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ABSTRACT

A linear and nonlinear kinetic theory of resistive
ballooning modes that includes diamagnetic drifts and finite
Larmor radius effects is presented. The linear stability of
resistive ballooning modes is examined analytically and
numerically. A renormalized resistive ballooning equation is
derived, and the saturation level of the instabilities is
analytically calculated. Finally, a calculation of the
electron thermal conductivity for the large wy regime is

- presented.
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I. INTRODUCTION

The stability properties of resistive ballooning modes! have been
extensively studied using the magnetohydrodynamic (MHD) equations.?™
Recently, resistive ballooning mode turbulence has been advanced as sz
possible explanation for the confinement degradation at high poloidal
beta (Bp) observed in the Impurity Study Experiment (ISX-B) tokamak.®
The reduced resistive MHD model, where pressure evolves by fluid
convection, predicts unstable resistive bél!ooning modes with a growth
rate 4~ n1/35p2/3. Numerical calculations indicate that a simple;
mixing length theory adequately describes nonlinear saturation.® These
results are then used to calculate the stochastic magnetic field
diffusion coefficient Dy and the anomalous electron thermal
conductivity xo. The theoretical prediction of x, correlates well with

experimental observation.®

In order to fully understand, develop, and broaden the domain of - -

applicability of the theory, several questions and issues must be«
addressed. In a recent paper,® the Iinear stability of resistive
ballooning modes was studied using the full MHD model. For discharges
with high ﬁp, low current, and relatively low electron temperature, the
predictions of the full MHD model are in good agreement with those of
the pressure convection model. For high current and high temperature
plasmas, compressibility has a strong stabilizing effect, as described
in Ref. 2. In a future publication, the theory of nonlinear saturation
and the calculation of x, will be discussed in detail.

In this paper, the linear and nonlinear kinetic theory of
resistive ballconing modes is presented. Several specific questions
are addressed. These include:

(1) How does the inclusion of kinetic effects associated with finite
Larmor radius, diamagnetic frequency, and drift frequency modify
the basic structure and linear stability of resistive ballooning
modes?

(2) How is a nonlinear theory of kinetic resistive ballooning modes
constructed? What are the principal nonlinear effects? What is the
effect of finite wy? :

(8) How do kinetic effects modify the calculation of Xe? Is %
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necessarily reduced in proportion to the reduction in linear

growth rate?

Here, these questions are addressed and answered for the parameter
regime relevant to resistive plasmas such as those occurring in ISX-B.
A detailed kinetic theory of resistive ballooning modes is developed
from the basic gyrokinetic equations. The linear stability is examined
analytically and numerically. While finite wy and Larmor radius reduce
the growth rates, instability persists thrdughout the parameter regime
of interest. It is shown analytically that purely growing modes can
occur. A renormalized resistive ballooning equation is derived from
the rencrmalized kinetic equations. The basic structure, properties,
and constraints imposed on the nonlinear theory are discussed. A
comparison with the more familiar kinetic theories of drift wave
turbulence is made. The principal nonlinear effects are associated
with diffusion of ion density, electron and ion pressure, and electron
parallel pressure, which nonlinearly modify the inertia, curvature:
drive, and Ohm’s law terms, respectively. Finite wy can introduce
nonlinear frequency shifts. Finally; Xe is calculated for the large wy
regime. It is shown that while kinetic corrections reduce the growth
rate, they can also increase the size of magnetic perturbations
relative to the electrostatic pefturbations. These two effects tend to
partially offset each other in their modifications to ¥,.

The remainder of this paper is organized in the following fashion.
In Sec. TI, the linear kinetic resistive ballooning equations are
derived from the gyrokinetic equations. In Secs. III and IV, the
analytical and numerical predictions of Iinear stability are presented
and discussed. In Sec. V, the nonlinear kinetic theory is presented

and X is calculated for the large wy regime.
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II. DERIVATION OF THE RESISTIVE BALLOONING EIGENMODE EQUATIONS

In this section, the moment equations that describe resistive
ballconing instabilities are derived from the electron and ion
gyrokinetic equations. The assumption of short electron mean free
path,.kmfp { Rq, is made throughout. Here, R is the distance to the
axis of the torus and q the safety factor. The effects of finite
electron and ion diamagnetic frequency, finite ion gyroradius, and
finite ion and electron magnetic drift (compression) are retained. The
results obtained from the kinetic theory reduce smoothly to those
obtained previously, using the resistive MHD model.®

The low frequency gyrokinetic equation that  describes
electromagnetic fluctuations in toroidal geometry7‘9 is

Ve g3
"I - wggh gy Lesan
- lqs S S Vﬁ 3
= ——E(w - (L)*s)<f >J0(k_l.p ) [(Dn - -—C—- A”n] N (1/

where

q
nS = "T:j(bn + [ d®S g3 Jolk0%) .

