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Much work has been devoted to the computation of the threshold of

global stochasticity (TGS for short) for Hamiltonian systems and

s

area-preserving maps.l"4 On the other hand, motivated by the current
trend in dynamical systems, universal properties of these systems have
been studied for their own sake (see Refs. 5 and 6, and references
therein). fhese studies concentrate on KAM (after Kolmogorov, Arnold,
and Moser) tori2 of dimension two contained within an energy surface
of dimension three. The dincrease of the perturbation to a given
integrable case eventually leads to the breakup of all KAM tori in a
given domain of the phase space; the disappearance of the last forus
triggers global stochasticity (or diffusion-like motion) din that
domain.2

A KAM torus .(w) is characterized by én irrational winding number
w. Let a5 j=0,l,ss., be the coefficients of the continued fraction
expansion of w, w = ag + 1/[ay + 1/(ag+1l/...)]. The renormalization
approach to KAM tori2s3,356 reveals that there is a universality class
for each periodic sequence of aj's. One should therefore ask what
universal features can be physically relevant. Fortunately, numerical
calculations show the robustness of noble tori (they correspond to
aj = 1, for j large enough and belong to the universality class of the
golden mean g = (V5+1)/2): locally (in w), a noble torus is the last to
disappear.6

The results of this Letter are the following: (i)  the robustness
of noble tori is geometrically interpreted’as due to a hierarchy of the
fixed points of the renormalization group for KAM tori. This implies

that only the noble stable manifold ﬁﬁ'associated to ;7?g) is useful

for computing a TGS; (ii) our interpretation is born out by an improved
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version of an approximate renormalization scheme?s3 derived for the

Hamiltonian

H(v,x,t) = v2/2 - Mcosx - Pcosk(x~-t) , (1)
that allows the computation of a simple formula  for .5% and good
estimates of the TGS for any value of k and M/P; (iii) similar

estimates can be given for Hamiltonians of the form

H(L,0,t) = Ho(I) + ¢ z Vn(I)COS(qnle + qpot + ﬁ;) R
né€J

(2)

HUI8) = ug(D) + e T vy(Deos(d + W)
neJ
where Y, is an arbitrary phase, J is a denumerable set with at least
two elements, all vectors are two-dimensional; and where the dh's
define a series of discrete  directions; (iv) our improved
renormalization scheme dis consistent with the wuse of a technique
introduced by Chirikovl, that allows one to take into account any
number - of primary resonances; for the standard mapl’2 this yields the
critical parameter with a 2% error only; (v) the improvement §f our
scheme 1s made possible by an approximation suggested by a non-trivial
symmetry of Hamiltonian (1) where M and P depend linearly on v and (vi)
we establish for the firéF time from theoretical grounds why the noble

unstable eigenvalue is closed»b

to g.
We now define the hierarchy of the fixed points. Figure 1 is a

schematic two-dimensional description of the space of Hamiltonians in

the vicinity of a given integrable one located at the origin. Two



e

fixed points Fi of the renormalization group and their stable manifolds

_573, i= 1,2 are plotted. They correspond to winding numbers w; with

i
ay =1 for all j’s; thus F; is the noble fixed point since w; = g. &%
is of codimension one and separates the basins of attraction of (0,0)
and . (»,®), and correspbnds to the breakup of the KAM_tdrus g?Zwi);} ﬁé
say that a point is above (resp. below).ﬁg if itself and the origin aré
on the saﬁé side (resp. opposite sides) of'}gé. We now interpret the
robustness of noble tori in the follqwing way: Fl is above all
non-noble stable manifolds, and all non-noble fixed points.are below
9&. Let us show how this conjecture implies‘the'rébustness' of noble
tori, Figure 1 displays a one-parameter family of Hamiltonians which
correséond to the line A that intersects .93 at A. Since A is above
JV\, T (wy) is stabler than J(wy) for the A family. Renormalize from
A for 67(W2); then, as A belongs to 593,'its iterates converge toward
Fé, and lie below «91 after, say; n iterations. Each iterate has a new
w with aj’s that are the aj+1's of the previous one.329:0  Choose a
number m > n, and let W be the winding number with aj = 2 for 0 < j <m
‘and aj =1 for j > m. Then, renormalize from A for é?(wm). The first
m steps are the same as for F(w,), but after that, the renormalization
mapping is ruled by F;. Since the m-th iterate 1iés below .S'Pl, thg
forthcoming ones cbﬁvefge to the origin., Thérefore .gTWﬁ) is
undercritical ‘at A, when J(w,) is critical: F(wy) is - é‘ noble torus
more robust than &(w,), which is arbitrarily close to it by choosing. m

large enough. This rationale can be extended to any non-noble torus.

