotron frequency, wce/mpe = 10, and

time  step wpeAt = 2-4, The density gradient scale length is

L = 1/k=14.34 and «k = 0.07471. The shear scale length is varied

from LS = 400A(wpeAt

1]

surface position, Xy has been placed either at X, =0 or at

X, = LX/Z = 32A. The system described ‘above supports discrete
wavenumbers kypi = 0.49m, m = O, il,...,iLy/Z, where m is the mode
number in the y-direction. The electron diamagnetic drift frequency
defined as w, = kycTe/LneB is w*/wpe = 0.0086m. The simulations have
been carried out for wit = 70 (m = 1).

The diagnostics dinvolve the determination of the frequencies of

potential fluctuations for a fixed kypi at various positions in the

x~-direction. They are obtained from power spectra of the potential by

4) to Lg = 200A(mpeAt = 2). The ratiomal -
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the maximum entropy correlation technique.19 The equation for the

power spectral intensity is given by

Iky(x,m) = ldeAky(x,r)exp(in) , (4)
where the correlation function is

1 L ~ ~k
A, (x,7) = 1lim = | dt (x,t) (x,t+71)
ky ’ T T f 0 ¢k_y ’ ¢ ky s

00

for a lag time T The spatial structure of the fluctuations at a

particular frequency is best analyzed by an interferogram technique20
which is a correlation of the plasma potential at a particular kypi for
a fixed frequency, Wy s determined by the power spectra. The following

quantity is computed

T ~
Cky(x, T) ='% fO éky(x, t+1) sin(wot)dt s (5)

where <t 1is a variable lag time and T the total time of integration.

III. LINEAR THEORY
In this section we briefly review the linear theory of drift
waves. The governing equation for potential fluctuations of the form

¢ = $(X)GXP[i(kyy - wt)] can be written as

| e " b 1~
[1+ 0+ (1= 9E2(E) + (n+ D EZ(EDT(ME]F =0,  (6)
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where

n=T./T

o/ Tyis Ey = wlg/V2ky(x = x)v,, (a=e,i), b= (k2 + k?,)p‘?i )

Z 1is the plasma dispersion function21 and I, is the modified Bessel
function. For kxpi << 1 we can replace kX by -i3/9x in Eq. (6) to

obtain the eigenmode e‘quations’lO

T aEwi =0, | )
where

(1+n)(ﬁ) + (ﬁ - 1)E.Z( &)

QE,w) = n - ko2 +

(= %) £;2(E;)

T
with pg = ‘EE p; and X = x/ps. The prime denotes differentiation with
N Ti

respect to X.

The electron and dion resonance locations, X, and xy, are
determined from the condition £, ® 1, so that x, = wLS//Ekyve and
X, = mLS//Ekyvi where w refers to the normal mode frequency.

Equation (7) has been solved using a standard shooting code»22 method
with the simulation parameters., The eigenfunctions for even and odd
modes, with respect to the rational surface are displayed in Figs. 2(a)

and 2(b), respectively, with k 0.49. The eigenfrequencies and

yPs T
damping rates for various values of kyps are shown in Fig. 3. The real
frequencies for odd and even parity were almost the same numerically

and therefore only the values for the even parity are shown. 1In all
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cases linear theory predicts stable, linearly damped modes for odd and
even parity. It is also mnecessary to solve the local dispersion

relation and it is simply obtained by setting ki = 0 in Eq. (6).14

Iv. SIMUL@IION RESULTS (STRONG SHEAR)

Various cases corresponding to different boundary conditions and
different positions of the rational surface, as well as two different
shear strengths, LS/Ln = 14 and 28 will be presented. We consider both
odd and even parity modes. The even parity mode is the ordinary
universal mode of drift waves. The odd mode parity is often mneglected

because it is a heavily damped mode as is seen in Fig. 3.

