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ABSTRACT
An analytic™ theory of turbulence -in reduced resistive

magnetohydrodynamics is developed and applied to the major diSrUption

in tokamaks. The renormalized equations for a long wavelength'tearih"

instability are derived. The theory predicts two prlnCIPal nonilnear~v
effects: an anomalous £1ux diffu3|v1ty due to nurbulent f‘Uld;

convection in Ohm’s law and a vorticity damping term due to turbuient.

magnetic stresses in the equation of motion. In the final phase of the

disruption, when fine-scale fluid turbulenée has been generated,

detailed consfderatiohs show that anomalous diffusivity has the

dominant effect at long wavelengths.
For a low m tearing mode, the solution‘ of the renormalized

equations during the turbulent phase yields a growth rate analogous to

~ the classical case bub increased by turbulent resistivity:

¢k’v2)3/8 (A)172.  This analytical prediction is in good

o (%,ké2

accord with computational results.




I. INTRODUCTION

Major  disruptions place a serious limitation on tokamak
performanée.1 Hence, it is crucial to develop detailed theoretical and

- computational models of the disruptive instability so that measures to

‘controf disruptions can be developed. - Furthermore, the major

disruption model? based on the nonlinear interaction of tearing modes®

provides an excellent context for the study of strohg’ resistive

magnetohydrodynamic turbulence. In particular, an understanding of the

major tokamak disruptidn from this viewpoint requires a satisfactory
explanation of the effects of fully developed, small-scale, resistive
magnetohydrodynamic turbulence -on | ow-mode~number tearing instabilities -

and other macroscopic phenomena. Many numerical calculations: of.

multipleéhelicity tearihg,interactions2 have been done with thefaim of

- understanding the dynamics -of this process. Effépts such as

resistivity - evolutfon,* toroidicity,® noncircularity of the plasma

cross section,6

has been_Shown that they do not modify the basic dynamicél”mechanism of

the nonlinear interaction of tearing modes. Therefore, in the present
paper  the large aspect ratfo, feduced set  of resistive
magnetohydrodynamic equations.,8 applied to cylindrical geometry will be
considered. ‘The numerical ca]cufations have been done using an initial
value approach, which, by appropriate'choice of theviniﬁial conditions,
permits the separatidn"in time of a séquence of phenomena that
constitute the basic dynamical mechanism of the méjor disruption'model.

They can be summarized as follows.

\.
iy

and diamagneticrotation7 (wg) have been included. It

|
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The initial equilibrium is linearly unstable to the (m=2;n=1) and
(m=8;n=2) resistive tearing modes. Here, m and n are poloidal and
toroidal mode numbers, respectivef?i These modes grow exponentially in

time until the width of their magnetic islands becomes comparable to

the width of the resistive tearing layer. Then the evolution of the

instabilities enters the Rutherford phase® characterized by island

- growth which is linear with time.. This reduction in growth rate is a

consequence of the balance of the |inear magneﬁic drf&ing forces with
nonlinear J X B forces, rather than with inertia. As the m/n = 2/1 and
3/2 magnetic islands grow '!arger, nonlinear‘ coupling through the
(m=5;n=3) mode, which tends to accelerate the growth of the (m=3;n=2)
mbde; occurs; Finally,'théiQ/i and 3/2 islands ovériép, resulting in
the occurrence of stocﬁastic magnetic field lines throughout most of
the plasma volume. As the islands overlap, the rap?d_ ghoﬁtﬁ,.
.characteristfc of disruptive phenomena vbéginé. The sequencé- of
phenomena Iéading to the fiﬁal diéruptive phase is depicted in Fig. 1.
In the phase of rapid growth, three distinct processes can be.
distinguished. In the numerica calculations, these processes can be
separated into sequential phases of the (m=3;n=2) mode behavior by
choosing a very small initial width for this mode (Fig. 1). First,0
following the overlap of the 2/1 and 3/2 magnetic island, the large
currenﬁ gradient that develops in the region between the two isiands
results in a positive A’ _fdr the nonlinearly driven (m=5;n=3)
fluctuation. Here the nonlinear'dfive is a consequence of the dﬁerlap
of the (m=2;n=1) and (m=3;n=2) modes. The resonant mode_éoupling of
the (m=2;n=1) mode with the (m:5;n§3) mode then results in the_hapid,

nonlinear destabilization of the (m=3;n=2) mode. In particular, the




Jx B force resultlng from the beating of the (m=5;n=8) mode with the
(m=2;n=1) mode drives a rapid increase in the kinetic energy of “the
(m=3;n=2) mode. The theoretical” “mode! advanced in Ref. 10 is in good
agreement with the computational results during this phase.

The. nonlinear interaction of the low m mode leads to the
generation of large m turbulence. Following the generation of the
short wavefenéth_flu?d turbulence is a rapid increase in the growth
rate of the (m=3;n=2) mode. This corresponds to the final increase in
Y39 in Fig. 1. Slmultaneously, generation of large m turbufence
proceeds at a rate comparable to the growth rate of this mode. During

this final phase poloidal flux is expelled, result:ng |n a change in

- the self-inductance of the plasma and a negatlve voltage splke The

voltage spike occurs at a rate comparable to the (m=3;n=2) growth rate.:.

The placma behaVIor durlng this phase of the calculation is lnsenSItlve

-to any variation in the collisional resistivity. 1

In this paper, we will focus on the final phase of the ma jor
disruption. Preliminary results of this investigation have been

presented in Ref. 12. The observed genetation of short wavelength

‘turbulence. and the insehsitivity of the dynamics to collisional

resistivity strongly suggest that the (m=3;n=2) mode and voltage spike
growth rates are determined by nonlinear processes. Hence, a
renormal ized theory for the tearing mode response function in reduced
resistive rhagnetohydrodynamics8 is developed. This theory treats the
effect of large m turbulence on low m tearing modes. The pr:nc1pal
result of the theory is the prediction of an anomalous f1ux dlfoSlv;ty
Dé_- %’ kg? <®2>K' Wk” due to the turbulent convection of flux by fluid

motion.  The anomalous diffusivity increases rapidly as  short




wavelength fluid turbulence is generated. The répid' increase of
diffusivity, Dﬁ, correlates well with the onset of insensitivity to the
collisional resistivity. Usin§;'Dﬁ in place of the collisional

resistivity in Ohm’s law yields a nonlinear tearing mode growth rate of

e (T kg <) B (A2, When the <&%> spectrum obtained from the
k _ fAY

numerical calculation is used to calculate n~, the growth rate
prediction is in good agreement with both the (m=3;n=2) growth rate and
voltage spike time scales obSefved in the calculation. In addition to.
the anoma!ous ohmic dlfoSiVlty, the magnetic fluctuations exert a
stress on the flu1d that is manifested as a vort|01ty damping term in
the equatlon of motion. This effect opposes the growth of fIUId
VOPthlty However because the nonlinear growth rate  is larger than.
the vorticity damprng rate, the anomalous ohmic dxffu5|VIty is  the
dominant nonlinear effect

- Several p0|nts of theoretical znterest emerge’fromvthe analysns
First, the turbulence acts as both a destabilizing and stabxlnz:ng
agent. The anomalous ohmic diffusivity, Dﬁ,'trlggers a rapidly growing
tearing instability. In thio case, nonlinear effects enhance a
basically linear instabi!ity.process that extracts magnetic free energy

from the equilibfium. The turbulent vortioity damping, a,, opposes the

- growth of fluid energy but cannot- saturate the nonlinear tearing

process. The simultaneous influence of both hypes_ of processes is
necessary for building a satisfactory model of rapid, disruptive:
behavior.  Second, the predictions of local theory are strongly

modified by magnetic shear, inhomogeneity, and -the presence of mixed

~helicities. SpeCIflcally, because of magnetic shear, the different

orlentatlons of fluctuations IOCaIIZEd at different singular surfaces




transfer

spread  the effects associated with the well-known nonlinear

13,14 of mean square flux to long wavelength. In contrast,

turbulent diffusion of flux appesrs as a local differential operator.

Thus this process — the dominant nonlinear effect in Ohm’s law — has

- significant impact near the ‘singular surface of £the tearing mode.

