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Abstract

The nonlinear trapped electron response to drift wave fluctuations
is calculated wusing the coherent approximation to "the DIA in
action-angle wvariables appropriate for toroidal geometry. The
bounce-averaged nonlinear response to low frequency' electrostatic
fluctuations is computed. Employing a spectrum of Pearlstein-Berk
structﬁre modes | satisfying the symmetry of the ballooning
representation, the nonlinear terms are evaluated explicitly. Nonlinear
effects do not significantly modify the trapped ele;tron response;
Quasineutrality and the nonlinear ion respomse can then be used in a
sheared slab to obtain the turbulence level at saturation level. The

level of trapped electron diffusion is calculated.



I. INTRODUCTION

The relevance of turbulent nonlinear effects to the theoretical
determination of drift-wave induced anomalous transport has been widely
recognized.[l'3] Renormalized omne  point theories of drift-wave
turbulence, including  broadening of the circulating electron
resonancel 1l and Compton  scattering contributions to the ion
response[4}, have been advanced. Saturation was achieved as a balance
between circulating electron destabilization and  shear damping.
Subsequent work (also in a sheared slab) has demonstrated that ion
Compton scattering effects have a strong stabilizing effect. Compton
scattering causes saturation at a much lower level of fluctuations, so
low as to cast the existence of nonlinear instability in doubt.
Consequently, additional destabilizing physical mechanisms must be
introduced to explain anomalous transport using drift wave turbulence
models.,

The  present papér investigates collisionless trapped-electron
toroidal drift resonance effects as such an additional source of
destabilization. Many previous studies have examined linear trapped
electron effects.l6] The work of Catto and isang[7] in particular is
used here as a starting point. As in most previous slab hybrid
theories, a Pearlstein-Berk type eigenmode structure is assumed. While
electron temperature effects are neglected, it should be mentioned that
a finite temperature gradient cam have significant effects on both tﬁe
trapped electron destabilization[7-8l and the eigenmode
structure.[g] Because of the nature of trapped particle orbits a
bounce-averaged response is computed, thus introducing coupling between

poloidal harmonics with different poloidal mode numbers. The mode
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phases are chosen to satisfy the symmetry of the ballooning
representation.[lo] As in the linear work of Catto and Tsang, the
dominant physical effect is found to be the radial localization of the
trapped electron response resulting from the difference between field

line and poloidai harmonic helicities.

A summary of the remainder of the paper follows. In Sec. II a ‘

renormalized drift-kinetic equation for trapped electrons is derived
using a coherent response Direct Interaction Approximation[ll'lz],
directly performing the gyro-phase and bounce averages. This procedure
is ‘considerably simplified by formulating the equation in action-angle
variables appropriate to the toroidal geometry.[13] In Sec. III the

nonlinear coefficients in the trapped electron kinetic equation are

approximately evaluated, using the properties of the Pearlstein-Berk

eigenfunction, the ballooning symmetry, and a simple model for the
spectrum of modes. 1In Sec. IV the dominant ndnlinear trapped electron
effect is found to be poloidal diffusion. For typical levels of
turbulence, this causes only small deviations from the linear response,
allowing a simple, "patched", perturbative form to be written for the
response at arbitrary energies. In Sec. V the dominant linear trapped
electron response is thus combined with previously computed nonlinear
ion response to form the eigemmode equation. The eigemmode equation and
dispersion relation are solved variationally. The level of trapped
electron diffusion is calculated. In Sec. VI the results of this paper

and its relations to present and future work are discussed.




b
IT. RENORMALIZED DRIFT-KINETIC EQUATION FOR TRAPPED ELECTRONS
In this section a renormalized drift-kinetic equation for the
trapped electrons is derived. Action~angle variables appropriate to
particle motion in a toroidal field[13-14] are employed; this simplifies
and shortens the derivation considerably.

The three action coordinates, denoted by the vector J = (M,J,p) are

-

given by:
2 2
M = My V] - meC (1)
/ TR T e Mo
dB .
3= 24t a e, (2)
and
p = meé R2 - g-w . (3)

The action M is proportional to the magnetic moment y = v%/ZB s
where v, 1is the component of velocity perpendicular to the magnetic
field, and B is the magnetic field strength. The other quantities in

\

Eq. (1) are e , m_ , and Q » the electron charge, mass, and gyro-

e
frequency, and c , the speed of light. The action J is proportional
to the toroidal magnetic flux enclosed by the particle orbit. In
Egs. (2) and (3) o, B, and ¢ are toroidal flux coordinates,

where o 1s the toroidal magnetic flux, and B and ¢ are the wusual

poloidal and toroidal angles. The function & gives the radial




position o as a function of B and the adiabatic invariants p, M ,

and Ho 3 HO is the unperturbed particle energy

Il'].eV2
HO = - ) -+ e@o > (4)

~

where @, is’the unperturbed potential. The action p is the toroidal
angular momentum, where { is the toroidal angular velocity, R is the
major radial coordinate R =« Ro(l + € cosp), Ry is the major radius,
g 1is the inverse aspect ratio, and ¢ is the poloidal magnetic flux.

Corresponding to the actions are the angles

9 = (66,9 (5)

where Gg', corresponding to M , is the bounce-averaged gyro-angle, O ,
corresponding to J , is a poloidal angle which parameterizes the
guiding center position along the banana orbit and ¢ , corresponding to
P, 1is a toroidal angle which labels the point where the banana orbit

intersects the circle determined by B8 = 0 and o = constant.
With these variables, the trapped electron Hamiltonian, including

equilibrium and turbulent fields, may be written as

H(J,0,t) = Hy(J) + ] exp[igegy (J,t)] . (6)

= L
2#0 <

- Here g = (%,m,n) labels the Fourier harmonics in the three angles

(eg,e,¢). The quantity Hy(J) with £ =0 = (0,0,0) is the angle-

independent part of the Hamiltonian (Eq. (4), rewritten in terms of J),

corresponding to unperturbed particle motion in the equilibrium fields,

e ey e

iy b rtme
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for which the actions are adiabatic dinvariants. The corresponding

canonical equations are

doHy
O = = =
and
J " 0 (8)
=T T
Equation (7) leads to[14] the unperturbed orbit frequencies
oH, oHy oHy
Y = (577> 91;) = (@u,,0p) (9

which are the bounce-averaged gyro-frequency, @ , the bounce frequency,
W, , and the toroidal driﬁt frequency of the banana'center, wp .
Nonlinear effects, such as quasi~linear diffusion of the equilibrium
distribution, will cause slow, diffusive changes in HO , which are

neglected in this section. This paper is restricted to the

electrostatic case,

Hy = e¢y . (10)

The corresponding perturbed orbital frequencies are denoted by




oHy
w = =,
L)) % (11)

(Note that for the g’s typical of drift wave structures, the g # 0
components of the equilibrium fields need not be included in Hz ) In

action-angle variables, the Vlasov equation for the trapped electron

distribution £ is

- (JH = o, (12)

with @ and j given by Egqs. (7) - (8). Fourier transforming Eq. (12),

f 4is written, parallel to Eq. (6), as

f(_@’g’t) = fo(g) + z exp(-iwt) eXP[i,g",@]fz (;-I) ’ - (13)
~ w
20 ~
B '
where an additional sum over the system eigenfrequencies, w , has been
introduced; the ®w subscript is often suppressed. Note that the

eigenfrequencies w are distinct from the orbital frequencies w, .

The (2,w) component of Eq. (12) is then (for 2 #0, w#0)

of o _
-1(w~2-99)f$ + N} = i}Hg --?ﬁ; s (14)
where Ny 1is the nonlinear term
’ , )
Nz = 1 z (& 0 wzlfz_zl fad 2, . 57 Hzlfz_’g’lj . (15)
o ‘&lwl ~ ~ -~ ~ o~
(27#0,2)
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Here, and in the following, (3/32) acts on all quantities to its right
unless indicated otherwise.