A similar one proves that "Fl is above all non-noble stable manifolds™

is a necessary condition for the robustness of noble tori. The

threshold of breakdown of a noble torus of the A family is obtained by




requiring that some iterate of large enough order belongs to .%#,, which
is therefore the unique stable manifold useful for computing a TGS.
This paragraph describes an approximate procedure for analytically
computing S??‘for the space of Hamiltonians (1). Reference 3 already
gives a renormalization scheme for getting 'Sq, but it is not
consistent with the robustness of mnoble tori. Furthermore the
approximations involved in the scheme completely neglect the distortion
of tori due to the primaty resonance with amplitude P (P resonance for
short). .We therefore look for a modified version of this scheme which

takes into account that distortion too. Define the winding number w

such that the torus T (w) corresponds to a mean velocity

<v(t)>, = k/(k+w). The Kolmogorov transformationl?? - with generating
function F(I,x,t) = Ix + (M/I)sinx + (P/kJ)sink(x-t), where J = I-1,
that kills both resonances M and P (the transformation used in Ref. 3

only kills resonance M) of H at lowest order, yields a new Hamiltonian

+oo ©

HY(I,0,t) = Hy + | ) Kpp(D)cos ¢pn(8,t) (3)

=—c0 n=(
where $pn(8,t) = m6 + nk(6-t), and where Hy and the K ,’s are
explicitly computable./ Define I., for any r, by dHy(I,)/dI = k/(k+r),
and £ = integer part of w.' When dealing with ﬁ?(w), a renormalized
Hamiltonian of the type (1) is obtained:from i iﬁ analogy with Ref. 3:

(i) by retaining only the two Km resonances with n =1 and m = %,

\

n

2+ 1; (ii) by expanding HO to second .order about I,.5 (1ii) by

approximating the X , (I)’s by their value at I = I which is the
location of the K, resonance (and mnot. at I = Iy, the location of

F(w), as in Ref. 3; this is motivated later) and (iv) by rescaling




Av = Ug = ugyy to unity, where uy = k/(k+m) is the mean velocity of the
Kml resonance. This modified renormalizétion scheme improves the
estimates of the TGS for H, and simultaneously happens to verify our
conjectured hierarchy of the fixed points. The amplitudes of the

primary resonances of the renormalized Hamiltonian are M' = F(%HN),

P' = P(4+1-1), where

F(m) = o Uy/(av)? , (4)
with o = d%Hy(1,)/d1%, U, = IR, (L) |, and A=0 (resp. 1) For
w~% < 1/2(resp. > 1/2). Our improved scheme can only deal with tori
437<W) such that w.> 1, but this is no limitation since the torus F(w)

of the system with parameters (k,M,P) is the torus F(1/w) of the

equivalent systemz’3 with parametefs (1/k, P,M). At lowest order in M

and P, M« PMPTA and ' « PMATI-A, With the next order corrections

&1 is defined by

Mpl/8[1 + c(k)P2] = R(k) , < (5)

where R(k) and é(k) are plotted in Fig. 2 (their involved analytical
expressions will be given elsewhere)., Figure 1 shows a slice of .93 at
constant k. Since for (g), Mj « M2P and P' « MP, the noble unstable
eigenvalue is readily shown to be § = gz + B, where 0 < B8 = 0.13"to be
compared with theA exact value5:6 "8 = 0.032 (One step of our schemé
corresponds to two steps of the scheme of Refs. 5 and 6; our § is

therefore the square of theirs).
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We now show how to use the knowledge of 1@3 for computing the TGS
for H. Consistently with our conjectured hierafchy, a part of ’Sq is
above all non—ﬁoble stable manifold§'(see_Fig. 1). More precisely for
k=1 and 1/a < M/P.< a with a = 25 and M = P~ and l/km < k< km;~With
km =~ 2,2. For the parameters of the corresponding domain, the last
torus F(wy) corresponds to wg = g or 1/g. The TGS is thus strictly
given by Eq. (5) computed with either (k,M,P) or (1/k,P,M). Simple
geometrical arguments allow one to only compute the higher threshold.
Indeed é?tg) is the more robust when the overlap of resonance Kll(w=0)
with resonance P(w=0) is faster than the one with resonance M(w=w);
this is obviously the case for k = 1, M/P < 1, and for M= P,k > 1. if
k or M/P are too far from 1, the pre%ious'estimate yields only a lower
bound to the TGS, since the last £orus is another noble torus. For the
practical purpose of estimating the TGS, we look for w, as wy = g+u or
1/(g+u), where u is a positive integer. One iteration of the
renormalizétion scheme yields w’ = g. Therefore Eq. (4) is first used
for computing M° and P’ with &= p+l and A =1 f£from (k,M,P) or
(1/k,P,M). Then the TGS is computed by setting these values in Eq. (5)
where k is to be replaced by3 kK = (k+2)/(k+gt+1). The agreement
between the numerical and the present theoretical estimates of the TGS
as given by the parameter s = 2V/M + 2/P is improved with respect to
Ref. 3 and is better than 47 for 1/25 < M/P < 25, k = 1, and for M = P,
1/4 < k < 4; outside the interval [l/km,km], Wy corresponds to p= 1.
Approximations similar to those involved in deriving the dimproved
renormalization scheme for H, make it possible to estimate the TGS in
the domain between two primary resonances with nearby directions 32,