Finally, because this investigation is concerned with nonstationary,
growing turbulence, a detailed consideratioh of eddy dam'ping15 times is
unnecessaryﬁ It should be noted that, while the fluid turbulence
spectrum is not self-consistently calculated, the theory does treat the
interaction of the tearing mode and the . large m turbulence
self-consistently. The mechanism for generating thé_]arge m turbulence

involves the balance of incoherent emission from lower m modes with

vorticity damping and resistive dissipation. This balance results in-a.

~cascade of energy to large m. We will discuss the details of the

generation mechanism in a future publication.

A first attempt at én analytical theory of this turbulent phase of
the tokamak disruptions was made by D. J. Tetreault.® Severai
important discrepancies exist between the results of ﬁhis-paper and the

results given in Ref. 16. These differences will be ~discussed in -

detail in the following sections.

The remainder of this paper is organized in the following fashion.
In Sec. II the general structure and properties of the renormalized
theory of feduced resistive magnetohydrodynamic turbulence is presented

in the simple context of infinite medium theory. The renormalized

equations are discussed in Sec. III. In Sec. IV the renormalization

procedure s appliéd to the relevant case of multiple-helicity

burbulence in a sheared magnetic field. In Sec. V, the renormalized




_..7_' ,
tearing mode equations are solved and the nonlinear growth rate is
calculated. The comparis¢n with numerical results is made in Sec. VI.

Finally, the conclusions of this Egper are summarized in Sec. VII.




1I. GENERAL STRUCTURE OF THE RENURMALIZED THEORY OF REDUCED RESISTIVE
MAGNETCHYDRODYNAMIC TURBULENCE

Rt

In this séction, the genefal structure and properties of the

renormalized theory of reduced resistive magnetohydrodynamic turbulence

are discussed in the context of determining the long wavelength

response function. Attention is focused on the treatment of symmetries

‘and conservation laws in the renormalized theory.

To facilitate an understanding of the basic nonlinear processes,
the simple case of externally driven turbulence in an infinite,
homogeneous plasma immersed in uniform magnetic field, BO, is

considered first. In this case, for which a local analysis is

permissible, growth results from an imbalance of external forces-and.

dissipation.. In Sec. IV, the basic theory is applied to the more
realistic. and complicatedbsitdation.of multiple-helicity turbulence in
a sheared magnetic field.

‘The reduced resistive magnetohydrodynamic equations are:®

alIf A . => _ _ pg M | -»
L oxn) EEVERCT | w
gl; + (V(p X ﬁ) $U ,J.,VQU = (Vﬁf X n) ® VJ - FK (2)

Equation.(l) is the Ohm’s law, which relates the inductive and
electrostatic parallel electric fields to the current. Equation (2) is
the equation of motion, relating the parallel component of vorticity to

Reynoldé and magnetic stresses.. Here, ¥ is the poloidal flux function

and ® is the velocity stream function. The parallel current J and the




parallel component of the vorticity U are related to the poloidal flux
and velocity stream functions bme = ﬁiw and U = 3%@, respectively.
The unit vector A is parallel to the magnetic field, §O' and z is the

coordinate along fi. The perpendicular velocity and magnetic field are

"given by:

V_L' = 6@ X fi ’ N (3)
and

B /Byl = Vux . - ON

Time is normalized to the poloidal Alfvén time, THp,fand lengths are

normalized to the plasma minor radius a. In this system of units, the
resistivity n is proportional to mg(r)/S, where np(r) is a slowly
Varyingv dimensionless resistivity profile fuqction and S = TR/THp_
[TR = a? /n(0) is the time for resistive diffusion across the plasma],
and W is the collisional viscosity. M oang FK represent the effect of

external forcing that drives the evolution of poloidal flux and

vorticity, respectively.

Fourier-decomposing the poloidal flux and stream  function

perturbations ¥ and ® according to

v " L |
§$% = % g¢ig.exp[|(kl © Xy + k”z)] , o (5)

one obtains the reduced resistive magnetohydrodynamic equations for the

fluctuation with wave vector k:




general, amplitude-dependent.
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Oty

a5 [ (% D] Gyt - bty
k” ) | '
_ _ik“d)k - nkimpk + M | ~ (6)

S—t(kﬁk) + Koy + 1 [y = G x 0] K2 - KDy o

kl‘
= =ik, KBy +§ [k« & x D] ? - KMty + FK ()
K |

> - ' ' :
Here By = Byz, ?J_ and E.L are the vector and wave vector components

perpendicular to gO’ and T<>’f =k + .

The ultimate goal of this investigation is to understand tearing

instability turbulence and disruptive behavior in tokamaks. Because

disruptive behavior is characterized by ‘r'apid' nonlinear growth of long.

wavelength tearing instabilities and short wavelength turbulence, it is

appropriate to consider a-driven, nonstationary turbulent system in-

which external forcing exceeds viscous and resistive démping.‘ The

corresponding situation in ordinary hydrbdynam'ics' would be one of an

- energy cascade driven by long wavelength stirring, which is in turn

increasing exponentially‘ in time. For such a system, the time
dependenée of Py and ¢ can be\taken as exp{yt), where N is, in

Following standard proéedures,ls,l? “the renormalized response
functions for Eqs.v(S) and (7) are derived by iteratively substituting
the fields w;gg):and ¢§r2f),—’driven by the direct beat inter-avctic.)n'of the‘
test mode k with background fluctuation Kk — for tbku and ¢K”- This
procedure extracts the lqweét—order piece of the nonlinear-ityvthat is

phase—coherent with the test fluctuation at wave vector k. The driven

fluctuations ﬂ)lgg) and ¢l£’2’) are determined by:
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(f+nﬁ%w§)+wgﬁ@:sl, L @
(" + uk72) of) + ik wﬁv) =Sy, (9)
where o = + 7y, and | o |
%=[ﬂ~<WXnﬂ@kw—¢wk> o

S = k{2 [k = (K x 0] 0F - 4§) (e - wy) - (11)

*

- Note that, as in the case of nonresonant'quasi—linear‘diffusion, the
rapid growth associated with ~y and ~- eliminates the need for an eddy
damping rate!® for the driven k7 fluctuabion. Straightfoﬁward

man1pu|at|on then ylelds

. Lk” v- k” l \ - . ’ | 4
N _ 2 o K -‘ | |
’ll)l(” = 7 (Sl - | o SQ) ) - ) . v ( 12)
L ! | | -
'Lk” k” . ' )
o) :;,.(52» i—‘£—31>, ) (13)
S R ) | -
where
o=k | | | (14
qﬁ =4 + uk”Q (15)

Lk,,._(1+k”2 W )'“1. | | - (18)
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The propagator L= includes  the effects of resistivity and
viscosity—modified field line bending due to the driven. fluctuation.
Fquation (16) indicates that ‘amall ki driven fluctuations are
dynamically favored and large ki fluctuations are pfoportionate!y
reduced. Furthermore, anticipating later consideration of turbulence
in a sheared magnetic field, where background (E’) turbulent
fluctuations are quasi-localized with small ky and where the region
around the k, = 0 surface of the test mode is of pﬁimary interest, it
_ is assumed that the parallel wave veétor distribution of the forcing
~ functions, Fﬁ and Fﬁ, is éharply peaked around ky = 0. Hence,.
i << 7, o are adopted hereafter, and it then fol ;'ow_s bhat

Lk”
)~ = .
WA 2 s | | - (17)
= ”{TI _
and
Lk” . : )

The renormalized response fluctuation can be simplified by noting
that  the structure of ~ the nonlinear  reduced resistive

magnetohydrddynamic equations implies that one can impose

b = Py | S - (19)
and

by = by - ) @)
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Thus, expressions of the form %,[ﬁi ° (ki % ﬁ)]2¢LK'¢K' vanish
identically. Substituting Eqs. (17) and (18) into Egs. (8) and (7)
while wusing Egs. (19) and (20§§ yields the renormalized reduced

resistive magnetohydrodynamic equations:

5 . . | |
a6 Yk * N1k = ~Thydg - 'ﬂki‘l’k + Fﬁ . | (21)
%kicbk) + oy = -ik Ky + Noy + FE - CN

where the renormalized nonlinearities are given by

2

| G ch_k'
le = Z [k - (k’ X ﬁ)]kaz§ v ﬂ}k
- T()’ ! - i (\(’q -
v 2 , : ‘
0 - ) el oy | N
B k-’l2 T k.% » » (23)
L an ,

L S ]¢k, 2
[k« (& x 0)]* (k% - K7%) L g ;ﬂ by

NQK =

Id

=4 1

. ) |
‘ ‘ (k2 - kr2) !(bkrl
- 2 - 7 % - | (24)
1 e .