Following Hazeltine[ls], the transformed Vlasov equation is

renormalized using a Direct Interaction Approximation[ll_lz] for the

coherent response. This consists of keeping only the phase coherent

part of the nonlinear term, which then has the form

c -
NG = dgfg+ by, (16)

]

where the operators dz and b'Q are independent of phase, so
that Nz has the same phase as H2 . Considering H'Q as a test wave
field, the coherent approximation thus gives the one-point nonlinear
dielectric response. To compute dk and bg Eq. (14) is solved for

~ ~

fz_z, , and the terms in this solution which, when substituted in
Eq. (15), make '"directly interacting" phase coherent contributions
to N, are then retained. In this calculation, Eq. (16) is employed,
and the Hamiltonian is treated as a first order quantity, so that, for

simplicity, wave-wave interaction terms are excluded.[16] The resulting

operators are

dgfy = 1 (8wgr = %05y )0y g [£gheuys + Hy (470058 ) ] (17)
- '&le ~ ~o ~ ~ ~ -~ ~o
and
by, = - 1 (ewy - £ 95H,. )6, [f‘;,g'.aJH£+ H (g-an'“;,)} ,
278 cw ARl o AN U I A AR
(18)




Gy L, (19)

~

[-1Cu=2eup) + dy

and the minus one exponent denotes operator inversion.

To simplify the computation of the drift wave response, first note
that, for typical tokamak parameters, the unperturbed orbit frequencies
order as wp <K wy <K @ . Furthermore, the drift wave frequency w < W o
satisfies o << Wy . (Here uwy, 1is the electron diamagnetic drift
frequency). Thus, the gyro- and bounce-averaged drift wave response is
appropriaﬁe. For such a response to be meaningful, the bounce time must

be shorter than the wave-particle decorrelation time resulting from

radial or poloidal diffusion. Prior to bounce averages, the guiding

i\

center decorrelation time is considered, while after the average it is
the banana center diffusion that is of interest. The dominant guiding-

center decorrelation mechanism has been shown[l] to be a combination of

radial diffusion and free streaming along sheared magnetic field 1lines,

which yields a decorrelation time

1, -1/3
To = E; (k"ve)zDr] s

where kh = (m/rLS) is the radial derivative of the parallel wavenumber
in the vicinity of the rational surface, m is the poloidal mode number,
r 1is the minor radius, LS is the shear length, Vo = (2Te/me)1/2 for
electron temperature, Te is the electron thermal velocity, and D, 1is

the radial diffusion coefficient. The bounce frequency is given by
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_ TT(S]JB)]-/Z
LT R (20)

-1
(dy/da) , «k is the trapping

where q is the safety factor, q(a)

parameter

Ho—e®0—mﬁu(l—e)

«2(D) 1, (21)

2emyB

B is the flux-surface averaged magnetic field, and K 1is the complete
elliptic integral of the first kind. Note that « is defined such that
0< k<1 for trapped particles, with the trapped-circulating boundary
at k=1.

The condition for validity of the bounce-averaged response is then
WyTe > 1. For drift waves satféfying the approximate dispersion

relation

k pov -1
wk) = _iL..S._S 1+ (klps)z} (22)

n

(where k,; = m/r is the perpendicular wavevector, v is the sound speed
1 - :

S

v = (Te/14) %y, 1y

; and vy are the ion temperature and thermal

velocity, pg = (vS/Qi) where Q; is the ion gyro-frequency, and L, is

the density scale length) this condition becomes

M 1/2

i 3/2 .
NPT I) n ) € (ch) > 1 (23)
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Here M; is the ion mass , and kjpg %1 , L r and v| x v, have also

n N
been assumed. For turbulence levels (wrc) ~ 1 and other typical
parameters (q ~ 3, € ~ 1/5) Eq. (23) is satisfied for almost all values
of « (up to k = 0.97 for the parameters given).

The gyro; and bounce-averaged response is easily effected by taking
the £ = (0,0,n) component of Eqs. (14) and (16) - (19), since this is an
average over the angles parameterizing the gyro and bouncé motions. It

is then useful to divide the trapped electron response into adiabatic

and nonadiabatic pieces, so that

£ = 8 ~ 7 H, » (24)

where & = (0,0,n) is denoted by =n alone, and 8n is the nonadiabatic

response., With this form, it follows that

dp(Hp,Hp) £y + by (Hp,£)H, = dp(Hy,Hy)g, + by(Hy,gn)Hy

= dngh + Ban N (25)

where the functional dependence of d, and bn have been indicated
explicitly. The mnonlinear terms thus approximately annihilate the
adiabatic response. This 1is easily demonstrated by an explicit
computation of the nonlinear term, taking fo(g) = exp[-HO(g)/T]f[aO(p)],
a local Maxwellian with the density p;ofile deter;ined by the
function F . The radial coordinate o 1is replaced by the average flux
surface, or banana tip, coordinate % which satisfies

p + (e/C)¢(a0) = 0 ;3 electron banana width corrections are neglected
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since they are small compared to any scale characteristic of the drift
wave turbulence. It is then a straightforward matter to showl 14] that
corrections to Eg. (25) are of order (L¢/Ln) , Wwhere L¢ is the

eigenmode scale length, and, for the model considered here [see

Eq. (32)] Lo ~ Xp << Ly o
Combining Eqgs. (14), (16) = (18), (24) and (25) yields the
renormalized  drift-kinetic equation for the nonadiabatic trapped

electron response

T

-i(w - nwp)g, + dyg, = [(w = wyy) - ib, JH, (26)

e

where now b, stands for (Te/fO)En « The first term on the left-hand
side of this equation displays the drift resonance, occurring when the
banana center drift velocity vp [nup = (n/R) Vp = kqvp , where ko is
the toroidal wavenumber] equals the toroidal phase velocity of the wave
(w/kT] . The second term represents broadening of this resonance by
diffusion due to nonlinear Landau resonance interactions with a bath of
turbulent "background" waves. The first term .on the right-hand side
gives the basic drift wave response, with Wy = (nq/r)(peve/Ln) , and
the second term can be interpreted as a renormalization of the
equilibrium distribution f0 . |
It is dimportant to note that the index n in Eq. (26) labels the
nth harmonic of the third orbital angle coordinate, rather than of the
toroidal angle coordinate. However, the spatial harmonic is required to
form the eigenmode equation from Poisson’s equation. Furthermore,

simple models of the eigenmodes are made most conveniently in terms of
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the spatial harmonics. Thus, the orbital harmonic source term
H (o) must be related to the eigenmode spatial harmonics @mn(a) s
where m and n are harmonics of B and ¢ , respectively. This

relation, derived in Appendix A, is
H(a) = e % ¢, ( @) <exp[iB(nq - m)]>b , (27)

where < >y denotes the bounce average (Eq. A7). This result indicates,
as verified later, that the response to ® n(a) is proportional to the
bounce~averaged phase factor <exp[iB(nq - m)})b, which represents two

~important physical effects.[7] The factor exp[iB(nq - m)] represents

the difference in helicities between a wavefront on the mode rational

surface r = Thn Where q(rp,) = m/n , corresponding to the (m,n)

mode, and a particle moving along a field line on a closely neighboring

surface (where r#r

an )/ tpnl << 1) The quantity

, but | (r - Ton
<exp[iB(nq ~ m)])b is thus, first of all, a bounce-averaged measure of
particle motion perpendicular to the wavefront. Since it decreases due

to phase-mixing as |r - T increases, the resonant interaction is

nl
localized near =T . The‘ second effect is that, for a ‘given
difference in helicities between field line and wavefront, less deeply
trapped particles with longer bounce lengths sample greater variations
in the wave field. Combined, the helicity matching and bounce length
constraints give the resonant region a characteristic width (A/k) where
A = (1/nq”) , the distance between mode rational surfaces for fixed n ,
is the radial scale length for the phase (m - nq) . Note that the

resonance 1is spatially widest, and thus strongest, for the particles

most deeply trapped.
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Returning now to Eqs. (17) and (18), these formulas can be put into
a more wuseful form, independent of the specific form of radially
localized eigenmodes & n(e) . These forms are
2 2
dp(r) = (-% ) ] Gppr | (21 {jl <exp[iB(n’q - m") ]>y &,/ - (1)}

n’m’m" t or

fox <exp[-16(n"q = ") >y Gprpn(r) )
~ <exp[iB(n’q - m')])b <exp[-iB(n’q - m")]}b

52

or

+ ( %;-)( nd ) ({g% <exp[iB(n'q - m')])b Qn’m'}

Qz,mu <exp[—i8(n'q - m")]>b

- {2 <exp[-18(n’a - w") By Shogn)