n =m,p of Hamiltonians (2) by their local reduction to H. We compute




n = m,p of Hamiltonians (2) by their local reduction to H. We cbmpute
again the threshold of noble tori &(w) with w = g+u or 1/(g+u) where
u=0,l... . ~For .#(I,6,t), define I, for r =0,w,» by
dHy(I,.)/dT = kav/(ktr) = qpo/dyy» where k =.]qpl/qm1| and
Av = qu/qml - de/qpl’ For a torus J(w), the redqction of & to H

yields M = F(m), P = F(p), where F is given by ' Eq. (4) with

Up = SlV(T) |, Uy = lVy(Ig)l, and o = 1&%H(L)/d1?). For (1,9,

the TGS is computed in terms of € for a given energy E, or vice-versa.
JI(w) corresponds for e =0 to fﬁ such that o = dHO(fw)/df verifies
W= |8 3P/$ . aﬁl. When taking into account the fact that locally
the wunperturbed energy line E = Ho(f) is a parabola3, the reduction of
JVI fo H yields k = |¥ "3P/? . aﬁI with % = (wz,—wl), M = F(m),
P = F(p), with Uy = eiv(I1, o= ¥ « aZuy(dp/af? . 2,

A = Yplop = Yp/ oy, where vy, = % e dy, oy =T qn/52, and fﬁ is

i

defined by d - dHo<fﬁ)/df =0, n=mp. Setting the parameters
(k,M,P) computed from g¢ or ¢! for y = 0 into Eq. (5) yields a first
estimate of the TGS in terms of e or E, that can be poésibly improved
as for H by considering p > 1 and by iterating once the renormalization
scheme before wusing Eq. (5). The preséﬁt technique, when applied té
the Hamiltonian given by Eq. (32) of Ref. 8, yields the estimate of the
TGS: E = 0.198 to be compared with our direct numerical estimate
E = 0.195.

We now show how to take into -~ account more than two primary
resonances. For instance, consider the standard map that corresponds,
as many other maps, to a time dependent Hamiltonian whose primary
resonances all have an equal amplitude.l’2 All these resonances can be

1

killed by a Kolmogorov transformation.” When dealing with the




transformed Hamiltonian as we did for Eq. (3), one gets modified
renormalized values of M' and P'. Setting these values in Eq. (5) with
k' = 2/3 yields the estimate kK = 0.991 of the TGS, to be compared with
the exact value? i, x 0.9716 and with the estimate kg = 1.107 obtained
from the method of the preceding paragraph. This procedure amounts to
L\= 1 iteration of the exact renormalization group. A general argument
of hyperbolicity predicts an improvement iL = (xg=kx) /(kp=Kx) = sk for
L large. Here i; =7 larger than & = 2.65. When wusing the
resonance-overlap criterion instead of Eq. (5), Chirikov gets a similar
improvement from the use of the same Kolmogorov transformation.!

We now motivate the computation of the amplitudes‘ of the
resonances at the location of the resonances gather than at the
location of the KAM torus as in Ref. 3, Consider the Hamiltonian H2
obtained from Eq. (1) by  substituting M(v) = Mb + Mjv  and
P(v) = Py + Pé(l-v) for M and P. Write down the canonical equation for
HO and eliminate v in between. This yields a second order differential

equation for x(t) that depends on M6 and Pé, only through sz, Péz

and
MbPé. This non~trivial symmetry implies that the TGS has an extremum
for Mj = P§ = 0. This extremum is a minimum for Mj = aMy and Pj = oPj,
when the approximation of Ref. 3 or the resonance~overlap criterion of
Ref. 8 leads to an estimate of the TGS that is a monotonically
decreasing function of «o. The existence of the extremum suggests to
approximate Hz by a new Hy with Mj = P4 = 0, that is by H with M = M(0)
and P = P(1), provided Mé and P} are not too large. This
approximatidn, also mnecessary for applying the resonance—overlap

criterion to Hge, was -also checked to be good for the case

M(v) = Mb(l + avzj, P(v) = Po[l + aﬁﬁﬂaz], and independently recovered
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as appropriate in a recent work by Reichl and Zheng.9 It is crucial
for improving our scheme, since the approximation of Ref. 3 gives a bad
scheme when applied to Eq. (3). '

The present Letter and a previous one” yield accurate analytical
methods coherent with Hamiltonian universality for computing the TGS in
most area preserving maps and 1.5 or 2 degree-of-freedom Hamiltonian
systems of practical interest.

/
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Figure Captions

Fig. 1 = Schematic of the space of Hamiltonians.

Fig. 2 - Plot of R(k) (solid) and c(k) (dashed).
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