Case 1: 0dd parity modes with rational surface X, 0

This simulation 1is carried out with ¢(0) = 0 = ¢(LX) boundary

conditions. With rational surface at x, =0, we are simulating a
half-space which supports odd parity modes only,
ice. §(x) = 2 ¢, sin(amx/L ), n = 0, il,...,iLx/Z. A value of
Ls/Ln = 28 23 used and with w*/wpe = 0.0086 the ion resonance location
is at Xi(w*) = 49.5A which gives x;(w) < x;(wg) < Ly, where w 1is the
eigenfrequency. Therefore the ion resonance layer is well within the
system since L = 64A. Note that Xi(w*) evaluated at v; 1is the most
stringent condition to ensure the ion shear damping layer is within the
simulation domain. Since ion Landau damping is maximum at Vi the ion
resonance location 1is ﬁell approximated by Xi(m). The time evolutien
of the total electrostatic energy is shown in Fig. 4 and a weak

instability 1s found to occur. An 1increase by a factor of two is

observed from wgt = 0 - 70. This increase is due to the enhancement of

et e e - e e e
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mode kyps = 0, the "ambipolar mode". Other modes with finite kyps show
no increase from their initial £luctuation levels and this is
illustrated in Fig. 5. In this figure we have given the spatially
averaged fluctuation level per mode since the eigenmode structure is
nonlocal and we are attempting to observe net sustained growth of the
fluctuations.

The local power spectrum of the fluctuations at positions
X/ps = 9.6 and X/ps = 12.8, corresponding to regions of maximum mode

amplitude for k = 0.49, are given in Fig. 6. The measured

yPs
frequency, w/wg ~ 0.9 * 0.03 is a factor of two larger than the

eigenfrequency w/wy = 0.44. Figure 7 shows the agreement between

frequencies at various x-positions using Eq. (4) and values obtained by

solving the 1local dispersion relation [k% =0 in Eq. (6)]. This

suggests that local fluctuations are prevalent and the theoretically
predicted eigenmodes are not observed. A similar result was obtained

by previous authors.14

Case 2: Even parity modes with rational surface X, = 0

The simulation parameters are identical to the previous case and
the only difference is that 3¢/9x = 0 boundary conditions are wused at
x = 0 and x = LX. With rational surface at x = 0 only even modes given
by $ = z o COS(nﬂX/LX) are allowed in the simulation. According to
linear ntheory these modes are stable and are less heavily damped than
the odd parity.

The time evolution of the total electrostatic energy is depicted

in Fig. 8. There is no observable increase in the total electrostatic

energy or in the energy of the individual discrete modes, as shown in
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Fig. 9. The electrostatic energy is dominantly in the m=0 and m=1

modes because finite particle size as well as shielding effects enter
for m>1.

Thé power spectrum of the potential fluctuatiomns for kyps = 0.49

is illustrated in Fig. 10. Figure 10(a) represents the power spectrum

for all x-positions and Fig. 10(b) is the spectfal intensity at

4 where the spectral maximum occurs. The measured frequency is

x/pg

w/w, = 0.43 * 0.02 and this is in reasonable agreement with the
shooting code result, w/wg = 0.33, from Fig. 2(a). We note that the
local theory gives a value of w/w, = 0.7 at x/pS = 4 as obtained from
Fig. 7. The interferogram of the potential £fluctuations at the
measured frequency for mode kyps = 0.49, is displayed in Fig. 11 along
with the shooting code results. Good agreement is found for both the
real and imaginary parts of the potential structure.

The results from this case indicate that an eigenmode structure is
established and is stable, which is in agreement with the linear theory
of the universal mode.* 6 The long time evolution represents the
steady state sustained by energy balance between '"Cerenkov emission" of
electron kinetic energy into the wave at the electron resomance and
shear damping of the wave into parallel ion kinetic energy at the ion
Laﬁéau resonance. Because of this energy exchange from electrons to
waves to ions, there is a net energy flow even though the eigenmodes
are stable. In fact, we observe that the electron momentum in the
y-direction, near x = X, gives up a finite value in the electron
diamagnetic drift direction. To quantitatively estimate the momentum
transfer we use the quasilinear value and, assuming resonant diffusion

is dominant, the diffusion coefficient is given by




2
Dy = (5) g Kol 2 8wy = wo) (8)

using the fact that vy << wand w < wg. The evolution of the average

distribution is governed by

2.2 (p 2y, (9

(10)