@n,m,<exp[is(n’q - m,)]>b}'§% ] (28)
and
. 2 w/_w*n' nq 2
b(r) = - ( E') L Gpp ( P ) [(5)
nlm'm" D

{38; (exp[ls(n'q - m')])b @n’m'(r)}

{ 3—"; <exp[-iB(n’q = ") P & n(r)}

- <exp[iB(n’q - m')])b <exp[-if(n’q - m")]>b




~15=

+ (B2 (b <exp[18n'a = n) Dy gy}
ézfmn <exp[-iB(n’q - m")])b

- {.g% <exp[-iB(n’q - n") >y @Z,mn)

O’ <exp[iB(n'q - m')])b }-é% ] . (29)

To derive these equations, Eq. (25) is evaluated for § +n and w, 1is
replaced by (BHn,/ap) , where 9p = -(qc/e)(1/Br)(3d/3r) . The last
approximation is true neglecting the implicit dependence of g, on D,
Whiéh occurs through its energy dependence., Such terms are of order
(8E/9p)(3g,/9E) ~ (wpg,/T.) » where E is the particle energy; they are
smaller than the terms retained by a factor of order (L¢/Ls) <1 . The

basic  assumption which simplifies d and b, is then that

n n

gnarganz(r) <4 g'Fn,(r)(agn/ar) where F,, is any function occurring

in the n’ sums in Egs. (17) and (18). Generally, Fn’ has a radial

localization which wvaries with n’ over the whole radial region where
modes are excited. Thus, the summed quantity has radial scale length of
order r , while g, has the much smaller eigenmode scale length.

Similarly, G, varies slowly with radius, depending upon wDa(l/r) s

and on d which, self-consistently, also has slow radial variation.

n-n’

The dominant terms in Eq. (17) are thus
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2 Bzg d
_ N2 2 n ’
(h*) | Hp | -7;;r + nn ( o

oH._ .,
or

’

31‘]; ’ agn

c Ty 7 )'757 ]

o

[n%g,

This result, combined with Eq. (27), yields Eq. (28). Exactly parallel
procedures are wused to obtain the approximate expression for bn . In
addition, Eq. (26) must also be inverted. In doing so, dn and b, are

taken as small, since, as verified a posteriori, d b, << w , and

n ?
since it turns out to be unnecessary to include nonlinear corrections in
computing the nonlinear coefficients themselves.[3] Thus (w =~ n'uuD)_1
is understood to mean

lim

+(w' - n'uwp -~ 16)_1
§+0

in Eq. (29).
Finally, note that the toroidal harmonic of the nonadiabatic

trapped electron density response is simply related to g, by

n, = ng [ d3z exp(—inqs)gn , (30)
where’ ny is the average density. To see this, note from Eq. (A2) that

g = Z,exp[in’(; - qB)]gn, so that by definition
n

27 v
n, = ng f dgz IO (-%% )exp(—inc) Z exp[in’(c - qs)]gnr .

’

n

Carrying out the ¢ dntegral in this expression immediately yields

Eq. (30).
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III. COMPUTATION OF THE NONLINEAR COEFFICIENTS

To evaluate the nonlinear part of the trapped electron response,
the expressions for d, and b, in Egs. (28) and (29) must be
simplified. While this involves many approximations, the nonlinear
correétions to the linear response are, in any case, found to be quite
small. For convenience, the terms in each nonlinear coefficient are
considered separately, labelled according to the number of factors of
kg = (nq/r) and (8/0r) , corrésponding to superscripts © and (3/9r) ,

respectively. Thus Eq. (28) becomes

dp(r) = a99%r) + dEF(r) + af(r) + afSx) .
: N
The order of the last two terms is unimportant, since both turn out to
be zero.

Consider first the simplest term,

2 .
dgr(r) = - [.% ) ) Gp—n’ <exp[is(n'q - m')])b <exp[—i8(n'q - m")])b
- h'm m"
, 2 2
n q @ ’ 4 * ’_.1 3 3
X ( T ) n'm’ %n’m" or2

Several approximations are made to simplify this expression. For
convenience, r is repalced by x = r - Ton the distance from a

reference mode rational surface with typical mode numbers m and n .

The response with local translational symmetry

Sptp,n (X + 0D = o (x) (31)
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is studied. This symmetry corresponds to the case in which responses
localized about different mode rational surfaces (the same n but
different m’s) are in phase; Departures from this symmetry tend to be
stabilizing.[lo] Formally, Eq. (31) is valid because the radial scale
length of the coefficients of the eigenmode equation is large compared
to A , while p < m so that the coupling of responses with different

m’s be significant. Additionally, coupling is significanﬁ only for

Ix] < xp << r, [where =xq = (Te/Ti)l/z(LS/Ln)l/2 04

;] small compared to

the scale length of q , so that n’q(r) - o’ = (x/A) and
n’q - m" % (mn” -m") + (x/A) . The bounce averages appearing in dgr

are evaluated in the small « limit, <exp(isx)>b ~ JO(ZKX).[7] In
fact, as has been verified numerically[l7], this approximation is good
for almost all « , including those values for which Wy Ty >1 .
Furthermore, as discussed previously, the small « region makes the

largest contribution to the spectral sums in d, and b, . With these

approximations,
<exp[18(n'q - m") ][> y, <exp[-iB(n’q - u™) > 4
2 (A ) S F x+ @ -a)]a )

A A

and defining p = m" - m” , the results are

, 2 2
dgr(r) = - (‘% )2 ) Gn—n'( nrq ) Qn’m'(X)JO( ‘EE )
n’m/
2k % 52
X Z JO[_A- (X‘PA)] o, ,(X‘PA)_ .
P nm 3r2
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Since the summands are smooth over the intervals An” = An’ =1 , and the
mode scale-length L¢ > A, the m“ and n’ sums may be replaced by
continuous integrals according to the rulesl4]

m’ > kgr,n’ > [w'/q(ry, + x)] and 2 '+f dk’of  dx (IkpIR/Lg)

m n

where L is evaluated at r=r,

s n °*

Finally, in the present one-point theory an explicit model for the

potential fluctuations must be adopted. As in Ref. (4), a Pearlstein-

Berk eigenfunction model is adopted, so that

@n,m,(x) « exp( ) H(-%iL )

where

where © 1is the Heaviside .step function, and Wké = 20xj , @~ 1/2
typically, is the spatial width of the mode in terms of the ion Landau

damping point’

Thus, the model spectrum
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L

2 . s 2 X
Jom |© = (o ) %5keE( 57— ) (32)
k k
0 ]
is obtained, with normalization Ijé¢ | = @% . Here S(ke) is the
nm O

spectral density of modes, which 1is calculated from the mnonlinear

marginal stability condition in Sec. V. Thus,

L
s , - pA
O () G (x =28 & (=— ) 958k’ o) B o ) H( S22 )
ko ko ko
. 2,2
X exp( EiE%JE- ) exp(~iuxp4a) ,
so that
- ¢ 2 g +o (kg3 - N
G@r oz - (5 ) o [ dkgy [ax GanS(kp) Jo( = JE( =)
- 00 - 00 k’
0 e
Te 2,2
T Sl x - )] exp( TEEE )
p=—00
. X - pA 32
x exp(~iuxpA) H ( (33)
Wké or2
results.