The treétment of conservaﬁion laws and 'symmetries in the
renormalized theory is now discuséed.‘ The nonlinear equations for ¥
and ® conserve energy.® This property is easily demonstrated .by
multiplying Eq. (1) by J, and Eq. (2) by &, adding them, and then

integrating over space. This yields the result
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%(EM + EK) + M fd3xJ2 + f d®xU2

= [ d®x (¥ + &) , . | (25)
where |
EM =%f detv};\if)Q | - - »(26)
and
a2 =-%-j_d3x(€7l®)é - (27j

are the magnetic and fluid kinetic energies, respectively.
Eqﬁétibn (25)"states that- total enérgy is conserved up to the
difference between drive by external forcing and dissipation: by
resistivity and viscosity. In deriving Eq. (25), the contributionsvto
ffuid—fieid Venergy exchange resulting from the (6@ X fi) ° VU |
nonlinearity of Eq. (1) and the (3@ X ﬁ) - V4 nonlinearity of Eq. (2)
cancel, while the contribution from the convective nonlinearity,
(6@ X f) » W, of Eq. (2) vanishes independently when integrated.

The energy conservation laws stated in Eq. (25) can.be restated in

the form A = 0, where

A= [ &SI x ) « Vo - o(VU x ) - T

+ (Vo x ) - W . | - (28)
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The closure scheme used to renormalize the reduced

magnetohydrodynamic equations can now be applied to the calculation of

J

A, yielding:

’ —_

% Gogrbog = by k’J( % gJ_K'ﬂ)gl'

% [k- DIF I R e O

—¢k’U_k__<£ | (29)

Here the dr'lven quantlmes 'Ll)(”), cb;gz) JA) and Ulg”) are given by
with T(”, the first, thir'd, and

-

Egs. (17) and (18). Upon exchanging k
eighth terms of the right-hand side of Eq. (29) cancel the fifth,
fourth, — and ninth, | réspecti‘vely,' ‘while the seventh v-.a_h\ishes
identically. The second and sixth terms cancel directly. Thus A = 0,
and the closure scheme conserves energy. It should be noted that the
ﬂ)&g), Jlgg) , and ¢£2) cc‘)nt‘ributions to fdaxJ($© X fi) VU cancel their
cbunter'par-ts in fd3x<b(§’>11! X fi) - -{7).1, while the ¢]g~) contributions to
fd?’xcb(i’}@ X f) e W cancel and the U_ég) term vanishes ‘independently.
Hence, the renormalized theory maintains the separation between
field-fluid energy exchange terms and the contribution from the purely
fluid convective nonlinearity.. Furthermore, it is clear that k k-’
exchange symmetry of '41(2) and ¢(2)-and a consistent treatment of thé
Ohm’s law and the equation of motion are sufficient conditions for:
A=0, while considerations of dynamics and geometry do not enter.
Howevver,' because such consideratiohs may have. considerable impact on
the results and physical predictions of ﬁhe theory, it is worthwhile to

insert the caveat that while it is clearly necessary for a given
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closure scheme to conserve energy, it is also the case that such a

property is  not a particularly discerning diagnostic for

)

renormal ization schemes.

The third, sixth, and ninth terms in the expression for A are the

result of contributions from incoherent emission effects, which appear

in the renormalized spectrum (btwo-point) equations but not in the
renormal i zed one—point equations considered here. Hence, contrary to

the assertions of Ref. 15, it is meaningless to require conservation of

energy in a one-point theory. Also, the fact that Eqs. (21) and (22).

do not conserve energy does not diminish their utilityAfor studying the
effects of turbulence on tearing instabilities.: We will discuss the
renormalized spectrum equations, including incoherent emission effects,
ina future publfcation.

In addition to energy, the behavior of the mean square poloidal

flux is of considerable interest. Multiplying Eq; (1) by ¥ and

integrating over space yields:
190 ¢ &, 3 e e LD
iﬁfd P = —[ xU(Vd x f) * W

- [ d*xu - j‘d?x@,g§m+ [ o

| :fdsxg—n\I!J - g%ar v F'V‘g . | (30)
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Thus, the no'nlinearity ($® X f) * VU conserves mean square flux.
In two dimensions,v where 00/0z = 0, mean square flux is conserved up to
resistive dissipation and external forcing. For strongly turbulent,
low  k,  fluctuations in three  dimensions, - for  which
|(§® X fi) °§7>\I!l > |30/dz], mean square flux can be regarded -as an
approx imate invariant, apaft from forcing and dissipation. 'Using'the
‘closure scheme to calculate the rate of change of rﬁean square f1ux
yields |

o [ i ol e [y (v B e
g0y 2

g el - oy A_ b2 =

Id

=77 [Tz * (k" x #)
[

Thus, the closure scheme is consistent with the conservation 6f mean
square flux by the nonlinearity of Eq. (1). Note that the coherent and
incoherent driven flux terms cancel, while the ¢(2k’ term vanishes

under interchanAge of T(’ and T(”.
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III. DISCUSSION OF THE RENORMALIZED REDUCED RESISTIVE
MAGNETOHYDRODYNAMIC EQUATIONS

1

In  this section, the renormaiizea‘ reduced resistive
magnetohydrodynamic equations are discussed in detail. Attention is
focused on the physical origin, content, and interprétation of the
effects appearing in the renormalized  turbulence theory.  The
implications of the various effects for the dynamics of a tearing
instability in a turbulent magneto4quid is described. |

The renormalized reduced re;istiye manetohydrodynamic equations

are, from Egs. (21) and (22),

Wl + Tyt = nd + ddy + oy + A (31).

W (Kid) + Bk (Ko + medy

= -iky k3 + 29y + FE | | (32)
“where
|y -1 . '
de= L [k ¢ (& x ]2 Lpr —— (83)
L -l.()' : h ,1‘”
k'2 _ k2\) hl)k'l :
* ->; F 2 .L .L
Cy = E [kJ_ ® (k_l. X n)] Lk"( — — (3‘4)
e > A 12 2 2 i2 i l¢£’ i
b = L [k_L - (kg x 0] L (k™ = KT) 2 — » (35)
7 kI
? T v ay]2 2 2 H’k'l» »
ak. = -2; [k_l_ * (kl X n)] Lk”(k_L - k_l. T . (36)
kf
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Equation (31) is the renormalized Ohm’s taw. After implementation of
closure, the (Vo X f) o nonlinearity yiefds two classes of effects,
represented by dy and ck; respe6E?ve|y. The first effect, dy, arises

from the interaction of background fluid turbulence with the

" nonlinearly driven flux wﬁ») The d accounts for the process of

'Pandom convection of magnetic flux by fluid turbulence and appears as

an anomalous ohmlc lefUSlVlty (resistivity) that dissipates magnetic
energy. Thus,\the presence of short waveJength fluid turbulence can
significantly enhance the effective‘ dissipation acting on a long
wavelength magnetic perturbétion. Anticipating later application to

reduced magnetohydrodynamic turbulence in a sﬁeared magnetic field,

- dihy will appear as a diffusion of magnetic flux (D 82 ¢k/8x2)

effect that is espec:ally significant near the [ BO = 0 surface of a
long wavelength tearing lnstabllluy

The second nonlfnear:effect.in Eq. (31), c£¢5, is derived from the
interaction of‘magnetic turbulence with the nonlinearly driven velocity
perturbation associated with ¢§2), and accounts for the back-reaction
of the nonlinear Lorentz force on the evolution bf the poloidal flux.
Notlng that the ¢£2) contribution to Ny, conserves mean square flux, it

fo!lows that c; may be associated with the transfer or cascade of <¢2>

from short to long wavelength. The association of cp with a

conservative transfer process, rather than with a purely dissipative
mechanlsm, is consistent with the observation that, at long wavelengbhs

where [k | < ]kll one has

N [ - |2
[k, = (& x ]2 Ly ek A(37)
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T

while at short wavelengths where ]?[ >

. H’K'lz

[k« i x D] L

e (38)

Thus, the <U?> cascade increases the popufation at larger scales while
depieting it at smaller scales. This cascade reflects the natural
tendency of a system of current and magnetic fluctuations to arrange
itself (by'drfving fluid motion) so that flux acéumulateé at large
scales, where the B - 6J“ driving force is minimal. Hence; the <42
cascade resembles the phenomenonléf magnetfcvisland coa]escencels.