Here gﬁ, <S>, and nﬁ are the nonadiabatic perturbed distribution
function, the averaged distribution function, and the density
fluctuation of species s (s =e,i), respectively. The subindex n
indicates the toroidal mode number n. The functions @, and A, are the
electrostatic potential fluctuation and the parallel component of the
vector potential fluctuation. Because B << 1 (though the case 6p 2)1
is considered here) the effects of coupling to compressional Alfven
waves, associated with the parallel magnetic field fluctuations, are
neglected. The extended poloidal coordinate is denoted by y, and w is
the mode . frequency. The diamagnetic drift  frequency s
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wyg = —kgagVg/L,, where kg = nq/p, Lj 1= 4 n(n o) /do, Vg = (Ts/mi)l/Q,
and ag = cm;Vg/(qsBy) . The charge and mass of the specnes s are qg and
mg, respectively, and the equilibrium temperature and density are Tg
and ng. C is a number conserving collision operator for |ike-species
(s-s) and interspecies (s-s”) collisions. The effects of temperature
gradients are neglected but may be easily inserted. The Bessel
function Jg(k;p®) results from the average over gyro-orbits. Here, p°
is the gyroradius of species s. The magnetic curvature drift frequency

is

(V)% + 5092
W S = E'T(_"*s QTS/mS K(y) ’ (3)

where e7 = L /R and

~ >
K@) =—2R_ (@, x ¥8y) + &,
koBY

is the toroidal curvature term, with contributions- of érder beta
neglected; §0 = I§g + ﬁg X §¢ is the equilibrium magnetic field; and
ki = n%alp,y), where in the straight field line coordinate system
(p,6,&) used in Ref. 6

2
ap,y) :R%+32_(S2 2999+25ygpe+ge) , (4)
P .

S = p(dq/do)/q being the shear parameter. In this coordinate system,
the toroidal curvature term K can be written as

“ RRpy (OB 2 0 oB
K(y) = -2 IO 0, g ogP JL?fl of (5)
» % R \@RZ qd) 0y
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Two macroscopic -equations are required in order to describe
resistive ballooning modes. The first is constructed by subtracting
the V, moment of the electron kinetic equation from that of the ion

kinetic equation. This yields

52y2
v aJ Wy :
Fe'A 1 %yn _ il N
w 2 Rq dy = 1( w)[ro(b') 1],
Te
TT[f VDL syl - [ e D2 gel . (9)

where J . s the parallel current density perturbation, b; = (klpi)z,
and it is assumed that k2(pe)2+0 Here 1 = To/T: is the temperature
ratio, and VA = Bo/n is the square of the Alfvén velocity. The=
quasi-neutrality condition has been used to eliminate the nonadiabatic
density perturbations. Notice that Eq. (6)  is equivalent to the
condition that V » J = 0, where the left-hand side accounts for Vudg
due to field line bending and the right-hand side accounts for the
contributions to §L . ji from inertia (polarization drift) and
curvature drift.

. The curvature drift terms in Eq. (8), which include the
destabilizing pressure effects, are calculated by obtaining g% and g;
from the solution of Eq. (1). The nonadiabatic electron response g@
may be obtained in the case of interest [ and w > wpg,
where wrg is the transit frequency of species s] by noting that to

|owest order

cggl® =0 | (7)
implies

g¢(® = s, 0)ge(y) | (8)
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where fO(Ve) can, in general, be a shifted Maxwellian. Here, the
approximation fo(Ve) =<K% is sufficient. To first order, Eq. (1)
then becomes

- V
—i{w - wyg)<FSgE + q-é%-((fe>gn) +C ge(l)

- J_ (0 - wg)<I@, =LAy . 9)

Integrating Eq. (9) over velocity, noting C is number conserving, and
taking <f®> to be even in velocity, the nonadiabatic electron response

W
g8 = - _I_Tzl__,____ A0, (10)
e W - wDe . ’

is obtained, where for w> @, = f v « fe>wDe

W &
- |T_e|. ( - %) (1 3e> o (11)
€

Simifarly, for w> Wy; and w > O % Cie' the nonadiabatic ion
response gé is

W - . .
lfl-m . <f'>®nJ0(klp') (12)

and, for w > Wi
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. Wy Wi\ . ~
ol 2 le __i"_> (1+_D'_><fr>Jo(kipl)q>n. (13)

W W

The'V“A”n/c contribution to gri] has been omitted, anticipating later
velocity integrations. The order wpg/w expansion in Egs. (10) through
(18) incorporates the principal stabilizing effect of perpendicular
compression in the kinetic theory.® For modes that survive
stabilization by perpendicular compression, the requirement that mode
frequency exceed the ion transit frequency w > wy. is automatically
satisfied® for T; M Tg. Finally, the effects of ion drift resonance
are not considered here.

Substituting Eqs. (11) and (13) into Eq. (8) yields

In _ l ) -
2 Rq Oy “'r(l'T) [FO(bl) 1]<Dn

_ Y 3yi “Di Wil 2/ Livepi

Wyg | W Wy
+ (1 - *e> De (1 s De)}cpn : (14)
W W W

which for b; < 1 becomes

2y2
s aeVALaJ”n _ ( _wi> k232d>
c W

t

1e"n

T. h‘2 . T, We: \ WR: 2
- k%azel:(l +i>;2l- K(y) "‘TI' (1 —%>%:l2— ()

- (1 +;‘—>iﬁ—ﬁz (y)}@n ; (15)
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here q% = eTV€/L%. Three terms result from the curvature drift
contribution. The first is the usual ballooning driving term of
standard magnetohydrodynamics, the second reflects charge separation
due to finite ion gyroradius, and the third accounts for the effect of
perpendicular compression. In the limit T;/Ty » 0, wy;/w » 0, Eq. (15)
reduces to the perpendicular momentum balance equation of
Amagnetohydrodynamics, with the pressure evolving by fluid convection
and perpendicular compression.