As shown in Appendix B, the dominant contribution to the p sum in
Eq. (33) is from the p = 0 term, essentially because of the rapid

oscillation of the summand for p # 0 . It 1is also permissible to
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perform the x  integral in Eq. (33) for fixed G _ ., , since the

X variation of G ’

n-n’ » via n’wp = [q(ry, + x)]_l, is of scale

length r , typically large compared to the (A/k) scale on which
2
[JO[ZKX/A]] varies. Then, defining u = (x/Wkg) , the final result for

rr
dn is

cd 1 ©
Er) - (=) f akgey geikpidsey) [ 0 [3o( —— )] > -
-1

(34)

The other terms in the nonlinear coefficients are easily reduced to
similar forms. The only additional information required to evaluate the
(0,0) components is simply [dJO(z)/dz] = —Jl(z) . The (0,r) and (r,0)
terms vanish because the integrands are proportional  to

% . .
H(X/Wké)[a/axJo(ZKX/A)anm:(x)]@n,m,(x)Jo(ZKx/A) , which has odd parity

in x . A straightforward computation then yields

C@O 2
do(r) = (=) [ dkgikgiG, o-8(kp)
2 2 2 2
AR VICF Y 13+ i) 1] - (P 1, 55 1 (39
r
and
cdg -2 , fO W =W
bo(r) = - (=) [ dkplkglGy n sk (== ) (m )
e
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2 2 2 , 32
x {[PECL ) [(—Z'S )" 15+ (“Wké)ZIZ] - (ke)zll 7 } . (36)
Here
1 ZKuWké 2
I, = fl du[sy (—5— ) ] (37)
1 ZKuWk, 2
o= ] asfup )1, (38)
and
1 2kt , 2
I3 = fl dulJ; (—A‘— )] - (39)

These integrals are approximated according to the value of the parameter
s = (A/Kwké) . Ordering A ~pg, s ~ (l/2aK)(Ln/LS)(Ti/Te)1/2 . For
typical numbers, T, > T; , L,/Lg ~1/20 and 20 ~1 , S8 < (1/20)(1/x) ,
so that s < 1 for « > 1/20 . The s < 1 region is then consistent with
approximations made later for the electron response [see Eq. (48)] and
dominates the trapped electron.contribution to the eigenmode equation
[Eq. (C1)] which is weighted by an additional factor of k . For these
reasons, and for the sake of tractability, the relations s < 1 , and
k > 1/20 are assumed in the remainder of this paper.

To  simplify I I, , and Ij , the Bessel functions are

approximated by their asymptotic forms. Thus, taking Jo(z) ~ 1 and




~23-

Ji1(2) » z/2 for lz] <1 and Jyp(z) =» (Z/wz)l/zcos(z - w/4) and
Ji(2) = (2/nz)l/2cos(z - 3nw/4) for |z} > 1 ,
1 du 4u
I} ~ 28+ (s/m) | (-:r 1+ sin[-zr )],
s
which implies
t
s 1
I, »~ 28+ zn(-g ) (40a)
where [Si(4/s) - Si(4)] << #n(l/s) has been taken.[18] Similarly,
2 3 S 2 s :
I N = + — {1 - N — 41
2 3 s 2w ( s ) 27 (41)
and
28 1
I3 ~ —§—+— ,Qn[g ) . (42&)
Ordering 27 >> #n(1/s) when s >> (1/400)
is valid. Since the ratio of coefficients of 13 to those of I, in
Egs. (35) =~ (36) is of order 4K2(Ti/Te) , which is typically less than
one, I3 can be approximated similarly, as
1, 2. (42b)
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With these approximations, the nonlinear coefficients become

C@O 2
dy(r) = 5 ) [ akgikgley g S(ky)
2 2k 22 2 , 3
ACF ) [0 ) F+ (i) =] - 20k S—ar_z} (43)
and
C(I)O 2 , , , fO 0.)'— u&_n/
b (r) = - (T ) fdkelk@mn_n,S(ke)(-T—) (m )
e
2002k 32 2 2 N2 o 8
AT VIOT ) 5+ Q™ 2] - 2k ey IR

It is of interest to compare the results of this section to the
corresponding coefficients for the circulating electrons.[l] The radial
or (r,r) component of the circulating electron diffusion coefficient
is approximately

2
c g ) X 32

[ argikg3s(ky) (—

dS> T (r) = -ﬂ(
" Wkélwl or2

b

evaluated for typical resonant circulating electron velocity Ve » and
using the model spectrum of Eq. (32). This is to be compared to the

resonant trapped electron diffusion coefficient, taking
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(see Sec. IV) in Eq. (43), which yields (d;r/dﬁ’rr) ~ (A/ﬂKXe) . This
result is just the ratio of the spatial widths of the wave-particle
resonances for the two processes, and, for typical k ~ 1/2 , is of order
(Ln/LS)(TiMi/Teme)l/z, typically greater than one. Computing the ratio
of poloidal diffusion coefficients in a similar manner,
(dg@/dg’e@) X (A/Kxe)[wké/xe]z (1/4m) >> 1 . This is a much larger
ratio, since the trapped electron poloidal diffusion coefficient is
dominated by the oscillations in the long (~xi) eigenfunction tail. For
the same reason, the dominant trapped electron diffusion is poloidal,

with (a499/dXT) » (x;/xp)? .

IV. NONADIABATIC TRAPPED ELECTRON DENSITY PERTURBATION

An approximate solution for the nonadiabatic response g may now

n
be found. Consider first the role of radial diffusion. Formally,

g, may be written as the orbit integral of Eq. (26)

N

® . 00,1750
g (x) = - fo dt exp[i(w - nwp + id] ]T]Eiz: (w f w*n) + by ]
<Y ggplx-pa+ w(D]{ 25 [x - pa+ (0P . (45)
P

Here, Egs. (27) and (31) have been used, and the slow radial wvariation
of . fO s Wkp s Wpn , and bﬁ has been neglected. The radial orbit
perturbation 6x(t) is the random part of the banana center radial
position a time T before the orbit integral endpoint at t ,

corresponding to position x . Thus, the orbit is xo(t'- ) = x + Sx(r)
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and 6x(1=0) = 0 . The ensemble average over suech radial perturbations
is taken to satisfy <[6x(r)]2> = 2pFF 7 , wWhere d*rt = Drr(bz/arz) .

1/2
Because of the factor exp(—dger) , o&x < xg = (2Drrrg) / may be

assumed in performing the integral in Eq. (45). Since % n(x) develops

fast oscillations in x for |x] > Xp , the main contribution to
the p sum comes from |p| < Py = (V2 xp/A) , as in App. B. Note also
that 8, 1s computed in order to find the charge density response
pnm[énm(x), x] which, for typical m , is localized to the region

Ix] < AL Xp o Thus, &, (x - pA+ 8x) x &, (x+ 6) in ‘the p sum,

nm<

since |pA] S Xq . The fact that xg <KL g has also been used, so
that pA only shifts the argument of ®n in a region where the

eigenfunction varies slowly. The p sum then becomes

) JO{-%; [x - pA+ &x()] }
IP1<pg

since pgp >> 1 for typical numbers, Jo undergoes rapid oscillations for
Pl > py , and the sum can be approximated as

+o0
L Jof (Z—AK )x - pA+ &x()] } =

=== 00

1

(See Ref. 7.) Finally, note that <on(x + 8x)> gy = 8pn(X) since,

radial diffusion of the electron orbits. Physically, poloidal diffusion
decorrelates the particle from the wave before it can radially diffuse

far enough to see significant variation in Qnm .
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To proceed further, consider in more detail the wave-particle
resonance condition nuwy = w . From previous formulas, this may be

written as

nq PeVe v 2 o kgPaVe Ep _
BEE) 2 () = we e
or
Ep R I 1
= = — . (46b)
Fo (Ln ) T+ (k@ps)z]}

Here, Ep 1is the resonant particle energy, and Eg is the thermal
energy (mvg/z) . Takiﬁg L, ~r , Eq. (46) implies Ep ~ (1/¢)
~{Eo/[l + (keps)z]} which is typically a few times the thermal energy, in
the tail of the trapped electron distribution. Then, provided resonance
broadening is not so large as to make thermal electrons resonant, the
broadening can be treated as a small perturbation of the linear
response. This follows since the broadened resonance function has wunit
area, and includes a greater region of the distribution tail only, which
is nearly constant in height.

Thus, to justify a perturbative treatment of the nonlinear
response, typical turbulence levels (e@/Te) are shown to be smaller
than the critical level (eQ/Tejc required to broaden the resonance to
thermal energy. From Egqs. (22), (26) and (46), the resonance is
broadened to thermal energy when dge X wge(l - &) & Substituting for

the resonant value of dge from Eq. (43) then yields



-28-

P )[2(1 - g) L 1/2 (pglk)

ey _ f Ls \
() ( (Ln T Gogp?]