For fluctuation levels of [e¢k/Te| ~ 10_3 - 10—2 we obtain

d<v ">/Ve

d(wpet)

~ 2x1070

which is compared with the observed value of 10_6. The ion momentum in
the y~direction, near X=X, acquires a finite value in the direction of
the electron diamagnetic drift as a result of the wave—-particle
interaction. Equation (10) also gives agreement within a factor of two
for the rate of change of momentum in the ions. The energy transport
and momentum transport in the x~direction is, therefore, nonzero even
in the absence of instability (i.e., beyond the collisional

contributions).
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Case 3: Even parity modes with respect to x_ = LX/Z

[¢]

The simulation parameters are identical to the previous cases

I

except that Ls/Ln 14 is used in order to keep X; < Lye Inm this case

x; (wg) = 5748 < L, = 64A and ¢ = O boundary conditions are used at x = 0
and L . This allows modes of the form '$(x) = 2, by’ sin(n’wx/LX),
however, we keep only the modes with n’ = 2n - 1, E = %1, i2,...,iLx/2
in the simulation. This insures that only modes with even parity with
respect to the rational surface are present. The purpose of this case
and the next is to make sure the results of Case 2 were not influenced
by any deleterious boundary effects.

As was found in Case 2, no increase in the total electrostatic
energy or the individual mode energies is observed. Contours of the
electrostatic potential taken at wyit = 30 are shown in Fig. 12. Note
the symmetry of the potential with respect to the rational surface.
The power spectrum of the potential fluctuations at (X—XO)/pS = 3,2 is
displayed in Fig. 13 and the measured frequency is w/w, = 0.35 * 0.03
which is to be compared with the shooting code result w/w, = 0.36. The

stable drift wave eigenfunction for k g = 0.49 is given in Fig. 14 and

yp
the agreement between simulation and theory is excellent. Note the
evanescent character of the mode away from the rational surface and
that the ion resonance, located at x;/p, = 8.65, is the cause of this
spatial decay.

Our simulation results in Cases 2 and 3 establish the existence of
drift wave eigenmodes of linear theory for éven parity, irrespective of

the position of the rational surface with respect to the simulation

boundaries.
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Case 4: 0dd parity modes with respect to X, = LX/2

The simulation parameters used are identical to the previous case.
The shear scale 1length is -LS/Ln = 14 and ¢(0) =0 = ¢(Lx). The
potential fluctuations are described by § = z' on’ sin(n'ﬂx/LX) and
only modes with n’ = 2n, n = il,...,iLx/z age allowed in the
simulation. Therefore, only modes with odd parity with respect to the
rational surface are described by the code.

As was found in the previous case, the potential fluctuations are
stable and £he time history of the total electrostatic energy shows no
enhancement above the initial noise level. An energy per mode
analysis, gives a similar result. The power spectrum of the potential
fluctuations for mode kyps = 0,49, averaged over several =x-positions
near the rational surface, is displayed in Fig. 15 and a mode frequency
of w/wg = 0.33 + 0.1 is observed which agrees well with the shooting
code result of w/w, = 0.36. An interferogram of the potential
fluctuations for kyps = 0.49 is illustrated in Fig. 16(a) along with
the wave function of the shooting code in Fig. 16(b). Again, excellent
agreement is obtained between the theory and simulation.

From the results of Cases 1 and 4, for odd drift wave parity, we
conclude that the particle simulation model gives the expected linear
eigenmode structure only when the ratiomal surface does mnot coincide
with the simulation boundaries.

To conclude this section we illustrate two situations which do not
produce the eigenmodes predicted by linear theory. In the first
situation, let us consider the parameters and boundary conditions of
Case 3. As has been discussed, if only even modes with respect to the

rational surface are kept, the simulation and theoretical wave
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functions agree very well. However, if both even and odd parity modes
are kept, the wave functions obtained from the simulation does not
match the linear theoretical result. This is shown in Fig. 17. The
nonsymmetry of the wave function arises from the mixture of parities
retained in the simulation. The measured frequency agrees very well
with the eigenmode frequency, which suggests that the odd parity mode
gives only a small contribution to the dominant even modes.