The second macroscopic equation is constructed by taking the V,
moment of the electron kinetic equation and using the result of
Eq. (11) to compute the parallel pressure and thus close the moment
hierarchy. The resulting equations in the limit w << wp, are

BP iw? A
(10 + oy + g = s (0 - ugg) =, (16)

where vg; is the electron-ion collision frequency and Wpe is the
electron plasma frequency, u?e': 4ﬂnele|2/me. These equations relate
the parallel current Jy, N Jy, to &, and A, and constitute 2 finite
diamagnetic frequency modified Ohm’s law. Substituting Eq. (17) into
Eq. (18) yields

. w2e Wye
(~iw + vei)dyn :'Tﬁf' - S (18)
where
ob
E, o= i%A + L0 (19)
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Note that in the limit vg; >> w, wye/w » 0, Eq. (18) reduces to Ohm’s
law of resistive magnetohydrodynamics.

Using the parallel component of Ampére’s law, Egs. (15) and (18)
can be combined to obtain a single second-order ballooning equation for

@n:

By W K2 Oy
Wyt \ 42
+( _._*'_>_“’__E_a¢
W 2 n
u)A g
+ 1+__l_. _lK(.y)+—..!._ --m—*l-- WDIiOL
Te w2 Te wf\ q2
‘ T' 6"2 » '
- (1 +T—I> T2I K(‘y)2} d)n = O ) (20)
e ’ (A)A

with wy = V4/Rq and n = 4ﬂueic2/w§e. Equation (20) is the eigenmode

equation for resistive ballooning modes and incorporates the effects of
Tinite wey, Wej, T;/T, [equivalent to ki(pi)z], and wp/w (perpendicular
compression). In the [imit wee/w + 0, we;/fw 0, T;/T, + 0, Eq. (20)
reduces to the resistive ballooning equation of magnetohydrodynamics,
where pressure evolution is described by convection and perpendicular
compression.® Some insight into the effect of perpendicular compression
may be gained from considering Eq. (20). Using a shifted circle
approximation to the equilibrium, we can write

ﬁ(y) = 2(Dy + cos y + éy siny) , (21)
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2 . o
alp,y) =_92_[1 + $Py? + y(cos y + Sy sin y)] . (22)
P
Therefore, we can express the R(y)2 term as
R()? = 201 + 8%) + Kol0) (29)

where %:2(” contains the oscillatory contributions cos 2y and sin 2y,
and the average curvature Dy is ignored. It follows that

oy _ Wy i ﬂki Oy
w0 W
[ ) 2¢
{1 - 2\ i 1+-1) @+ 829
W S mﬁ Te f
i . W @
+ (1 +TL>_QIK(-Y) + TI ——-*—') 2D' (1 + $%2)
L €/ Wp € w4
T\ & ~
S T,ﬁ Ko(y) |6, = 0 . (24)
e (:JA

From Eq. (24), it is clear that the oscillatory geodesic curvature
pieces of K(y)2 beat together to produce a quadratically secular term,
(QETﬁ/wﬁ)(l + T /T ) (1 + §2y2), which effectively constitutes a zero
frequency inertia. It follows that W > Eﬂ% = V%/RQ is required for
growth on time _scales Tfaster than that of resistive diffusion. Thus,
perpendicular compression is a strong stabilizing effect.’
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Equation (24) 'may be further simplified by noting that for
Wy 2w,

T Wei) W Wp; o q2 o
ji- *-7;L 5 l (1 + 52y2) = _'T’——E—K(y)k (o )2
e wi e Wy
and Tor wy; < w,
Tif,  Wej\w p; 2.2y n i @
.I.e 1“—(-0-—) wﬁ (1 + S J ) T %

As ki(pi)2 <1, and for (Tp;/w) (1 + §2y2) < 1, Eq. (24) becomes

B [ - ue/0) (1 + $4%) 8,
O | 1-upgfu+ ke fu Oy

Wy o WA
T A
+ (1 +_'>ﬁK(y)® =0 . (25)
To/ .2 n
e h)A

Note that (1 + S2y2) < w/G@py; is consistent with the constraint on
poloidal mode extent imposed by the criterion for resistive MHD
instability 4> w, = Vo(1 + Ti/Te)l’Q/R, which was derived in Ref. 8.
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It is important to note that the derivation presented here is
valid only when kiai <1 and when the mode frequency w is larger than
wp, wrj, and w,. The first restriction ensures that for wy > w the
effects of ion polarization drift are small and, hence, that density
evolves primarily by convection (wg/w > kiag). It then follows from
Eq. (8) and the second restriction that the V"J" contributions to
density evolution, which appear in the reduced Braginskii mode|,1°’11
are also small. Finally, w> wy; is necessary for hydrodynamic ion
response. In adiabatic ion regimes (w < wTi)' the resistive ballooning

mode is stabilized.
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III. APPROXIMATE ANALYTIC SOLUTION