T - nl/4 . (47)
¢ n S(k@>

Here n = (Te/Ti] and S(kg) has been written as g(k@)/(Ak@)2 R
where §(ke) is of order wunity, and Akg is the kg width of the
spectrum; typically, (Akg)p, ~1 . Since experimentally determined
levels of (e®/T) are somewhat less than (pi/Ln) , (e¢/T) < (e¢/T)c

unless

-1 L . 2
k < [(1 - e2nt/2] ()1 + (keee?] (48)
]

which Dbecomes « < 10—1 in practice. Consequently, resonance broadening
is potentially significant only for a small region of K space. This

region is so small, and the contribution to pT

nn  Small by another

factor of «k as well (see next section), that the broadening is treated
as everywhere small in the present computation.

Returning now to the computation of g, » Eq. (28) becomes

efy (0 = wxpy) ~ ib
gn = (T

n .
e ~ (w=-mnwp) + idn] <exp(ingf) (e, B2y

As just shown, this response is nonresonant for E ~ EO , resonant for
E ~ (l/e)Eo , and nonlinearly  these responses  are independent,
Furthermore, the effects of both radial and poloidal diffusion are very
small. Thus, 8, will be evaluated in the resonant (gg) limit, and in

the nonresonant (ggR) limit, treating d;, and b, as small
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perturbations. These two independent responses are then combined into a

"patched" response approximately valid for all energies.

The resonant response 1is evaluated with E = Ep » 0= nw, , and

superscript R on quantities evaluated at E = ER . Thus,

R

ef W~ We, — 1ib
0 n n ) <exp(ingB) &, (0, B>y -

. 2R
e 1dn

The resonant Green’s function is

R
Gn—n’

The  principal wvalue part, odd in ké , is annihilated

the kg integral. The delta function is

S(w - n,mD) =
8(kg) N [8(ky - E)/+ S(kg + k)] | B ’
E b
| (Peve/Ly) = (peveFp/REy)I 218 w(R) (pg)2 oR
where

Ry = L (—=-1) .

Note "that Eq. (46) implies kR = kg « With these results, and using

Eq. (43),

by

(49)



ool ) (5) gy [F (e
(uW - )
2, 2k 2 kg 52
x {[.§ (-7Y ) +'_—75F—— ]s - 28 ;;f } . (50)

R

n can be obtained from this result by retaining the

The quantity g
dominant poloidal diffusion terms only.

The coefficient bE is evaluated by rewriting Eq. (44) as

cdy 2 o g
R 0 , S ,
() = - (=) %y _foo dkg (_—Ikél ) s(kp)
vy - Vg ngq 2 2k 2 2s 2 87 _ ) 52
x(ﬁ){(_r—) [(T)T+(uwké) 2—1;] 2(kg) S_ar_z}
Here vp = (peve/R)(vR/veJZ s vq E (peve/Ln) and

Vq = {vd/[l + (keps)z]} . In this form, it is  apparent that
bR(r) = 0, since (ky/1kgl) is odd in kj , while the rest of the
integrand 1is even in ké . Thus, resonant particles make no
contribution to the renormalization of the background distribution.

The nonresonant response ggR is computed for thermal energies
much less than the resonant energy (the number of particles with larger
energy is exponentially small). From Eq.i(46), (an/w) evaluated at
thermal energy is approximately e[l + (k@ps)z] << 1 . The nonresonant
nonlinear coefficients are consequently computed in the wy + 0 limit,

denoted by superscript NR . The corresponding nonresonant response is
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efo (w - Wep " ibgR]

] <exp(ingB) & (a,B)>, .
e w + ing " b

Expanding this expression in the small quantities (bgR/m] - and (ng/w)

yields, to first order,

ot o 14MR ;pNR
A (20 -T2 - ) - () Kexp(ine®) ay(0 B>y -
e

‘ (51)

Egs. (50) and (51) can be '"patched" into a single formula valid for all
energies, and simple enough to make the calculation of the trapped

electron charge density.tractable. This formula is

- efo w - w*n . ng (l)*n ibgR
&n 7 ) L -0 - ) - —— ]
e w-nwp+ i(E/Ep)d]
x <exp(inqB)® (a,B)>, - (52)

In the nonresonant limit, taking E << Ep , the factor (E/ER) allows
dﬁ to be dropped from the denominator of the first term on the
right-hand side of Eq. (52), and dropping nw, as well, Eq. (51) for
ggR is recévered. When E = Ep , 0= nwy , and the first term 1is of
order (w/dﬁ) , while the others are order (dﬁ/w) , two orders smaller.
The other terms can thus be neglected, and the formula for g% is

recovered. At intermediate energies, the factor (E/ER) gives a smooth

interpolation of the response., Note that Eq. (52) is in sharp contrast
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to the nonlinear circulating electron response[l], where the resonance
is at thermal energies and broad enough to include the bulk of the
electrons.

The physical meaning of the various  terms in g, 1is
straightforward to interpret. Thus, the first term on the right-hand
side of Eq. (52) represents the resonance between a particle of
energy E and the test wave labelled by ke and Q = w(ke) . This

' resonance 1s broadened by diffusion due to background waves, labelled

R

n » Vvia the wave-particle resonance

by kg in the integral for d
w = n'wD . The coefficients ng and bgR involve contributions from
resonances in the denominator (w - w’ - n’wy) in the integral over
background waves., The resonances are at the roots of a cubic equation

in ké\, approximately solved by expanding in € . Two roots occur for

w

R

w D> n’wD and kopg = képs ~1 . The third root occurs at
W -n'wD >> w , and kgpg ® 1 éps ~ (1/¢) . These roots represent
nonlinear Landau damping. Thus, the first two roots occur when the test
wave  beats with a background wave w” , and the beat wave 1is 1in
resonance with the particle. The third root is the same process, except
that the beating causes a very small shift in the test wave frequency.
Ihe third root 1is suppressed, since typical wave spectra are in the
range lképsl <3.

The nonadiabatic trapped electron charge density, pT

om @ ¢an now be

computed. From Eq. (30)

oln = mge [T5E [ a3y explistn - no) gy (53)

th

where the B integral with exp(ifm) projects out the m~" component
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of Pg . To carry out the velocity integral, g,(x) must be calculated

in further detail. Thus, ng and bER are evaluated wusing the

identity

( = oo ) = (ot )+ ( - ) s

7’ 4
w w + n wD

resulting in

2
nae
T _ 0 T dg 3 .
P = g J_ 7y [ € exe[istn - ma) JEp(D)
(0~ wy) cdy 2 4o
( I + (__0 ) f_w dky IkplS(kp)

[w - nop + i(E/ER)dﬁ] B

-

2 2 2 2
1 N2 0 - Eq- _2- -2-5 , —1—
= {2Ckp) Sl (£ ) § (5 +wh) 5215}
(w - m*nr) w - w- (w*n, - mkn) .
< (o = n’ uwp) w = o + 'y ] ) <exp(ing®) o> 4 -

The velocity integrals can be evaluated using the relation

-1/2

~

1/2
d3v = Zﬂ(-g ) / VdedKz[Kz - sinZB/Z]

valid for an axisymmetric system.[7] The corresponding limits of

integration  are 0 to » for v and (KO)Z to 1 for K% , Where

Kg = sin(B/2) . An additional factor of two is included to count
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electrons with both positive and negative parallel velocities. Using a

-1
Maxwellian equilibrium fO(X) = (ﬂ3/2V2) exp(~E/EO) then yields

2 , -1/2
oL (e J1/2 a8 (b al[ - stnle2] 1/
nm Te 2 - 2m |<2
0
. 52 .
x exp[iB(m - nq)](LO + Ll-;—i ) <exp(ingB)e,(a,B)>}, - (54)
X
Here
ey \° 1
Ly = Aj(w- wag) - (—= ) [ dkgikgis(ky —
B )
(B2 2 (2] 4 L (i P - g
r 3 V74 21+ kg n°’73
+ [(w - w - (Wenr - w*n>]A2} S, . (55)
and
cd 2
L o= (=2 ) [ dkgikpi3s(ky 28
B o2
{0 = wep)Ag + [(0 = w) = (wipr = weg) JA9} (56)
The functions Al , A2 and AB are given by

1/2
A = [—2(y1)2/m][1 +y12(y;)] where y; = {w/[nwp - i(EO/ER)dE]} ,

Z 1is the plasma  dispersion  function, and nED = (nwDEO/E) ,
_ \1/2
[2(y2)2/(w’ - w1+ ¥92(y9) ] , where vy = (v - w/n'mD) , and
_ \1/2 .
(w/n"%p) . Again, the

>
w
i

_‘[-Z(Y3)2/w'][1 + Y3Z(y3)] where y3
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physical meaning of the wvarious terms in pgm is clear,

with Al corresponding to the diffusively broadened 1linear response,
and ~A2 and A5 to the nonlinear Landau resonances.