In a reCent‘puincation,lg the <¢2> cascade has been associated

with a negative anomalous resistivity. While Eq. (87) indicates- that

such an interpretation is valid for long wavelengbth fluctuations, it

clearly omits the depletion of small-scale flux that accompanies the

growth of and, in fact, feeds the large scale flux. Hence, the simple,

negative anomalous resistivity misrepresents a basically conservative-

- cascade process as . a dissipation mechanism. Furthermore, in view of

the kIfQ factor in ¢y, Eeprésentation of the cascade of <¥?> with local

diffusion operators is highly dubious. In fact, a result in the next

section, will show that, in the case of magnetohydrodynamic turbulence ,

in a sheared magnetic field, there is no significant contribution

equivalent to ¢, in the renormalized equations.
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Equation (32) is. the renormalized equation of motion. The

nonlinear effect gy is derived from the interaction of magnetic
turbulence with the nonlinearly driven flux and current perturbations
¢§2) and JEZ), which contribute to the ki2 and kIQ terms respectively
“in 3. The a; accounts for the stress exerted on the fluid by magnetic
turbulence. This  influence may - be seen by ~noting that
kiz - kIQ = —2§l . Ki - ki and that ﬁi . Ki vanishes upoh summation

of ki, yielding .

s E- kL [k o (ki x )]? Ler —— . | (39)
R L |

Hence, in the context of the local analysis followed here, ay damps

vorticity and can be interpreted as an anomalous magnetic vorticity
‘damping.  This conclusion agrees with that of Ref. (19). Indeed, 3 is

the reduced magnetohydrodynamics‘analogﬁe of the Alfvén effect, first

noted by Kraichnan.?%»21 The Alfvén effect refers to the phenomenon of

~damping of fluid motion by coupling, via the B -y torque, to magnetic
perturbations-and Alfvén waves. However, in the case of turbulence in
a sheared magnetic field, it will be shown thét kIQ is repfaced by
-0 S(x™). Thus,.éonsiderations4of Qeometry and energetics can change
the apparent sign of effects associated with the interaction of field

cand fluid.




—99_

It is interesting to note thét the Jﬁg) contrfbution opposes
vorticity growth, while the ¢£g) contribution drives fluid vortiéity;
~ The latter follows from the fact that energy conservation requires that

£nl;nduced effects in the equation of motion destabilize kinetic
energy because the ¢§2)contribution to the renormalized Ohm’s law (dy)
dissipates magnetic energy.

The second nonlinear effect b, in the equation of motion, results
from the renormalization of the convéctive nonlinéarity. As the
physical processes that underlie ki have been thoroughly described in
ﬁhe literature of hydrodynamic turbulence,?2:23 this effect will not be
discussed further here. |

The results of this discussion may be summarized by writihg the
‘renormalized reduced resistive magnetohydrodynamlc equatlons for a fong

wavelength (x| < Ik ]) fluctuation:

Vb + Ty = ~(dy - c§°>>«vk - iy + F S (40)
and |
Kl + (S + py)dy = ~ik k3, + akd)k + (e
where |
N |
de = L [k * & x 0] Lr—rrn . (42)
k 2, £y |
' [y P » -
O 2 v %« & x8)]2 L»r— (43)
C n > ;
K . [.i L ] k | .-ﬁ | ‘
N 2 i - 2 H)k.'l2
g 2ok L [k o (k) x 0] Ly (44)




. . ld)k' 2 -
g -+, n LY .
by & i ; [k« & x 0] L~ A (45)
k” |

When d = é&o), Which'looséiy corresponds to the case of equipartition
bf‘energy between fluid and mégnetic turbulence, it is necessary to

retain the order ki/ki2 piece of ¢c;, which is:

| T e (Tr w8112 |, - |2
EEGER k
f) 22 7 K, ° i ? : L —— (48)
= P k T .

In that case, cﬁl) constitutes a positive anomalous ohmic viscosity due

to magnetic turbulence.
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IV. RENORMALIZED EQUATIONS FOR MULTIPLE HELICITY TURBULENCE IN A
SHEARED MAGNETIC FIELD .

In this section, the renormalized equations that describe the
evolution of a long wavelength tearing instability in the presence of
multiple-helicity turbulence in 2 sheared magnetic field are derived
and discussed. The renormalization procedure described in the previous
sections is used. However, the consideration of magﬁetic shear and the
consequent ~ differing spatial orientations of fluctuations and
resonances of varying helicity result in renormalized equations of
signiffcantly different strﬁcture than Eqs. (40) and (41). |

The reduced resistive magnetohydrodynamic equations for a

current—carrying magneto-fluid in a sheared slab are:

a k L a -_k’ ‘ ad)”"K’
Bt T (|Br %Q*p” y)¢Fk’¢k” - 'ky =) or 'k

| | BY_, - |
- [%{ g (-ik;)mp_k,cj)K,f) - ik, % _ar;‘bk”k !

. —} .
= —ikydy + VA | | | (4

and

[5?_(; (k) (V. k,,>- ik L (§;6§¢_K,)¢K]
k .

.
i)
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"knvﬂk + iky O(P [ Z' s k'Vi‘JJk”)

ob_y
§ wk»] { Z (-ik;) vmw»)
- ik, z 8(6 kB o (48)

Here k = (k,,k,), where k, and k are the wave numbers in the azimuthal
¥z y z

and axial directions; and %ﬁ = 8% for? - y, where r is the radial

~coordinate. The pafalleliane number k is given by k; = xky/LS, ﬁhere

the shear length L, is defined by Lgl rq’/R¢ and x is the distance

>\—.L.

from  the singu!ér surface where k * Eb = 0. For reasons. of
convenience, the collisional viscosity has beenvdropped. the.thatgthe
external forcing functions ¥ and FK are now unnecessary, since the
current  gradient, ~dJg/dr, “exerts a torque that drives the fluid
vorticity. | |

Equations (47) and (48) are renormalized by iterétively
substituting the nénliﬁear!y driven fields ¢£n) and ¢§g).f0r Yy~ and

¢r~. The nonlinearly driven fields satisfy the equations

and

E") + ]k"V_L’L])lg”)— |k”»,|)lg ~=Sy (50)

where




O B
byt 655 b | 51
s D L
S = ['ky%' 3 (o) - iky = ity
B
+ ik (}pk ik l¢kJ
. d L Mo | .
* 'kyqtj Bx Kvi¢;’) ‘_‘ky “5?'fvi¢KfJ = , (52)

1t

Here ki ky + k= k” ”/LS, where x” s the distance from the

k. §O =0 sxngular surface, It is apparent that, because of the

inclusion of magnetic shear, the relative spatial orientation of the

test (ﬁ), background (ﬁ’),v and driven (K?) modes‘»is a significant

consideration in  the solution of FEgs. (49) and (50) and the

renormal ization of Egs. (47) and (48). In particular, while nonlinear

effects are of greatest interest near the ko §O = 0 surface of the
test mode, the nonlinearly driﬁen K mode is, in effect, a dr}ven
magnetohydrodynamic kink;tearfng mode, whose spatial structure varies
with x”. Henée, the nonlinear efféctS' induced .at the k ; §0 =0
surface depend on the radial structure of ‘the X fluctuation, and
therefore, on the separation of the Xk * §OV= 0 and B« EO =0

surfaces. Two cases can be defined. The first occurs when the
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k- §0 = 0 surface falls in the exterior magnetohydrodynamic region of

the driven ¥ o §0 fluctuation. In this case, which corresponds to 2

turbulent system of a few, large-amplitude, overlapping kink-tearing

modes, the k” fluctuation obeys a driven Newcomb equation. In the
second case, which corresponds to fully developed, multiple-helicity
turbulence, the k. §O = 0 surface falls in or near the small kﬁ

inertial interior region of the driven fluctuation. This case is

'governed by Eqé. (49) and (50). The two cases are hereafter referred

to as the cases of 'sparsely packed and densely packed turbulence,

respectively. In both cases, and in contrast to the linear stability

: - . T ooy S s e
problem, the driven k” fluctuation equations are well behaved as x7-0,

for m = 0. This absence of singular behavior is due to the driving by

nonlinear interaction with growing modes on neighboring rational

surfaces. Furthermore, in the case of sparsely and densely packed

turbulence, ~ and qk'+ V7 s respectively, are anomalously large and-

independent of collisional resistivity. Therefore, the collisional

resistivity is neglected in the fo!lowingfdiscussioh of the solution of

Egs. (49) and (50). In addition, the anomalously large growth rates

and the ordering kpx7 <1 (which indicates that near x ¥ 0, x” is.

fihite) eliminate the need to consider renormalization effects in

caiculaﬁing the driven fields. Here x7 is the inertial layer width of

the nonlinearly driven fluctuation.