A second situation which can produce undesirable results is the
parameter regime where the ion resonance Ilayer lies outside the
simulation domain or is very near the boundaries. Once again, Case 3
is chosen but the shear is allowed to vary in order to demonstrate what
can occur when X;(uwx) > L. For shear strength of Lg/L, = 14,
Fig. 18(a) illustrates that the fluctuation level remains at thermal
noise over the entire length of the run and Xi(w*) = 41A< Lg. As 1is
evident from Fig. 18(b) the fluctuation level is enhanced above thermal
noise when LS/Ln = 28 and xi(w*) = 81A > L. This enhancement occurs
because the boundary at L, affects the outward propagation of energy
and does not allow for the spatial decay of the wave function. It is
“important to note that the fluctuations do mnot grow because the
electron and ion resonances are more separated. This can be seen by
comparing the results of this case with Case 2. In Case 2 the
fluctuations remain at the thermal noise level even though the electron
and ion resonances ‘are the same distance apart as in the above

situation.

\
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V. SIMULATION RESULTS (WEAK SHEAR)

In this section we consider systems with weakly 'sheared magnetic
fields (Lg/L, > 30). When the magnetic shear becomes very weak, the
electron and ion resonance regions become well separated spatially and
the eigenfunction is highly oscillatory. If the resonances are well
separated one expects that there will be a finite time before shear
damping by the ions occurs. During this finite lag time the local
growth of the drift wave eigemmode could be large enough to cause
modification of the equilibrium density profile. Therefore, the
purpose of this section is to determine whether or not this indeed does
occur and to establish the resultant fluctuation levels of the
eigenmodes in weakly sheared systems. |

Two separate cases have been considered. In the first case the

simulation parameters used were, LX X Ly = 128A x 324, n, = 16/A2,
m; /mg = 400, TJ/T; = &, wce/wpe = 10, Ao = 2.54, a = ay = 1.5,
e At = 4y, k= 1/L, = .035, kypi = 0.5m and w*/mpe = .00437m where

m = 0, il,...,iLy/z. The shear strength was chosen to be Lg/L, = 70

and the rational surface location at x = 0. The boundary condition

$°(0) = 0 = ¢’(L,) was chosen, which corresponds to even parity modes

with respect to the rational surface; this is the universal mode of

interest.

A shooting code was used to determine the eigenvalue and’

eigenfunction with the above parameters. The wave function 1is
displayed in Fig. 19 and the oscillatory character of the mode is
clearly seen., The eigenvalue is given by (w/wy = 0,167,
Y/, = =46 x 107%) for kyo, = 0.98, which indicates the mode is near

marginal stability.

Tt e e e et et e e~
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From the simulation, the potential fluctuation levels of modes

k p. =0 and k = 0.98 versus time are shown in TFigs. 20(a) and
S g

y
20(b), respectively. The fluctuation level of kyps = 0.98 increases by

yPs

a factor of two above the initial noise level and saturates at wyt =~ 7.
At this time the energy in mode kyps = 0 begins to increase and
saturates near the end of the run. This increase corresponds to a
flattening of the density profile locally near the electron resonance.
In order to establish the spatial characteristics of the mode
kyps = 0.98, a space—time diagram 1is constructed and illustrated in
Fig. 21(a). The x—axis represents the spatial coordinate, the
y—-direction 1is the time axis and mode amplitude, e¢/T, is in the
z—direction. The electron resonance, denoted by X,, is represented by
the dashed line and the ion resonance is outside the simulation domain,
in the sense that the evaluated x; is given by x;(we) > Ly > x;(w,),
where W, is the eigenfrequency. The mode begins to grow locally at the
electron resonance and saturates at w.t = 7. After saturation the

electron density profile begins to flatten about - Xo and the mode

amplitude of kyps = 0.98 decreases at x, and increases in amplitude

at X > x_,. The mode amplitude rises slightly at the electron resonance

e

and continues to oscillate with diminished amplitude. In order to
determine the frequency of oscillation near the electron resonance, é
power spectrum is computed locally at x = x, and from Fig. 2I(b) a
frequency of w/wg =~ 0.32 + .03 is measured which is larger than the
eigenmode frequency w/wy = 0.167. The local frequency, determined by
setting k% =0 in Eq. (6), is found to be w/wg = 0.39. Therefore the