In this section, an approximate analytical solution to the
simplified kinetic resistive ballooning equation [Eq. (25)] is
presented. Following Ref. 8, a two-scale expansion procedure is used
to solve Eq. (25). Thus, ¢, is written as

o, = 5n(y) + & (y) (cos y + éy siny) , (26)

where 5n(y) and gn(y) are slowly varying coefficients relative to the
fast fluctuations of scale length 2m. Ignoring the weak effects of
average curvature, it follows that the envelope equation for & (y) is

oy

5 [(u - ) (1 + $y7) 38,1
W= Wy + inki ayJ

+ (1 + é2y2)

ﬁu(w - Wgp) - Qw% g[ W - Wy

\ mﬁ W - w*e + i?]ki
Wl - wy;) - W2 2 - T\ 2
_ ( *|) c (1 + S2y2)§ (1 +T_' l)@n =0 . (27)
3 | e/ uf

At large values of y, where the field |ine bending is weakened by
resistive dissipation, nki > Jw - w*el. In that case, the
electrostatic approximation is applicable, and Eq. (27) reduces to
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o | w- Wgg + inki Oy w}
P an% / Tz T
ey 1+_‘_ff¢n=o. (28)
uﬁ W - w*e\ Te WA

Equating the coefficient of (1 + 2 2) to zero yields the dispersion
q g J J p

relation

— 2ink3 T\
(0 - Wy )w — Q> + B 1+ I 0, (29)
I MU R Te wj

or, with w=in,

3
. 2 _ W .
"i("i -+ Hk)*i) + ch —m . (30)

Here q% = an%n%(Te + Ti)zqz/[(BOLn)2mi“i]' where ~y is the linear
growth rate as given by resistive magnetohydrodynamics, with pressure
evelubion by fluid convection. The term Qw% in the dispersion relation
[Eq. (30)] is the perpendicular compression stabilization term of
magnetohydrodynamics. In the limit that wy; and wy, are negligible,
Eq. (28) reduces to

3
'T'Z + > :——A‘O (31)
c | ? .

which is the resistive MHD growth rate with pressure evolution by fluid
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convection and compr-ession.6 In the weak compressibility limit 4 > w,,
which occurs at high Bp and low Ty, Eq. (30) reduces to

Y + Ty ) (y + Tugg) = (32)

and, for Ti = Te, to
NP+ ) = | (83)

Thus, for A4 D> w, A = Ng» the resistive MHD growth rate. For
N Wy, = q%/wi. Hence, a purely growing instability persists in the
Wg > 4 limit. However, it should be noted that such persistence is a
specialized consequence of the assumptions of T, = T;, zero temperature
gradients, the neglect of order wp/w corrections, and the electrostatic..
approximation. The inclusion of any of these effects yields an
'eigenmode with finite real frequency.

In the limit that the dispersion relation [Eq. (32)] applies, the
asymptotic behavior of d is given by e"ky2, where

N (W — wg;) SPnk3]E72
=3 - —— : (34)
2 W - W*e wﬁ

Therefore, for such a solution to be valid, a necessary condition is
Re(A) > 0. This condition is verified by all the solutions of Eq. (32)
for any value of wy; and wey (Fig. 1). Thus, as ~y passes from ~ > wy
to § < wg, the transition in growth rate expressions is a smooth one.
In particular, although 4 q%/wi appears directly proportional to 7,
the growth rate is still much faster than resistive diffusion. This is
due in part to the appearance of pi as the perpendicular scale length,
N = an?(Te + Ti)2q2/[(BOini)2mi”i]‘ However, in contrast to Ay,
which varies as n?”®, = q%/mi is independent of the toroidal mode
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number. Thus, for increasing n, a finite diamagnetic frequency has a
strong stabilizing influence relative to the MHD limit.
IV. NUMERICAL SOLUTION

Numerically we are interested in verifying the analytic solution
of Sec. III and also in calculating the wy effects for equilibria
reconstructed from experimental ISX-B data. To do so properly, we have
to write the equations in a form consistent with a numerical solution
of the Grad-Shafranov equation. The toroidal curvature and the field
line bending term must be accurately represented without use of the
aspect ratio expansions employed in deriving the approximate analytic
solution. A convenient method of deriving such equations is frem the
Braginskii two-fluid model,'® which gives equivalent results to the
kinetic theory derivation of Sec. II. The equations are

OA Wy L N
i —mk2p, -1 Bb T¥e n I 1 Bn 5
3t Tgghyn = Mk Ay Rq Oy " ng kg R Rqdy ’ (8)
oo By wiy) ™
, Mo _iks 20 K(Y)
"inogg = ez R o F
1
185 1 & (K A
SV 2 O L Y e mennd
Rk2 Rq By ( A %)
BN . Ry dPy I' Pokg »
B " —ikg T & o~ I —5 K(y)@n , (3r)
h no Ry . | Bk3A
.@.n_.: 1ke _o._o..tbn +._1__£..L_ﬂ , (38)
ot Ly I q.Bg R Rq Oy

where Py is the equilibrium pressure, I" is the ratio of specific heats,

and ny is the equilibrium density, np = ng.
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Equation (85) is the generalized Ohm’s law and corresponds to
Eq. (18), where Jyn = -kiA"n. Equation (38) is the momentum balance
equation and corresponds to the klp' = 0 limit of Eq. (15). In the

pressure evolution equation, Eq. (87), the convection term and the

dominant perpendicular compression term have been retained. Finally,

Eq. (88) gives the evolution of the density; the Yy will be neglected
in accord with the argument given at the end of Sec. II.