Wy
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- . A . 10 . B
 In the case of sparsely packed turbulence, the k » By =0
surface falls in the exterior, Newcomb region of the ¥ fluctuation.

~The driven flux ¢§Z) obeys an-inhomogeneous Newcomb equation, where the

. . - wi .. . . . o
source " is the current of the k¥ fluctuation, which appears as -a

loca(ized.disconbinuiﬁy in dy~/0r at x” = 0. Therefore, ¢£Z) and ¢£g) _

satisfy the equations

o oy, Lo dd ' o o .
énd | | |
k) - g = s7 N

Here §{%) (0) is the value of ${#) at x” = 0, Af~ is the discontinuity
in a¢§2)aﬁ induced by_the~cuhrent'Sheet localized at x” = 0, -and 8{x)

is the Dirac delta function. wIt_fqlfows straightforwardly that

) = 42 (g e&(g»,O)' . » "' o (55)
2 - WD) 80 . I (56) -
¢§2) :'év QY”¢£2)(0)A£”GN(x”,Oj -S4 . | ~ (D)
K | S
Qhere ‘ ‘ | _
Wo =syr . B

Here, Gy(x,x”) is the Green’s function for the Newcomb equation

operator, V2 - (Lg/x) (dJg/dr). The driven vorticity, Vi4f#), is
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negligible, and, because kj' is large, the driven potentiali¢§2) is

small. 4Substftuting the nonlfhearly driven fields into Egqs. (47) and
(48), recalling that $_j = b and ¢_y = ~dy, and assuming the tearing

mode ordering k, > k for the mode k gives

Y
i '
qk‘bk + ‘k”d)k = (n + Dk) 32 . o (59)
.07 - - X
ahd
4 By o P | |
N — + ik, ——= 12 — ., - (80)
k 1.2 a2 K e _
with
2 L | S
Dy = _kz:, NG 0) —— | (61)
| ‘ _kﬁ 'y 2 »” | | ” : ‘ : |
2= L LAl P8 0) - [l oy 0)] (©2)
k- S |

- Here, Dk is an anoma | ous ohmic-diffusivity,‘while ay accounts for the
stress of magnetic turbulence on the fluid motion. Noﬁé that aj, does
not have_the form of an eddy viscosity and can fn fact be'positive,
thus_de#tabifizing vorticity. This is plausible because positive ay
requires Ag~ > 0, thereby coupling the fluid to unstable magnetic

perturbations.

0y
!
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In  Ref. 10, this  description  of  sparsely packed
magnetohydfddynamic turbulence was applied to the rapid destabilization

of the (m=3;n=2) tearing mode after the overlap of the 2/i.and 3/2

magnetic- islands. In that case, the (m=2;n=1) mode is largé and

stationary‘and‘has a bhoad‘current'perturbatidn. ThUS,-treating'the

(m:?;nil) ‘mode as the background k” fluctuation with Y =0, it

~follows that D is negligible and that,

. ak = Z —L‘AI;» H)k' 26(X”) . " _ (63)
! = -lz, "fl(_‘ = = _ :

Equétion (63). follows from the fact that ky > kg here, thgh is

contrary to the usual scenario used in turbulence problems. The A"

value for the driven (m=5;n=3) mode can be large and poSitiVe'becausé'

ofvdJo/dr-steepens at the q = 5/8 region when the 2/1 and 3/2 islands
approaéh overlap. %Hence,” thel nonlinear interaétiqn‘ of the driven
(m=5;n=3) mode (with A’ large and positive) with the (m:Q;n:l)'mode
produces a magnetic stress on bhe fluid thét destabilizes the kinetic

energy  of the (m:S;n#Q) mode. Because of this rapid nonlinear

destabilization, the (m=8;n=2) mode grows at the rate

o= (D K2apd ) e 22 | (64)

1(*,

L%

The nonlinear coupling process generates a localized fluid vortex near

. - -+ -
the k *+ B = 0 surface of the (m=3;n=2) mode.
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The_fléw of energy ih.the (m=3;n=2) mode destabiliZaticnvproceSS
is easily traced. Initially, the current gradient steepens as it is
pinchied between the 3/2 and 2/1 islands. The‘(m#Sin:3) tearing mode is
destabilized by 2 basically linear tearing process. The nonlinear .

interaction of the (m=5;n=3) mode and the stationary (m=2;n=1) mode
then extracts magnetic energy from the (m=5;n=3) mode and destabilizes
the kinetic energy of the (m:3;n§2) mode; It is importaht to emphasize
| bhat there are two different mechanisms operating: (1) the linear
destabilization of the (h:S;n:B) and.(Q) the nonliﬁear coupl ing ﬁhat_

'drives the kinetic energy of the (m=3;n=2).

The more interestingF case of densely packed, fully developed

turbulence is now discussedf In this case, the driven, coﬁpled

magnetohydrodynamic equations mdst be solved for ¢£2)-and ¢£Z); These

equations can be written in a simplified form:

g+ iKxgp =By = (85)
and |
a2 a2 ‘
fi€§_+ in-é—g-: Bg . ’ | - - (86)
ox ox< :

Here, x refers to x” (the distance from the K - §0 = 0 surface),

b, e=elP), Br=SyY. By=Syv W Eae g

K :ka/(LSq”) = 1/x7 (where xj is the inertial layer width of the
nonlinearly driven fluctuation). In addition, the tearing ordering

2 2
&> K

is adopted. Because the nonlinear evolution of a long
wavelengbh tearing instability in the presence of a short wavelength.

turbulence is the phenoﬁenon to be studied, k& > ky is assumed
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throughout. Tt is aiso assﬁmed that the radial widths of the spectra
of background turbulence are equal to or exceed xJ (kyxg < 1),
rendering xz the smallest radial scale in the system. Finally, it
should be mentioned that although this calculation does not,
séff—consistehtly treat the evolution of the background turbulence, the
interaction of the backghodnd and bthe test mode _ié treated
consistently, within the framework of reduced magnetohydrodynamicé.

A solution of Eqs. (65) and (86) can be constructed by integrating
Eq. (86) to obtain 6¢/8x, and then equating that expression to the
result of differentiating Fq. (65), yielding: |

i LR R I

with

N

No = [ By dx - | | .‘.(5_8) |

and C the constant of integration{ Eq. (67) can be rewritten in the

form

9 . 2 {aﬁl)_ KNy i ch} .» o ‘ (69)

Noting that

iRl o

it follows directly that the nonlinearly driven current J&g) is given

by




33
' ~ iKxB ,

B =2 (k2B = IKC - iKNo) - —2 71
k (1 + K2x2)? ( ! 2) 1 + K2x2 ()

- where By is -assumed to be approximately constant in x.