local frequency appears to agree more closely with the measured

simulation value. This is understandable because with xi(w), where w
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is the measured frequency, outside the system, the outgoing wave
boundary condition which is necessary to produce the eigenmode is not
realized.
For the second case, the parameters chosen previously were used

except for mi/me = 100, Ag =

1.04, kypi = 0.098m and m*/wpe = 0.00068m
where m = 0, #l,...,%L;/2 so that =x;(w) < xj(wx) < Ly The mode
corresponding to kyps = 0.78 showed a factor of two increase above its
initial noise level over the length of the run while all other modes
remained at their initial fluctuation levels. This is illustrated in
Fig. 22(b). The equilibrium level which the modes reach is related to
convective losses or redistribution of equilibrium thermal energy due
to the eigenmode. From Fig. 22(a) it appears the growth in kyps = 0,78
was not sufficient to modify the equilibrium electron density profile.
A space-time diagram of kyps = 0.78 is given in Fig. 23(a) and the
maximum amplitude is e¢/T =~ 0.006. Note the oscillatory structure of
the mode near the electron resonance, X,» and the spatial decay of the
mode amplitude at the ion resonance, X;+ The'local power spectrunm,

shown in Fig. 23(b) and taken at X/pS = 20, 1indicates the frequency

0.3, obtained from the

peaks near the eigenmode frequency, w/w,

-0.65. 'The simulation

shooting code. The local frequency is w/uw,
frequency is measured by using data over the entire length of the run.
Therefore the main contribution to the measured frequency comes from
the flat portion of the mode energy versus time curve of Fig. 22(b).

After t = 1.5w;b the eigenmode structure appears to have been set up.
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VI. SUMMARY

In this work we have investigated the stability of drift waves in
the sheared slab model using the methods of particle simulation. We
have considered a variety of boundary conditions at the endpoints of
the simulation domain, rational surface positions with respect to the
boundaries, i.e. different drift wave parities, different ion resonance
layer locations and shear strengths, The principal results can be
summarized as follows.

For strongly sheared magnetic fields (LS/Ln < 28), the stable
eigenmodes predicted by linear theory are found to be present as long
as the ion resonance layer is well within the simulation domain. The
eigenmodes are . observed for the even parities irrespective of the
rational surface position. They are also observed for the odd parity
whenever the rational surface position does not coincide with the
simulation boundary. The stable eigenmodes of linear theory are not
found when thes; two positions coincide and this is probably a result
of boundary effects on the drift wave eigemmode parity which is present
only din this situation. These effects may arise because the mode
parity is imposed on the background as well as the perturbed potential
and density.

A number of runs were carried out in systems with weak magnetic
shear. It was found that when the electron and ion resonances are well
enough  separated, local growth mnear the electron resonance 1is
sufficient to modify the equilibrium density profile which in turn
limits the growth of the mode. With weak shear and ion resonance layer

within the simulation domain a slight increase in the fluctuation level
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of the mode with k ~ 1 occurred; however, the eigenmode frequency

yPs

predicted by linear theory resulted over the entire length of the run.
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FIGURE CAPTIONS

Fig. 1

Schematic of the particle simulation configuration and model.

Fig. 2

Linear theory results illustrating real (full curve) and imaginary
(dotted curve) parts of wavefunction ¢(x) as a function of x/ps for
(a) even parity modes and (b) odd parity modes. Parameters used are

Lg/L, = 28, my/m, = 100, T;/T, = 1 and L7! = 0.07.

Fig. 3
Linear theory results for real and imaginary parts of eigenmode

frequency w/wx and y/wg as a function of k for even and odd parity

p
y"s
modes with same parameters as Fig. 2. Only the real frequency for the
even parity 1is shown because the odd parity has nearly the same

numerical value.

Fig. &4
Time evolution of the total electrostatic energy normalized to the

“total kinetic energy for Case 1.