Finally, pT must be expressed as an operator applied to @éﬁ) .

nm

Using Eqs. (27) “and (31), the results of App. A, and defining

Con = <exp[iB(m - nq)]>b directly leads to

2 1
1/2, nge . 52
o2n (pn(x),x) = (-g (== ax?c  (Lg + L = )
e 0 ox
oo :
* . (57)
x L Opp(x - PGy o

p_

V. EIGENMODE EQUATION AND DISPERSION RELATION
The equation for the radial structure of the eigenmode is the

quasi-neutral limit of Poisson’s equation, which has the form

T c nge’ I
Pam [%5 8o (%) ] + oy [x, 800 ] - T o (%) + pnm[x’q)nm(x)]~ A
e
(58)
[ -
Here, pgm is given by Eq. (57), the adiabatic electrons,

[—noezénm(x)/Te] , and the ions p%m[x,énm(x)] .

I

am @ the result found by Diamond and Rosenbluth[4], including

For op
the nonlinear effect of ion-Compton scattering, is taken. This response

is appropriate to the present calculation which assumes eigenmodes of

the Pearlstein~-Berk form, and is given by
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n,e 2 2 Wy ‘
() [p2 2+ (Z )+ =2 = 1o + up(0) ] o)

e ax2 Xg w

2
Here Xg = 2(st/kecs] ,» where c_. is the sound speed, and Qne(0) -

S

the nonlinear part of the ion response, is given by Eqs. (34d) and (51)
of Ref, 4.

The resulting eigenmode equation is

1/2 .1 2

(377 1) ada (g + 1 5 ) g On(% = PA)Coyp n + Opp()
1 (0 (52 - )] 0
.1 [1+;1;2:z)2] } {kep)2( L) (eq;?iszi 2
< J gl seep e - i (5, ()] oo
=0 =z Z@®e (x) = 0 , (59)

~

where & 1is the eigenmode operator. Here an(o) has been evaluated
using the model spectrum of Eq. (32), ; 1is the ion gyro-frequency,
Wey; 1s the ion drift frequency, neglected here for Ty < Te

w' = w+ow o, wl") = w(k%’)) and E, 1s an exponential function.[lg]
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Except for the trapped electron term, the eigenmode equation is
obviously self-adjoint. To see that the trapped electron term is also

self-adjoint, note that for an arbitrary function Y(x)

-+

00 +m
[ dx p®pg[x: 0y (0] = [ dx g3y 2

A

where the small «k approximation has been used. Changing variables

from x to x* = (x ~ pA) and the summation index from ) to p’ = -p

then yields

[ dx p@) gy [%,00n(x)] = ] [ ax 9(x - pb)
P

ZMX-pM]

2
x Jo = =)

<I>nm(X)JO( A

= [dx o (el [x,0(x)]

which proves self-adjointness. The eigenmode equation can thus be
solved by a variational principle.[zo] An appropriate quadratic form,
v(a) = V(¢,¢) dis then constructed such that. for the trial function
bym(asx) (3V/3a) = 0 determines a = apy , and thus the eigenfunction
& n(x) = ¢nm(a0,x) . The dispersion relation becomes V(ao) = 0 , which
determines the eigenvalue w .

By inspection of Eq. (59) an appropriate quadratic form is

40
[ dx o(a,x) 2@)eax) o
v(a) = — ( e2 ) . (60)
[ ax [¢(a,x)1? nge

)om(x = PMJI, [—ZA—K(x -],
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Here the numerator is itself variational, and the denominator, which
does mnot change this property, is added as a convenient hormalization
factor. Anticipating an eigenmode of Pearlstein~Berk form, the trial
function ¢(a,x) = eXP(—aXZ/Z) is chosen. The integrals in Eq. (60) are

then carried out, resulting in

[1+ (kgpg)?]. (kgog)? .  edyey 2

V(a) = i{ 20Lu)*n w . Ti )
, k.’e , " " 2 o' 2 apg 1
< S alsep v (8 ) Bl T -
ax
S
Wy
- sTa) = (2= 1)+ (kgee)? (61)

where ST(a) is given by Eq. (Cl13) Taking (93V/da) , the eigenmode

equation is

1 3sT(a)
—_ + = —— . (62)
(3 () - B2 |

To zeroeth order in (e)l/2 , Eq. (62) thus yields a = (i/xsps) =iy,
which gives the familiar ©Pearlstein-Berk mode structure. For
simplicity, the small trapped electron modification of the eigenmode is
neglected here, Since the . eigenvalue, which determines marginal
stability, dis dinsensitive to the eigenmode structure[zol, this is a

reasonable approximation.




—-30-

Thus, setting a = iy in V(a) yields the dispersion relation

[1+ (kgog)?] . (kgpg)?.  edp2; 2 k¢
. J‘ S O 1 ’ @ ’
g H) (S el s
.2 . 2
no 2 no 2 lup i1up
W (S ) B[S )+
. Wy
- ST(a=l]J,) - (—-w—n _1] + (keps)z = 0 >

(63)

where xgpg = (1/p) , valid in the Pearlstein-Berk limit, has been wused.

The first two terms in Eq. (63) correspond to the nonlinear ion response

and the third to linear shear damping. The fourth term contains
linear and nonlinear trapped electron effects.

correspond to the basic drift wave oscillation.

both

The last two terms

Setting w vreal and taking the imaginary part of the dispersion

relation yields the marginal stability condition

k@p 2 e@oﬂ- 2 , k.é , N 1 2 " 2
(e =) (=) fdk@‘w,‘S(kG)) (2" 5 [( X7
+ upg‘ - Im $T(iw) = O .

(64)

To compute the consequences of this condition the ion and trapped

{
electron terms in Eq. (64) must be simplified.

The ion term is treated as in Ref. 4. Thus, noting that E

is

sharply peaked at «" = 0 , the rest of the ké integrand is expanded

’

about the point o = -w . With the change of wvariable x

the ion term in Eq. (64) is easily found to be

(~u"/wa)
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, 2 4
(kgpg)® |, o2y o 2 dtkgl 55 )
) 9 (88 ,
7 T, i) Tdufdkgl ‘g

where A = f+: dxx4E2(x2) . To the exﬁent that w, , being weakly
dependent on Dr , may be treated as a parameter rather than as a moment
of S(kO) , this result allows the dispersion relation to be treated as
a differential rather than integral equation for S(k@) .

Only the linear part of the trapped eleétron term 1is retained,
since, as shown in Sec. IV, the nonlinear terms are small corrections to
the linear response. For the same reason, dE is mneglected in the
argument of A, , and from Eq. (C13)

1/2

~msT(ip) » Im(z—:“] (1)1 240 [

(L)—LL)*n

x (

Using the simplified dion and trapped electron terms, replacing
(ds/dw) by (dS/dk@)(dw/dke)_l , and noting  (38/3W)|g._, = -(935/03w)
for S even in w , Eq. (64) may be rewritten as an expression for

\(dS/dke) at marginal stability

) 2
ds - 2,_( _1_ )4 1 Ti )2 ( PsCs )2 [1 - (k@ps) ]
dk A k & Qs L

0 o kgl ednfy n [1 + (keps)z]

4



2 1/2
H0s 5 = In( Ze0 Yz 2 2 73
(k@DS) m ACiy)
1/2 1/2
x (— )i+ (=) ""2[(=)""11}. - (65
) ntp )

With this result, the radial diffusion coefficient trapped electrons can

be computed. It follows straightforwardly that:

2
T P
S(b) = —— S5 1 (66)
T a4 L2 ‘
where

2 ,
[ = [Pmax gy ELEEE;Z {Im [Eg%BJI/ZA(i) Kan[1/81w)1/2]
b 1+
1/2 1/2
) ) 2l D 1 e )
D D

and b = kgpg. Finally, the trapped electron diffusion coefficient is:

2 2
L (PsCsy oy o /2 T3
aaray) = (50 oy fo- Yt oy n
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VI. DISCUSSION

The role of trapped electron dynamics in a simple model of drift
wave turbulence in toroidal geometry has been studied. The nonlinear
modifications of the Wave—particle resonance have been calculated by
renormalizing the gyro-phase and bounce averaged trapped electron
response. Poloid?l diffusion was found to be the dominant nonlinear
effect, but, for turbulence levels and other parameters typical of
current experiments, this was found to make only a small perturbation in
the linear response. The saturated spectrum and diffusion coefficient
were thus calculated including only linear trapped electron effects.