The factor (1 +K2x2)™1, which is ‘analogous to the resonance
operator-Lkn of Sec. II, shows that driven fiuctuations are heavily
damped by magnetic field line bending and ndicates that the driven
current is localized around the k” < §O = 0 resonant surface of the
beat mode. | |

The integration éonstaﬂt Cis determihed by imposing the boundary
condition that 4 match the dr?Ven, exterior Newcomb solution as x;.

bécomes.large. This Eequires that for aQw/aXQ = J&g),'
g = (2) o | (19
Ay j: dx JfA) | | (72).

where 1y is defined By the condition that for large x, ¥ » ¢y + ¢7lx,
| with A" = (07 - 97)/by. In the problem discussed here, it wilf
ultimately be shown that Py = 9(0). The acgompanying‘condition that ¢
be an éven function of x determines a second integration constant that
apﬁea%s later in.the calculation. By imposition of. these bdundary
conditions, it is tacitly assumed that the driven K fluctuations Have
the basic structure of kink-tearing modes. This observation seems
consistent with the presence of shear and K- gO = 0 resonances. Using

Eq. (72), C is determined by

C= iMdg/m - iKBy - Ng - (73)

)




and

KA/ iKxBg

J&?) -

= - (74)
R ¢ B (G L R S .
Subsﬁituting Jﬁg)‘into Eq. (686) deterﬁines the driﬁeﬁ vortfcity:
o2 _ K'Box®  2iKPx(A%g/n) 75)

a2 1+13x2 1+ 132

The driven flux and poﬁential P and ¢ are determined from
Eqé. (89), (70), and:(74).:;1ntegration of Eq.. (69) using-thé result of
Eq. (73) gives: ' ' '

9.8 Mo |
C T +-—7;—{tan Kx + 2) +C _ (76)

The condition that P be an even function of x determines the constant

C”. It then follows that

A
2

¢ = (7?)

and

7

B | |
P =By + 1?0 xtan~Kx . ' (78)

The value of 4, can now be determined by using Eq. (76), which states

that




I
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B KA. /1 v
NG L L m
X X x2 1+ K2x2

and by recalling the definition of . Straightforward algebra yields:

Py = By/(1 + xjA’/w) = By - ~(80)
for xy; A7) << 1. Finally, substituting of ¢ into Eq. (85) determines
®, where

Ed

o) - ixg-é??g-tan‘l(Kx) . | (81).

The results of the calculation of the nonlinearly driven field may

be summarized as:

‘ S »’» ’” ' .
9 1 ;X -1{x
¢,k(_”) = —'—TT [1 + A ,k” p tan (Xg)] ., | (82)
S 2&12» .” '-'1 ) -

oAty @)
A f‘{ T (1 + erQ/X)arQ)2 | .
32¢(2) | |

812 - ff’ 1+ xﬂQ/Xfa)Q ’

and

6(2) o 0 . ' (85)
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Terms that do not contributelnonlinear effects to, and that break
the tearing parity of the test mode equation have been dropped. The
smooth transition between the résUlts of Egs. (82) — (85) and the
driven exterior solutfons given in Eqs. (55) — (58) can be illustrated
by noting the limit of small x

”.,
a°

. , QA’” ’”» 3
Sy “°k” - (x%) oS . _
i = 2 2 = Tﬁag,a(xf) (86)

2

"‘ ’n‘» ‘(x”2 o+ X.-a,2)2

and
S, v | o
¢é2,) = ?[1_+ )] L : | (87)
where
X7 ”
5 X7 > O;
Gy(x7) =L tan"l()’:—,é) X | . (88)
- ﬁf <0
4 .

Verification that SQGN(X”,O)/GQX” = &5(x”) iS»étrajghtforward. Hence,
for x” > X s Jﬁg)smoothly matches to the driven extehior solutions.
Also, consistent withvthe.picture of the driven kink-tearing mode, the
driven vorticity is localized to within the fnertial-layer (|x] < Xy)

around the kK7 go resonanée_pbint, while the driven potential ¢§2)
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varies rapidly across it. Furthermore, the localization of the driven

vorticity to the narrow inertial layer implies that the nonlinearity of
the equation of motion makes 2 néé]?gible contribution to ¢£Z) Thus,
it is apparent that magnetic $hear has significant impact on the
structure of the driven fluctuations and on the renormalized equations.

The renormalized reduced magnetohydrodynamic equations are now
constructedAby substituting Egs. (82) — (85) into Egs. (47) and (48),
recal ling the symmetry relation in Eqs. (19) and (20) and requiring
that the teafing parity of the test mode equation be maintained. The

tearing ordering k, > ky is assumed. Thus, the renormalized equations

are:

b+ Ty - Dk —5= = ndg - - (89)
. T - b4 - ‘ _
and
Yy + Wy —— + Ik —— =2 , o
ka2 Tk T 2 K2
where
_ l¢k' 2 v o ,
D} =T k2 —— [1+ A Gy(x)] | (91)
k=2 %y Ty KN |
k .
k)2 ) . .
by [28(x7) =[1+ By O Tl 13, (92

~

4

a=L g
k
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¢ k2 B gy By
2 _.L 1 l 2 = LS LS
“’ - £ P23 ¢ ’ ¢_. ’ ] . (93)
L % " 1+)>:”( k 4 k™ 75,2 2)
a

Note that ¢£2)does not contribubte any nonlinear effects to the
test mode equations [Egs. (89) and.(QO)]. Hence, in Eq. (89) no term
is equivalent to the ck contribution in the renormalized Eg. (31)
derived from local theory. Equations (89) through (93)  can be
simplified by noting that the orderlng kyxg < 1 implies that effects
derived from 62¢§2)/8x are of order kyxg < 1. The localization of
82¢k’ /332 to the inertisl layer around K7 e §o =0 results in 2

reduction of the fluid viscosity. AHence Wy is negligible in Eq (90) .

It should be mentioned that the principal results of this paper do

not senSitlvely depend on detailed properties of the viscosity, because
i is basically a 'F[Uld‘VISCOSIty that has little effect on tearing
modes for kg < Dﬁ. i

Equations (89) through (93) can‘be simplified further by noting

that terms of the form Ap~Gy(x”,0) are of ordeh Af»/ky in comparison to

< Ik&], and consistent with the tearing‘ mode

kil < L. Therefore,

unity. Since |Af~

- ordering ky > ky

2L Lo (94)

R’;

Equation (92) can be simplified by noting that from Eq. (48)

2, I ' | -
gz =] —_iky'(«p_kfgax—@&?&») - (¢£Z§»)>~ (95)

iy
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In the case of densely packed turbulence, the summation over k” can be
rewritten in the form j‘dm'dh’. Changing variables from m” and n” to

m” and x” and using n” = m’/q yields:

Z = [ dn’ (96)
[

Hence, integrating the second term on the rlght hand side of Eq. (95)

twice by parts, noting that d/dx” = (m"/m”)d/dx”, ylelds.
n fﬁ ’ ‘” m2
.“i = § “fv AkffS (X . m;’2 (97)
k’

In derfving Eq;v(97j, contributions added in m” were dropped; thus,’thé
renormalized  reduced magnetohgdrodvnamxc equations for a longi
wavelength tearing mode lnstabllxty in the presence of fully developed,

densely packed turbulence are:

o ‘A a2¢k ,
T+ Tt = Ok + m) — (98)
> —+ ik, —— =2 , . 99
k ox° ’{ ax2 __K Ox2 o
k;z | :
D} =T, _%,__ o -2, | (100)
cope : . _ :

and

o
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' 2
8 = L ——— k2 |y -
k _k_' '1 m”2 y k-

2. (101)

Here, Dﬁ is an anomalous ohmic diffusivity due to fluid convection of
magnetic flux. The dependence of Dﬁ on (q”)_l indicates that the flux
diffusion process is nonresonant ‘in character. a, is a stabilizing
Alfvén effect due to the stress that magnetic turbulence exerts on the

fluid vortiéity. Note that‘Dﬁvdissipates magnetic energy, while 2|

damps fluid kinetic energy; hence, the anomalous dissipation in the

Ohm’s law is due to fluid turbulence, while the anomalous dissipation
in the equation of motion ;é due to magnetic turbulence. This result
disagrees with the conclusions of. Ref. 16, in which an identical
anomalous resistivity = and ’Viscosity appear in  the réhormalized

equations.