Fig. 5
Time evolution of the spatially averaged mode amplitude for

(a) k = 0 and (b) k = 0.49 in Case 1.

yPs yPs
Fig. 6
Power spectra of potential ¢ (x) as a function of real frequency
y
w/wx for (a) kyps = 0.49 at x/pg = 9.6 and (b) kyps = 0.49 at
x/pS = 12.8 for Case 1. The eigenmode £frequency from linear theory

(w/wg = 0.44) is indicated by an arrow on the frequency axis.

Fig. 7
Real frequency, w/wx, as a function of x/pS for mode kyps = 0.49.
Theoretical result is indicated by £ull curve and dots represent

simulation values for Case 1 parameters.
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Fig. 8
Time evolution of total electrostatic energy normalized to total

kinetic energy for Case 2 parameters.

Fig. 9
Time evolution of the spatially averaged mode amplitude for

(a) kyps = 0 and (b) kyps = 0.49 in Case 2.

Fig. 10
Power spectra of the potential b (x) as a function of real

y
frequency w/wz for mode k = 0.49. (a) Power spectrum, I(w) over all

p
yPs
points 1in space (x/ps). The eigenmode frequency w/wg = 0.324 is

indicated by an arrow on the frequency axis. X, and x4 label the

electron and ion resonance points, respectively. (b) Power spectrum,

) I(w) taken at x/ps = 4, The arrow on the frequency axis indicates the

local frequency w/wx = 0.7. The results are for Case 2.

Fig. 11
The real and imaginary parts of the wave function obtained from
theory and simulation (interferogram method) with w/wx = 0.32 for mode

kyps = 0.49. The results are for Case 2 parameters.

Fig. 12
Electrostatic potential and mode amplitude at selected time,
wxt = 24.5. (a) Electrostatic potential contours in x~-y plane and

(b) mode amplitude of k =0 as a function of (x - xo)ps, where

yPs
Xg = LX/Z is mode rational surface position for Case 3.

Fig. 13
Power spectra of mode kyps = 0.49 versus real frequency w/w; taken
at local position (x - xo)/pS = 3,2 for Case 3. The arrow indicates the

value of the local frequency w/wg = 0.7.

e e e —
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Fig. 14
The real and imaginary parts of the wave function obtained from

theory and simulation for Case 3. This is for mode kyps = 0.49.

Fig. 15

Power spectra of mode kyps = 0.49 versus real frequency w/ws taken
as average over spatial positions (x -~ xo)ps = 2.0 - 5.0. The local
frequency from linear theory, w/wx = 0.7, is indicated by the arrow.

This is for Case 4 parameters.

Fig. 16
The real and imaginary parts of the wave function obtained from

(a) theory and (b) simulation. The results are for mode kyps = 0.49 in

‘Case 4.

Fig. 17
Real and imaginary parts of the wave function for mode kyps = 0.49

with parameters the same as Case 3, but with mixture of odd and even

parity with respect to rational surface.

Time evolution of total electrostatic energy normalized to total
kinetic energy for parameters of Case 3 and (a) Lg/L, = 14 which keeps

ion resonance within system and (b) LS/Ln = 28 which moves resonance

" outside simulation domain.

Fig. 19
Wave function obtained £from shooting code for weak shear case,

LS/Ln = 70, and even parity. Solid curve is the real part and dotted

line is the imaginary part of the wave function.

Fig. 20 .
Time evolution of the spatially averaged mode amplitudes for
(a) kyps = 0 and (b) kyps = 0.98 in weak shear case, Ls/Ln = 70, with

ion resonance outside system.
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Fig. 21
Space—~time diagram and power spectra of mode kyps = 0.98.
(a) Mode amplitude, |e¢/T|, versus (x/pg) and time (wit). Electron

. (b) Power spectrum taken at X = X_.

resonance is labeled by x e

e

Fig. 22
Time evolution of the spatially averaged mode amplitude for
(a) kyps = 0 and (b) kyps = 0.78 in weak shear case with ion resonance

within simulation domain.

Fig. 23

Space~time diagram and power spectra of mode kyps = 0.78.
(a) Mode amplitude, |e¢/T|, versus space (x/pg) and time (uwxt).
Electron and ion resonances are indicated by %, and %y, respectively.
(b) Local power spectrum versus real frequency, w/wg, taken at position

x/pS = 20.
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