While wuse of parameters different than those taken in Sec. V. may
somewhat enhance trapped electron destabilization, changes in the
physical model seem to be required for large enhancement. The present
work has been limited to the case where there is no electron temperature
gradient, since that is the limit in which nonlinear ion and circulating
electron responses have previously been studied. It is well knozn,
however[7], that such gradients can greatly enhance the linear trapped
electron destabilization. This effect is especially strong for values
of (keps) less than one. Since, however, temperature gradients
seriously alter the mode structure, the present calculations would have
to be reconsidered.

N

Within this context, trapped electron clumps provide a new source
of drift-frequency turbulence.[za] Clump calculations involve a two-
point kinetic theory where the spectrum may be calculated directly,
without an assumed model as in the present one~-point theory. Since

clumps create non-mode type fluctuations, such a theory has the

additional advantage of offering a possible explanation of the observed
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sizable frequency width of the turbulence at fixed wvalues of the
wavelength. The clump theory also exploits the form of the nonlinear
one-point response calculated here. Thus, the one point response,
including the linear part only of the trapped electron response, is used
to comnstruct the two~point correlations from incoherent clump sources.
Further, because of enhanced tréﬁsport effects resulting from correlated

diffusion, realistic radial electron energy fluxes can be obtained.
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Appendix A
In this appendix the relation between the orbital harmonic of the
Hamiltonian, H , and the spatial harmonic_of the potential, ¢, , is

derived. By definition,

— exp(~ing) &(0,¢,a) , (ALD)
2m

2T do 2T d¢
efo 2m fo

o

where the m = 0 component is taken, and & has been gyro-averaged and
is evaluated at the guiding center position. The relation desired is
found by transforming variables from (0,¢) to (B,Z) . Following
Ref. 14 this is done in the limit of large aspect ratio, keeping terms
to order 81/2 , and neglecting corrections of order § = (pp/Ln) K1,
where pp is the poloidal gyro-radius. The  Jacobian of the

transformation is thus computed from the relations [see Egs. (41) and

(47) of Ref. 14]

¢ = z- a8 . (42)
and
where

k sing = sin(B/2) , (A4)
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and F(g,x) 1is the elliptic integral of the first kind.[25]  From

Egs. (21) and (A4), (36/3z) = 0 , so the Jacobian is

= 3_—(@,4))_ = E ﬁ. = m 1
4 = |8(B,;) IBB 3E [4K(K)] ( KOCOS E ) s (A5)

where ¢ 1s the sign of the parallel velocity, o = sgn(y-§/|§l) . To

account for the bounce motion, the B integral is of the form
2 . f dB = § dg .
o

Here the bounce-point angle B, satisfies sin(B./2) = xk , and the sum

over o = (~1,1) corresponds to the reversal of motion in R at the

2
bounce points. For B fixed, Eq. (A2) implies the ¢ integral is f "
. 0
dz . Thus, transforming (O,@) to (B,Z) , H, becomes
: 8 2w - -
B - e y [PcdB ATdrg m ]exp[ in(z - q8) |(a,8,8) (A6)
n 2. 2m ‘0 2m “4KR(k) 9 9 1/2
Y c [K ~ sin (3/2)]

where Egs. (A2), (A4), and (A5) have been used.

Equation (A6) must be expressed in terms of the bounce average to
obtain Eq. (27). The bounce average of any function £(RB) is defined

as

KE(BY>y = [%] : (A7)

The average is evaluated explicitly, using
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/2

’ b

b= () @B [&- sin?(g/2) ]

valid to lowest order in € and § . Then, changing variables from B

to B’ such that k sinp’ = sin(B/2) ,

_ Be dg £(B)
KE(B)>, = ) fs . 77 B (A8)
o c [Kz - 31n2(B/2)]

27
Noting that fO (dz/2w)exp(~ing) ®( a,B,Z) = @n(a,B) s

Hy = exp<exp(ingB)&,(a,B)>y (A9)

immediately follows from Egqs. (A6) and (A8). Expanding &

n in poloidal

harmonics

&, = ) @, exp(-ifm). (A10)
m

and substituting in Eq. (A9) then yields Eq. (27).
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Appendix B
An estimate of the sum of the p # 0 terms in the expression for
dﬁr [Eq. (33)] is made in this appendix. This sum is shown to be small
compared to the p=20 term retained in ‘Sec. III. For other
coefficients, such as dge » very similar estimates justify the neglect
of the p # 0 terms.

Writing dI¥ = -DIT(3%/3r2) , Eq. (33) implies

cd 2 =00 400 Ik,|3
0 , © , 2Kx b:4
DIT = (—B_ ) J_dkp [ ax 5 Cnen’8(k) Jo (= JE( =)
ko kb
e 2,2
i A . - pA
% z JOE%F(X - pA)] exp(-ig%r—— ] exp(~-iuxpd) H[VEET—B— ) .
The p# 0 contribution to Dgr is denoted as AD and, for
convenience, is rewritten as
cd 2 -}-o0 e
—_ O ’ ’ 3 » - -
AD = [_B_ ) [ odkg kgl® Gy Sk g ] I, (B2)
p:—oo
where
4 A
I, = [ = /G&pE(—— JH £, (B3)
p Wkl " Wkl Wk'
- © €] C]
2kx 2k iup2 A% .
,/(x?p) = JO [ A )JO [T(X - P A) ]EXP ( 3 eXp( —1UxXp A) Y ( B4 )

(B1)



—l G
and the prime on the summation indicates p = 0 is excluded.

To compute AD , first consider the effect of the H functions on

IP , for H approximated by a step function, as in Sec. III. For
pA > 0 , the combined restrictions |x| < W (W will be written for W,

0
wherever possible in  this appendix) and |1x = pAl < W dmply

~-W+ pA<x< W, while for pA< 0 the result is -W< x < W+ pA .
Furthermore, |pA| < 2W 1is required, since the first step function
restricts |x| < W, so that for |pA| > 2W , |x - pAl > W would result,

violating the restriction of the second one. Thus, Eq. (B3) implies
[2w/a] W -1 WpA

)1 = [ ax Al + ) [ dax Ax,p) , (B5)
p’ F p=1 ~WPA p=—[2W/A] =W

where [2W/A] dis the lérgest integer less than (2W/A) . From Eq. (B&4)

(=x,-p) = (x,p) so that (B5) becomes
[ZW/A]
LI, =2 ) I, (B6)
P =1

where now

W

dx 2kx 2k
o= [ S5 ZZ)0ES (x - e ] exp(
P Liitpa ¥ A A

iup2 A2
2

) exp(—iuxpAd) . (B7)
The p sum is further restricted to |p| < (/fXT/A) = pgy - For
larger values of |[p]| , contributions to AD are small due to
oscillations in p from the term (iupzAz/Z) , which dominates the
exponent. Then, neglecting a small correction of order
1/2 L
[(1/2)(Ln/LS)(Ti/Te)] , and defining u = (x/W) , Egqs. (B6) and (B7)

imply
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Pp

A A

O
[
o

p=1 -1

(B8)

The u integral in Eq. (B8) is evaluated by approximating the integrand
in the (2«Wu/A) >> 1 limit. This limit is equivalent to
u >> (A/2kW) =~ (l/K)(Ln/LS](Ti/Te) ; for typical parameters, this
excludes only the small region |u]| < (1/160) , where the integrand is

order unity. Thus the Bessel functions are approximated by[26]

1/2

2 A NU/2, 4 1 26w T
= ((——) ( ) X cos( A A )cos(-—z— u - 2kp b

2kW |u - (pA/W)|

Here (pA/W) < (V2 xgp/W) ~ (2Ln/LS)1/2 K1, so(u-psMnl/2 54l/2

and the cosines are expanded as

cos | 2 klHu —% )cos(z—zwu - 2|<p,—£ )
= %—[COS( 4 i -2xp --g ] + cos(ZKp)] . (B10)