Equations (85) through (38) may be recast in eigenvalue form by
replacing the time derivatives by -iw. The resulting eigenvalue

equation in the large aspect ratio limit is

2 - ) ki o + m;ng _q_R2 ’ k2w (w - Wy )P
oy (W - wyg) + inki. Oy ' B% 1 A L
* —B’%‘ hrr MeX(y) - 1Ky, = 0., (39)

where € = [—R(dPO/dp)/PO]“l. This equation may be derived directly
from Eq. (20) in the limit kip' =0 by taking Py = ng(T; +T,) and
I'=1.

Equation (83) is solved numerically using a library boundary value
routine.l? Equations (385) through (38) are solved as an initial value
problem using a simple, explicit time advancement scheme. Detailed
numerical tests have been made by comparing the results of these two
methods of solution. Also, in the we = 0 limit comparisons have been
made with a code’® based on the equations of Ref. 3.

The numerical results of the eigenvalue equation, Eq. (39), have
been compared with the analytic dispersion relation, Eq. (32), for
several equilibria and values of the parameters s1p2, Wye, aNd Wyj,
where the dimensionless parameter S is S = a2VA/(Rn(Q)). An example is
shown in Fig. 2 for an equilibrium matching ISX-B experimental results
with ﬁp =1.29. This equilibrium was calculated in the manner
described in Ref. 14. Figure 2 shows how the linear growth rate varies
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as a function of wy for the case [' = 0, Te = Ti’ and St = 107°. For
the purpose of these comparisons, wy is taken as an independent
parameter. Also plotted in the same figure is the root of the
dispersion relation, Eq. (33). For these parameters good agreement is
displayed with the analytic results. Good agreement is also found for
other ratios of T,/T;, in particular in the limits T; = 0 and T, = 0.
Figure 3 shows these limits @n*{ =0 and wy, = 0) for the same
parameters as Fig. 2.

Here, the regime of primary interest to ISX-B is that of high 6p.
In this regime, the model for anomalous electron heat conduction
described in Ref. 5 becomes relevant. To study this regime an
equilibrium with 6p = 2.0 and q varying between 0.9 at the magnetic
axis and 7.0 at the plasma edge is considered. Figure 4 shows the
comparison with the analytic dispersion relation, Eq. (33), for the
case ['= 0, Ti = Te, S= 106, and n = 15. Results are shown for two
flux surfaces p =0.5 and p=20.7. Qualitative agreement is again
displayed with the analytic solution. However, in this case the
quantitative agreemeht is not as good. This is mainly due to the high
shear of this equilibrium, S=1.9 at p=0.7. For such high shear
equilibria the two-scale-lengths expansion made in deriving the
analytic dispersion relation breaks down.

Perpendicular compression is the dominant stabilizing effect Tor
resistive ballooning modes in the framework of the MHD model .2 However,
its effects are weak for the high ﬁp equilibria with parameters close
to the ISK-B experiment.6 The same conclusion is maintained when
diamagnetic effects are included. Figure b shows the effects of
perpendicular compressibility on the growth rate and frequency for the
same equilibrium as Fig. 4. For such high Bp equilibria, the
combination of perpendicular compressibility and wy only slightly
modifies the |inear stability spectrum for n X 50. |
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The analytic solution of the dispersion relation, Eq. (33), has
been found numerically for all equilibria studied. However, in the
wy & o regime, this solution does not always correspond to the
fastest-growing mode. In certain regions of parameter space, the
numerical ‘sclution of the eigenvalue problem shows a much more
complicated picture than the analytic dispersion relation. There are
eigenvalues with imaginary parts that do not decrease with w, as fast
as predicted by the analytic solution; some eigenvalues show increased
instability with wg, and some solutions bifurcate at a given value of
Wwg. Figure 6 illustrates these problems by showing the wy dependence
of several roots of the eigenvalue problem for the same equilibrium as
Fig. 2 but with nS™ = 4 x 107*,

V. NONLINEAR SATURATION AND ANOMALOUS ELECTRON THERMAL CONDUCTIVITY

In this section, the nonlinear saturation of kinetic resistive
ballooning modes is discussed and the resulting anomalous electron
thermal conductivity is calculated. The nonlinear theory of resistive
ballooning modes is developed by using renormalized ion and el ectron
kinetic equations and the procedure of Sec. II to derive a nonlinear
(amplitude-dependent) ballooning mode dispersion relation. The
saturation amplitude is then computed from the condition ~ = 0.
Following Ref. 5, the anomalous electron thermal conductivity Iis
estimated using the result of the nonlinear analysis.