W
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V. ANOMALOUS TEARING INSTABILITY GROWTH AND DYNAMICS OF THE
MAJOR DISRUPTION

In this section, tﬁe renormal ized magnetéhydrodynamic equations
are solved, and the anomalous tearing instability growth rate is
calculated. Also, the energetics of the accelerated growth process are
described, and the dynamics of the major disruption in tokamaks are
discussed. Specifically, the relation Betwéen the time scale of the
negative voltage spike and the rate of ahomélous tearing.mOde growth is
determined. |

To determine the anomalous tearing instability growth rate, the
renormal ized magnetohydrogynamic equations can be solved in the
standard fashion.®

Because the case of interest is one characterized by high levels

of fluid turbulence, Dﬁ >> m, the collisional resistfvity is neglected?

hereafter. Equations (98) and (99) admit two classes of solution. The

Tirst class corresﬁbnds to a tearing instability triggered by the

anomalous ohmic diffusivity DY, with the dispersion relation
9\ Re3 3 fk ' " ‘ ‘
- (8 e e’ (ef o (102

Because Dﬁ N (qf)"l and Y7 ¥ N, the anomalous tearing mode growth rate

is

Y = (_%Q_Ag)lfz (6)3/8 @7/4 , (103)

)
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where

2, | (108

D= ) k7 1oy
k

The turbulently broadened tearing layer width is
. 172 AL/ .
Ay = (Ls/ky) bt (105)

where 4 > ay is required for consistency with the neglect of ay in the
calculation of the growth rate. Note that while the anomalous ohmic
diffusivity accelerates Qhe‘ tearing mode growth, AE >0 ‘is still
Péquired‘fofyinStability. .The mode directly taps and re!éases magnetic
_free.énergy, thereby increasing fluctuation energy. Hence, the basic
-character of the fnstability is that of a linear tearing instability,
substantially modified by nonlinear effects.

In contrast, .the second class of solution corresponds ﬁo a

tocalized fluid vortex (P =‘O) with growﬁh rate

"{K = 3k . : v - » (10'5)

For Agn < 0, the fluid vortex is damped. Hence, coupling of the damped
vortex to fhe tearing pfocess can-result in a decrease in growth rate
or termination of the tearing procéss. 4However, for q{ > ]aki, where
ql is the nonlinear tearing growth rate given by Eq. (102), coupling to |
the damped fluid vortex has little or no effect. Because q{ ~ (BB,
while ]akl v <¢2>/j£ and <¢?> N 2> at short wavelength, it follows

that Iak] ~ <<j?2>5/8 and thus q{ > lakl. Hence aj is hereafter

neglected.

¥
.
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It is important’to note that the rate at which magnetfc free
energy is actually released is anomalously large. Tﬁis is in contrast
to the model of Ref. 19, in which disruptive behavior is associated

with the rapid transfer of magnetic energy from short to long

wavelength. In that .model, the mechanism for magnetic free energy

release was not addressed. Finally, it is important to note that other
nonlinear processes, such as incoherent mode coupling, maj enter the
dynamics.of the short wavelength fluid turbulence.

One disbinctivé'signature of the major disruption is a negatfve
loop voltage spike associated with a change in the self-inductance of
the plasma current.® The detailed behavior of the voltage trace during
a tokamak disruption dependé not only on the mechanism of the
dishuptfon process, but also on the external circuits of the tokamaks.
Here we give a qua!ftative deséription of this phenomenon, using the

simplest possible boundary conditions. We assume that the plasma

current is constant in time. In this case, the change in voltage AV is

given by:

M |
AV :%-d_‘:;_c_ , | | B (107)

where I is the total current. Because the spectral distribution of

evolving magretic energy is dominated by the k=0 component, it is
sufficient to consider this component. only in the determination of AV,

The k = 0 component of ; ¢O, evolves according to:

O 3 o

)
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Equation (108) is derived by averaging Eq. (19) over y and z, where the
averaging prbceSs is indicated by the angular brackets.. Equation (108)
states that the average poloidal flux evolves by radial convection and
resistive dissipation. Here <(B¢/By}¢> is the quasi-linear radial flux
of magnetic flux. Multiplying Eq. (108) by Jy and integrating over r

gives:

gl » |
0 , » A

= -J drdg __< ¢¢> - (109)

- where Eg is the kK = 0 compenent, ‘of magnetfc energy and where the small

amount. of resistive dissfpation is neglected._ The correlation

<(8¢/dy) P> can be'determined.by multiplying the equation for 1 by 8/dy

and averaging:

B By o (20F Mo 300
5t By ¥ = <<a > Eye”

v ([2ey, B S

- (y Br o - . (110)
for k, K« ky. Mode coupling and resistivity have been neglected. It

then follows straightforwardly that

N
del

[ dr DA2 | , ’
—- = -J dr DY - (111)

and

::Il_f dr DAJG2 . | | (112)
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Thus, the plasma self-inductance changes through diffusive expulsion of
poloidal flux due to turbulent ffujd convection. Taken together, the
relationships DA w 1/4 and y ~ (5)3/8 imply that AV ~ D578, Therefore,
the voltage spike mechanism and time scale are the same as the

mechanism and time scale for the anomalous growth rate of the tearing

mode.
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VI. COMPARISON WITH NONLINEAR MULTIPLE-HELICITY NUMERICAL CALCULATIONS

To assess the consequences and validity of the theoretical model

for major disruptions that has been developed in the previous sections,

we have compared some of its predictions with the results of numerical
éalculaﬁions of multiple-helicity tearing mode interactions. For these
calculations, the initial valuev code RSF2* has been ‘used. Details
concerning this code and its numerical scheme can be found in Ref. 24.

The numerical calculations are |imited to cylindrical geometry, for

consistency with the theoretical model. The calculations follow the -

nonlinear evolution of,teathg modes, starting from an equilibhium that

is linearly unstable to the (m=2;n=1) and (m=3;n=2) tearing modes. It

is important to note that these calculations are not meant to be a o

detailed simulation of a tokamak disruption. The initial perturbations
chosen-are small enough to pﬁovide a separation in time of a sequence

of phenomena‘that constitute the basic dynamic mechanisms involved in

the nonlinear interaction of tearing modes. In this way, a sequence of

‘phases in the calculation exists that can be studied on its own. In a
realistic simulation of a disruption, some of these phases would be
simultaneous. The main phases in the evolution are summarized in
Fig. 1: fnitiai numerical  transient, liﬁear phase, nonlinear
Rutherford® .regime; nonlineér‘ interaction of 2/1 and 3/2 islands
(sparsely packed turbulence), and development of high k turbulence.
The first four. phases of the calculation have been described in
previous publications.?:* During these phases, radial grids with

Ar ~ 107 and with up to 30 appropfiately chosen modes generally give

wel I-converged results.®* The nonlinear interaction of the 2/1 and 3/2

A
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modes through the 5/3 mode has been satisfactorily compared with the
predictions of the sparsely packed turbulence model.l® A description of
the last phase will be given in this section, together with comparison
to the predictions of the densely packed turbulence model given in

Sec. V.

In the last phase of the calculation, when there is an approximate

equipartition of energy among the high m modes, the growth rates of

many modes are larger than the linear (m=2;n=1) tearing mode growth

rate. At this point in the evolution, they become ihdependent of the-

col lisional resistivity ;. This has been tested by raising or lowering

the collisional resistivit§'at a certain time in the calculation. The

_Eesults of these tests are summarized in Fig. 2,' where 'thev time

evolution .of the 3/2 magnetic island width has been plotted: from .

t =2 X lO‘sTR up to the end of the calculation (broken line). The
figure also shows the.island width evolubion after raising or lowering

n by a factor 5t 3 =t the following times: 2,06:X.10_3TR,

2.17 x 10°1p, 2:22 x 1081, 2.27 x 101, and 2.27 X 1007, The

increase (or decEease) in resistivity»abcelerates (or decelerates) the
island width evolubtion except at the latest time, when it remains
- unaffected. Tﬁe growth rates of the low h modes becéme independent of
.ﬁ.for t22.27 X 10_3TR. This result supports the analytic prediction
that the dominant nonlinear effect in this process is an anomalous flux
diffusivity due to turbulent fluid convection in the Ohm’s law. This
can be tested further by calculating the 'predfcted growth rate
[Eq. (103)] for the low m modes.  The A" of the (m=3;n=2) mode is first

calculated by numerically evaluating the linear growth rate of this

-

mode at different times in the calculation. At these same times, D
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[given by Eq. (104)] is calculated from the numerics| ¢k spectrum.
Then, using Eq. (108), the anomalous growth'rate.of the (m=3;n=2) mode
is calculated, and its value can be compared with the nonlinear growth
rate of this mode (Fig. 8). The agreement is good. It is also
important to investigate tﬁe correlation of this anomalous growth with
the buildup of the high m‘fluid turbulence under various circumstances.
To Investigate this buildup, several nonlinear calculations have been
performed with different values of the fluid viscosity. Increasing the
- fluid viscosity delays and reduces the high m fluid tﬁrbulence
(Fig. 4); however, the analytic calculation still predicts the correct
rate of growth. :