The first term on the right-hand side of Eq. (B10) contributes integrals

of the form

n( 4 kWa )

1 exp(—1iuWupA) si A
-Il du u { 4kWa J}
A

’

cos (

: 242 1
~ 2 g exp[l(-% JpA i du JO( 2 KWu ) JO[ZKW (u _ PA ) Jexp(~1 Hupa) .
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while the second term makes contributions of the form

1 ~uWupA
Il du[eXP( E up )]

these integrals are multiplied by other factors of equal magnitude.
since 4k(xp/8)% >> py when  « >> (1/2/2) (L, /1y )% (1;/1 )2 ~ 1/20
consistent with the approximations of Secs. III and IV, the sine and
cosine of (4xWu/A) vary rapidly compared to the sine and cosine of
(uWupA) .  Furthermore, (A/2xW) << 1 , so that the u integrals with
the sine and cosine (4xWu/A) factors may be neglected. Then g,IP may be
evaluated by retaining only the cos(2«p) -term in Eq. (B10), and

evaluating the u  integral with Eq. (B9) and the self-consistent

restriction |u} > (A/2kW) . The result is

~
i
R

28 4 PO o 1/2

2
( T ) Y cos(2xp)cos( £ pZAZ) x{Ci[2a (-—? ) pl - cif Aziu )} . (Bl

p=1 2 T

To estimate AD , Eq. (B11) is evaluated taking
cos[(u/Z)pzAz] ~1 , since p < py , énd neglecting Ci[Za(Te/Ti)l/zp] s
since, for Za(Te/Ti)l/z ~ (Te/Ti)l/z >> Azu/ZK , it oscillates about
Zero as p varies.[18] Then, for typical wvalues Pp 6, K= 1/2 ,
(A/x3) ~ 1/20 ,

Po

Pgl cos(p)Ci(lgg ) ~ 0.6




~5]—

and

(1.2)A]

AD dkglkgl 36, S(ky) | —

Q
—~

|
—
—

This is to be compared to the p =0 contribution to DI* . From

Eq. (43) it thus follows that

AD 1.2A 1
( B;; ) o~ KW )[Z(A/KW)] ~ 0.2, (B12)
n

which is small enough to justify the neglect of the p # 0 terms in the
evaluation of dE . Exactly parallel estimates show contributions of

the same order from the p # O terms in the other nonlinear coefficients.

N\
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Appendix C
From Egs. (59) and (60), ST(a) , which is evaluated din this

appendix, is, in the small « approximation,

1/2 *° —ax? § 1
) = (5207 ] axem( 55 ) [ ads( 4F)
2 - p% 2
(Ly + 1y & ) g exp [~ "’1("—2?)—]JO[TK (x -p8)] .  (CL)

With the aid of Egqs. (55) and (56) each term in ST(a) corresponding to
the terms in Ly and L; will now be evaluated.

As in App. B, the factor exp(—apzAZ/Z) in Eq. (Cl) restricts the p
sum to values |[p] < [(Z/a)l/z(l/A)] = p, . Under this restriction,
exp(—ap2A2/2) nay be roughly approximated by unity. The contributions

to ST(a) from the LO term are then proportional to

+co0 1 1
y im dx exp(—axz)‘é dKzJO(-%EE ) exp(aphx) JOE%F(X - pA) ] {1/k} .
IpI<p,
(C2)

Because of the .factor exp(—axz] , the =x integral is approximately
restricted to [x] < (l/al/z) » which allows the rough approximation
'eXp(-aXZ) ~1 . Noting that the integrand in Eq. (C2) is symmetric
under (x,p) + (=x,-p) , the p =0 contribution to Eq. (C2) is

approximately




~53-
1 (1/7a) 2

s fede [ ax [5o(2EN] )
0 0

Consider then the integral

1 (1/Va) 2
R, = 2 [«dc [  dx [JO[ZTKX )] . (c3)
0 0

The '« integral is tabulated[23], yielding

l/JE 2x 2
Ry = | dx {[Jo('jg )] - J-1('7§ )Jl('jy )} .

0

To compute the x  integral, the Bessel functions are evaluated for
(x/A) >> 1 . Since the integrand is of order 1 for (x/A) << 1 , while
A <L (2/Y/3) , self-consistent with the result a~1/2 = xp , this
approximation is good to zeroeth order' in (A/xT) , restricting x > A in
the =x integral. Asymptotically, the integrand is approximately (A/mx)

(see Ref. 26), so that

A 1
R N — — . C
1 “_,,Q,n ( A]/Zi-] (C4)
Consider mnext the integral
1/Va
1 2
Ry = 2 [ac [ ax [JO(Z_AK’E )] (C5)

0

required to compute the other p = 0 contribution to (C2). 1In this case,

the Kk integral cannot be done exactly. Then, reversing the order of
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k and x integration, the Bessel function is approximated for
(2kx/A) >> 1 . The limits of integration thus become (A/2x) < k< 1 ,
while (A/2) < x < (1/Ya) , since « < 1 ; because. (1//a) ~ Xp >> A2 an
error of order AMa << 1 results. Then
[JO[ZKX/A)]Z ~ (A)2mkx) [1 + sin(4kx/A) ] , and the sine term is neglected
because of its fast oscillations din the x  integral. These

approximations lead straightforwardly to

Ry =~ (-f% (5= )] - (C6)

The p # 0 contributions to Eq. (C2) again involve two integrals,
the first of which is
1 1 2 . 1//a 2Kx 2K 2
Ry = E-f dk z f /_QX JO( —zr-) JOE7;(X - pA)]exp(-ax + apr)
0 Ipi<p, 1/72
(¢7)

As in the -evaluation of Ry and Ry » Rgy 1s evaluated taking
exp(—ax2.+ apr) ~ 1 , and the Bessell functions are evaluated for large
‘argument, with error of order (A/a) . The Bessel functions are

approximately

JO(‘ZEE )JOE%F(X -] ~ Z;ix )[sin(-£§§ - 2kp) + cos(2xp) | ,

and, as in Egqs. (B10) and (Bl11), cos(2kp) is the dominant term. With

these approximations,




A T 1
where
Pg
Y sin2p o ( w _1]
p=1 P 2

is taken since p, is typically large enough that use of the infinite
suml23] i adequate; contributions from |p| > P, are oscillatory and
thus small.

Similar approximation of the other p # 0 contributions to Eq. (C2)

yields
1.9 . 1//a

Ry o= 2 f S50 [ ax g 2 )30 [E%x - po) Jenp(-ax? + axpa)
0 " ipi<p, Y73
Pa —

1 1/Va : :
. 28 y dx | dx cos(2kp) . ' (€9)
Toa1 [ME/2] 5 o R

After performing the =x integration, the « ,integral is done by parts,

and

2

L 2A cos(2p) 2 1 . 2K
R, = — E { [zn( ey )] + fA/E/Z D s1n(2Kp)[£n(-K7: )] dK} .

(C10)

Because of the oscillation of sin(2kp) in the « integral, the surface

term is dominant, and, using
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Pa
) cos(2p) = sin(p, + l)sin( ST 1 ) R
p=1
(see Ref. 23)
2 sin(p, + 1)sin(p,)
A 2 a a
Y x5 lgz )] ——mm ] (ein)

results.
The contributions to ST(a) from the Li term are evaluated

starting from

2
—;7 fexp[- 2 (x - 2023 [25 (x - p0)] }

= exp[- g-(x - pA)z]( ala(x -‘pA)Z-l]JOE%g (x - ph) |

+ a(x - pA)(-%§ )Jlf%; (x - pA)]

2
2SR -] - B = -] } ). a1

Then, proceeding as with the Ly terms, and neglecting corrections of

order (Ln/LS)-l/2 , finally yields



1/2, ay 42 ) 2 2sin(py+1)sin(p,)

)]~ [+ sin(1)

2
x (=) fdké[kéls(k’e)wk,e( ’L_q )

X {(w’ = w*n’)AB + [(w' = ‘*’) - (“’*n’ - m’"n)]AZ}

4sin(p +1)sin(p,)
- 2ae 1 a a
(=) (g 00+ STa(D) ]

-

{[m’ - Wp’ )A3

+ [(o=w]) = (g - wg)]a} . (c13)
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