The procedure fsllgyed in this section is to construct the
continuity equation, V ¢ J =0, by subtracting the density moments of
the renormalized gyrokinetic equations. The current moment of the
renormalized electron drift kinetic equation is then used to derive
Ohm’s law. The electrostatic approximation is assumed throughout the
discussion of nonlinear saturation. This approximation is consistent
with the resistive instability condition that dissipation weakens the
stabilizing influence of field line bending (nki >n). It follows that
EK > EM’ where

B¢ = [ oy k(e . (40)
n
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By = [ dy ERG(IA, 0, (41)
n

are the electrostatic and magnetic energies of the fluctuations.
Therefore, the electrostatic approximation and the condition Amfp < Rq
imply that the principal electron nonlinearity is that associated with
¢E x go/B% convection. Hence, the electrostatic approximation ensures
that the time scales for the nonlinear evolution of electron density
and parallel current are comparable to the nonlinear ion
(electrostatic) time scales, thus maintaining 3 . j = 0. It is
important to note that these considerations and constraints apply to
electron density and current but not to electron temperature.

15

The nonlinear ion gyrokinetic equation™ in toroidal geometry is

. .V, dgl .
~i{w - wpilgy +-§%~5§1+ N (y)

- % (- wg)Jglkp)ocel> . (42)
with
N =L L clnn’n’) Bokip ) - lghen () (43)
nm
C(n,n’,m") = kgkd é(Qﬂm’)e“zﬂlm)“’q(p) . (44)

Inductive effects, which are unimportant for ions, have been
neglected. N;(y) is the nonlinear term contribution evaluated at y.
Quantities enclosed in square brackets are to be evaluated at y + 2mm.
Contributions from y + 2mm introduce additional phase factors into
C(n,n”,m"). As such phase factors tend to produce cancellation when m
is summed, only the m = 0 piece is retained. In order to simplify the
calculation, the additional assumptions of ki(pi)2 <1, /w1, and
yo = 0, where yg is the ballooning eikonal phase, have been invoked.
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The third assumption implies that the results of this calculation
constitute a lower bound on the nonlinear interaction.
Following Ref. 18, the renormalized ion nonlinearity is

N;(y) = Z’ Z’ C(m,n’,m')[Jo(kipi)¢Ln;]g;£%) , | (45)
n’m
where

. -1 . . .
(Lh+n') gég%i = %L C*(“:”'am”)%[JO(kipl)¢n’]9A
- [oi-1dotkoD)o (46)
with
A | y _
(%W)zmm-%+w»+%%n (47)

Here w” = w + w’, wj; =wp; +w);, and d» is a propagator broadening
factor that accounts for ion scattering by heat fluctuations. It

follows directly that

NA(Y) = dygh ‘I%L@anJo(kipi)‘bn ’ (48)
where
d, = Z’ Z’ lC(n,n’,m’)|2[J%(kip.)<¢2>n’]L;+n’ ’ (49)
n’m
b, = E’ Z’ IC(n,n',m')|2[J0(kipl)<¢h1>n’]Lé+n’ , (50)
n’m

and h! is defined such that g} = |e[<fI>hi/T..
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Contributlows from m” # m” introduce phase factors that result in
cancel lation. As ® <<.& [Eq. (26)] and because the mode is extended in
Yo Lpgns = -1(W” - wf; + id~»).  Thus, the renormalized ion kinetic

equation is
) _ .V Bgi
-i(w-uy; + ‘dn)95'+7£%‘5§1

~ile H . i
:-—f#;l-<f'>(w - Wy + 'bn)JO(klpl)®n , (51)

and the nonlinear ion response is

P e W ww ibp | oy, -
9n = W=, ¥ 14, ¢ Jo(klp ) (52)..

Note that Eq. (52) also gives h;: in the expression for b,. The
physical interpretation of this renormalization procedure is that in
the presence of a broad turbulent spectrum, ion Compton sca’o‘oer*ingl?’18
by nonlinearly driven fluctuations, denoted by n”, results in the
modification of the Jjon response to a particular test mode.
Alternatively, it may be said that a test mode n couples to the
turbulent test mode spectrum <¢2>n’ through the nonlinearly driven beat
fluctuations n”. TIon Compton scattering by resistive ballooning modes
differs from the more familiar case of drift wave turbulence in two
important aspects. First, in contrast to the drift wave case, the
electron response is hydrodynamic, not adiabatic. Hence induced
potential effects [associated with ®(2)], which cancel g(u)to lowest,
order in (klp )2 for adiabatic electron response and quasi-neutrality,
are much less important here and are thus neglected. Second, for a
~ saturated state that has evolved from a spectrum of purely growing
modes, w =0 and d; >> wy;. Therefore, d, and b, are similar to
turbulent eddy viscosities, which achieve saturation by balancing the
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linear driving forces. This is very different from the drift wave
case, where d, and b, admit a nonlinear dissipation through the beat
fluctuation resonances of d,. This is due to the fact that ballooning
mode growth is a consequence of a balance of forces, while drift
instability is a consequence of the introduction of inverse dissipation

into a marginally stable oscillation.
The renormalized electron drift kinetic equation can be
constructed in a similar fashion. The nonlinear electron kinetic

equation is

. e VH Bgﬁ e e
~i(w - wpg)g® +_Ra_ay_+_c_ gp + NE(y)