In Fig. 5, the gPOth rate of the (m=3, n~2) mode and voltage trace
for the same nonlinear calculation are compared. Tt shows that: the
time scale of the voltage spike is the same as the anomalous growth in
the last ~phase of the calculation and confirms the theoretical
prediction of Sec. V. | |

In the last phase of the numerical calculation, when hfgh [4 hodeé
are being generated, a serious concern arises about the numerics]
validity. In going to smaller-scale lengths,bhore Fourier components
and finer grid sizes are required, and, of course, at a certain time
(for any finite number of modes and grid points) the.bnumerical
calculation breaks down. Detailed tests on numbers of modes and grid
sizes are‘necessary to assess the reliability of the numerical results.
It is convenieht to do these tests for a case with S = 105. This type
of numerical test has also been done in Ref. 25. That work has

confirmed our numerical results,’! and there is basic agreement on the

W
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nonlinear numerical results. presented in Ref. 25 and in the present -

paper. However, the physics interpretation is different.
The explosive growth phase of these calculations can be observed

easily in the low m modes, like the (n=2;n=1) or (m=3;n=2). As

stated above, the modes for which this growth is most apparent depends -

on the initial conditions. The relative magnitude of the initial
perturbations determine the sizes of the respective magnetic islands
when they overlap." These, in turn, determine the island size and sign
of A" for these modes at the beginning of the last phase. If A” for

the (m=3;n=2) mode, for instance, is no longer positive at this

point, the fast growih-is fot observed for this mode, although it can

be seen for other modes. This dependence on the sign of the
instantaneous A7, étrongly squestsll» the presence of .an_ anoma lous
dissipative mechanism associated with the fast growth 'process:~and
confirms the present theoretical model. To present the results of'thé

numerical tests, the (m = 2;n = 1) magnetic energy has been chosen as a

test mode. During the last phase (after the arrow in Fig. 6), the

magnetic - energy . of the (m=2;n=1) mode exhibits fast
destabilization. 1In this case a 48 mode calculation, which gives very
wel [-converged .résults fo the previous phases, is insufficient to
provide reliable results. In fact, it does not show the
destabilizatfon seen in célculations with higher numbers of modes.
Comparison of the results for 108 mode and 191 mode calculations
(Fig- 6) show relatively good convergence up to t = 7 X 10875, 1In
evéry case, we have observed that, dﬁring this phase, the inclusion of
an insufficient number of modes in the calculationvgives a more stable

result. This could be expected from the theoretical model. To push

At
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the calculation further in time, more and more modes are required and
therefore the calculation must be stopped at a certain time (at about
t=7X 10—3TR.fOP the best converged results in Fig. 8). The magnetic
energy spectrum at four times in the calculation (with 191 modes) - is
shown in Fig. 7. The linear dimensions of the ellipses in Fig. 7 are
proportional to the logarithm of the magnetic energies of the modes in
the calculation. The scale is chosen such as to show the modes having
magnetic energieé within five orders of mégnitude of the Iargést value
[excepting the (m = 0;n =0)]. This figure .clearty shows the rapid
generation of high k modes in the last phase. The broadening of the
specﬁrum indicates the need for Tncreasing ﬁhe number of modes ét later
times.in the calculation. The comparison of the spectra at the time

t = 6.6 X 1075 (Fig. 8) shows how poor the 48 mode representation is
R g p p

at the time when the corresponding (m = 2;n = 1) magnetic energy begins

to depart from the converged value. _

The fast grd@th, during the last phase of the numercal
calculations depends also on the value of S. For S.§ 10% it is nob
dbsePQed, but its.importahce increases with S. This is consistent with
the theoretical model described before. If S is small, the collisional
dissipation is large, the k spectrum has‘only few low m modes, and
consequent|y 4™ is reduced. At the same time, the anomalous
dissipation can not be observed because it must compete with a higher

level of collisional resisbivity.

iy
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Finally the numerical reproducibility of this calculatién has also .
been tested by varying the time step sizé. The time step
(At = 1.7 X 107"13) used in this highly nonlfnear regime is an order of

magnitude smaller than the one®

4 appropriate for the linear phase of
the calculatfon'(At N1.8 X IO—STR). Decreasing the time step below
the quoted value does not change the numerical results. All the tests
done exclude any possible interpretation of this fast growth as a -
numerial instability. We have also tested the .dependence of the
results on truncation error due to the finite difference radial grid.

Increasing or decreasing the radial grid dehsity by a factor of two

also has no appreciable effect on the converged results in Fig. 6.

};}‘g o
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.VII. CONCLUSIONS
A theory of_anomaléus tearing mode growth and the major tokamak
disruption has been developed. The general structure and properties of
the renormalized, reduced resistive magnetohydrodynamic equations have
been discussed for the infinite medium and sheared magnetic field
~cases.  For the physicailj_ relevant case of multiple-helicity
turbulence in a sheared magnetic field, an anomalous ohmic diffusivity
of magnetic flux by fluid turbulence was found to be the dominant
nonlinear effect on a long wavelength tearing'inétability.. A nonlinear
tearing mode growth rate, ny ~ <¢?>3/8 A’l/?, was derived. It was
demonstrated that the nonlinear teéring growth and the negative voltage
spike occur on roughly comparable time scales. The analytical
predictions were found to be in good agreement with numerical solutions
of the basic nonlinear equations.
The major unanswered- question remaining is how the short -
wavelength turbulence is generated. ~An understanding of the energy
flow from long to short wavelength is needed to answer thi$ question.
Such an understanding requires tﬁe construction and analysis of a
- renormal ized energy spectrum evolution equation.. Preliminary results
of such an analysis indicate that a broad, slowly decaying épectrum of
poloidal mode numbers is generated by the cascade of energy from.long
to short wavelength. Such a cascade results from the balance of
yohticity dampihngith incoherent emission processes not treated in
‘this'papef. Furthermore, the explosive character of the disruption
growth rate follows from the fact that while the low m modes feed the
large m region of the spectrum, the larger m modes act in turn %o

provide destabilizing dissipation for low m modes. Hence, a positive
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feedback loop develops. We will discuss these growth processes and the -

cascade mechanism in a future publication.
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FIGURE CAPTIONS

The calculations are perfofiied in such 2 way that the .various
physical effects appear as a sequence of events. (a) The radial
extent of three of the mégnetic islands. (b) The instantaneous
growth rate of the (m=3;n=2) mode.

Before the final phase, the 3/2 magnetic island width evolution is
effected by a sudden change in the level of resistivity ‘(by a
factor‘of 3). At t=2.97 x 10—37R and thereafter, the evolution
- becomes independent of 1. Fér this calculation, S = 108,

The growth rate of the (m=3;n=2) mode as obtained from the model is
compéred with the calculation. Same éase as in Fig. 2.

Same comparison as in Fig. 3, but in  the presence of fiuid

viscosity.

Same case as Figs. 2, 3: (a) Growth rate of the (m=3;n=2) mode -

~ kinetic energy; (b)Voltage trace.

Magnetic energy of the (m=2;n=1) mode for calculations with 48, 108
and 191 modes. Same case as Fig. 2, but at S = 10°.

Magnetic energy spectfa at a sequence of 4 times for the 191 mode
case of Fig. 8. The Iinear dfmensions of each ellipse are
proportioﬁal to ioglo(EM X IOS/MAX(EM)).‘ No ellipse is plotted
when this is negative (EM‘< 10‘5MAX(EM)). " The (m=0;n=0) mode is
‘excluded since it would entifely dominate the.picture[

The magnetic energy_spectra at t = 6.62 X 10_3TR are shown for the
48, 106, and 191 mode calculations of Fig. 8.
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