= del (W~ wyg) (@n —-é“—A”n> <Fe - (83)

with the nonlinear term NS given by

v
N:(y) = Z’ Z’ C(n,n’,m’)[é@_n: "jg‘Au_n,)]92+n’ ’ (54)
n’ m

where the same conventions as the ion case are used. The renormalized

electron nonlinearity is

c

v
N =L L clnntm [y -1 a)]a8(2 (55)
nm

with gﬁigl given by
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)
()58 =3, 00756 =L 1y e

Vi
SOl e
and the operator LS, - defined by

v
(L8, )L = -i(w - a5, + D) +.§%.§z +C. (57)

In the short mean free path limit where [C| > wr,, Eq. (58) may easily
be solved, to yield

9n+2) = LS, Z C*(n n ,m”)% gﬁ [gﬁ»]¢n§<fe> ) (58)"

(L

-1
) = - - @ + D) .

Note that Eq. (68) is clearly consistent with the electrostatic
approximation (Ex >> Ey). ~ Neglecting the insignificant
inductive-electrostatic cross terms, it follows that

NE(y) = D32 - Leb<rome | (59)
Te
where
D, = Z Z |C(n,n” [<¢2> ] n+n” , (60)
n"m’
By=LX L [C(n,n",m") 2 [con®> - LS - , (61)
n” m’
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with h® defined such that §° = ]e]ﬂe/Te. The renormalized electron

kinetic equation is thus

'\ e VH Bgﬁ —é e e
-i(w - wye)gp 4—Ta$-égr-+ D gs<f® + C g5

. ' Ty |
=L#L§@.4%QGMLT}MN>-i%q%ﬁ%. (62)
e

The electron response is

W — Wg, — IB _
g = - h?l R | - (63)
e W - Upg + iDn

The renormalized macroscopic equations may now be constructed
using the procedure of Sec. II. In the limit where (k_Lpi)2 <1 and
wpjfw << 1, subtracting the density moment of Eq. (62) from the
corresponding moment of Eq. (51) and using Egs. (52) and (83) to
compute the curvature drift terms yields

NEAT 2 1 Byn 2 .
’(‘*—c ) ORI CTREICE AL

(mDi (—W*i -+ ibn) T mDe(W*e -+ iBn)>
+ - - - .
( w+ iD, w+ D, ) n.

(64)

Here, the limit (klpi)2 <1 allows the approximation dj =D.
Similarly, constructing the V, moment of Eq. (682) using the result of
Eq. (83) to calculate Py,- yields the renormalized Ohm’s faw
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2 .
CVei o . Ain W —tee - 1By 1 g
wge k.l. - l(m - W*e)g c = - e iDn —REW . (65)

Electrostatic effects only appear in Eq. (65). The significance of
this approximation and the consequences of retaining magnetic effects
will be discussed in a forthcoming publication.

Combining Egs. (64) and (85) gives the nonlinear resistive

ballooning equation

2f = e - 1B 3 (kj2g)® 8%,
| A D a—' > 3
W+ 1Un Volnk] - 1w - wge)

(@0 + TR Wgn)
2 . Div#j De™*e
- (kj2g)® (W = wyp + Tb)0 - g TR

_; @iby ~ 7 pBp)
w+ iD,

)® =o». : (66)
)" '

It should be noted that the renormalized equations are consistent with
constraints imposed by the basic nonlinear equations. Equation (84) is
the renormalized continuity equation, obtained by subtracting the
density moments of the renormalized kinetic equations. Subtracting the
density moments of the electrostatic nonlinearities of the kinetic

equations yields Fg, where
! c 3 . . Y > e
Fe = g5 J &y dolkpp!) [V x i+ Vo'

- [av, [@exq) - Ggeji% . (67)
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The angle brackets < >¢ indicate a gyrophase average. In the limit
(k;p")? < 1, wpfw < 1, and k, » 0, that is, 8/dy + 0, Fg becomes

e =l o 10 - ¥lo} - o),

where pi and pS are the nonadiabatic ion and electron charge densities.
It follows from from quasi-neutrality that Fp vanishes to lowest order
in ki(pi)z, wp/w, and k,. It is easily verified that the D, b, and
B, terms in Eq. (64) appear in a manner consistent with this property
of the basic equations. Note that the approximation d, =D, a
consequence of (klpi)2 <1, facilitated casting the continuity equation
in the form of Eq. (84). Finally, it should be mentioned that the
constraint discussed here is different from that discussed in Ref. 14,
which is also satisfied by the renormalized equations.

In order to make contact with the discussion of linear theory, the
nonlinear saturation for the case T; = T, which results linearly in a

I

purely growing mode, is now discussed. In this case w = iy, and

rd

w” = iy~ and

(L) = (g + 4y + D) (68)

st W b -\ .
2[<¢2>n’]/ﬁ‘n + lw*l + n >LI|],, ’ (69)

b, =% % |C(n,n",m")
" nm’ \ o+ DOpe

P - B,
B, = § E’ [C(n,n",m") 2[<¢2>n’]<én e T > LS (70)

Ipr + Dyr

The difference in sign between b, and B, is due to the difference in
sign between the ion and electron nonadiabatic responses. For
<¢2>_n = <¢2>n, it follows that the wy contributions to b, and B,
vanish by antisymmetry. Then for b,» =Dp-, B,» =-D,-, and thus
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bn = Dn and Bn = —Dn, which constitutes a consistent solution to the
recursive Eqs. (89) and (70). Hence, Eq. (88) reduces to

2
2 . 0 ki 0P,
wily+ D) + iw
A( n *) ay nki+1+iw* ayJ
- [y + Dy - iwg) (v + D) - 268 3K () ]@, = 0 . (71)

The two-scale averaging procedure discussed in Sec. III can now be
applied to Eq. (71). Upon invoking the electrostatic approximation for
®,, the resulting dispersion relation is

(V+ D) (v + D)% + ) = . (72)

Setting y = 0 yields

D02 +uwd) =% . (73)
where
2,242
Cc kes 5,
D, = > LoL kS PP (y + 2mm)> Lpon? (74)
0 n'm

and

Lptns = (qn %t Dn”)—'1 . (75)
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Thus for D, > wg, Dy =7y, which recovers the resistive MHD
result.’ For wy > Dy Dp = q%/wi. The extent of the mode W, in y is
given by

W= [/ 0 8] . | (76)

n:

A

It is illuminating to note that D = k%ﬁn, where D s
non-Markovian (n-dependent) and analogous to a diffusion coefficient.
Indeed, in the limit n > 0, D is the cg X §O/B% diffusion coefficient.
Hence, the physical content of the saturation condition is that the
turbulence generates random convection sufficient to balance the
driving forces at ~ =0. Alternatively, when turbulent convection
leads to a decorrelation time 7., (T;% = D, here) such that TE% = Yepr
a particle or pressure element responding to driving forces s
decorrelated at a rate equal to the rate of growth caused by driving
forces. Hence, the instability cannot grow and saturation occurs. The
decorrelation results from scattering a density or pressure element
over a poloidal subharmonic width Ay, Ay = (keé)‘lwn, in a growth time.
Finally, from the structure of the linear dispersion relation, it is
apparent that balance with driving forces requires diffusion of ion
density (inertia), electron and ion pressure, and electron parallel
pressure. These correspond to D, terms appearing in the inertia,
curvature drive, and line bending (from Ohm’s law) pieces of Eq. (71),
respectively.

In general, kinetic resistive ballooning instabilities develop s
finite frequency and are not purely growing. In that case, several new
nonlinear phenomena may appear. First, nonlinear dissipation may enter
through the broadened beat wave-particle resonances in dn, Dn, bn, and
B,. Second, b, and B, will in general be complex. Hence, b, and B,
will introduce nonlinear frequency shifts as well as eddy viscosity
effects. This second point is especially important, since the
diffusion at saturation would then be determined by linear frequency
effects, reduced or enhanced by nonlinear frequency shifts. Hence, the
ultimate answer to the question "hat is the impact of kinetic effects
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on ballooning mode turbulence?™ probably lies in the nonlinear
dynamics.

It should be added that there are many aspects of the nonlinear
theory that must be considered. Here, the parameter scalings of the
saturation level and the electron heat conduction coefficient x, are of
primary interest. However, to understand the structure and evolution
of the wave number and frequency spectrum, a theory of the two-point
correlation is required. This will be considered in a future
publication.

In Ref. b, an estimate of the anomalous electron thermal
conductivity was obtained by using Ohm’s law and the electrostatic
energy at saturation to calculate Dy, the stochastic magnetic field
line diffusion coefficient, and thus yo, ¥ = (8/2VyDy. The
electrostatic energy at saturation was obtained from the saturation
condition Dy = yy. It is important to note that Dy was calculated for
the relevant regime of strong turbulence, Dy ~ ISB/BOI.

Following Ref. 5, Dy is given by

oy~ (I L Ay (y + 2m7) 28321212, (77)
nm

where, for finite diamagnetic frequency and nki > lw - w*el,

An - Dp + lugg 1 1 0% (78)
¢ D, ﬂki Rq Oy
The saturation condition, Egs. (73) and (74), implies
(2/B3) K&<HP>, = D22, (79)

where the elevated bar indicates the spectrum average. Equation (79)
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determines the electrostatic perturbation at saturation. Substituting
Eq. (78) into Eq. (77) and using Eq. (79) yields

A -4
ngSL ]D + iw*' D
Dy~ - (154 n LEQ) . 80
Here F(y) is =a dimensionless spectrum structure function.

Straightforward algebra then yields

xe = x{0 L , (81)

1+ Im*/qoll/2

where xgo) is the electron heat diffusion coefficient derived in Ref. 5
for the resistive MHD modes. For wg/vy << 1, we have

Xe = 1 « B372TS (82)
and for we/vy >> 1,

o = X0 @)= = 21,57 (83)

Obviously, if appreciable populations of Ny > wg and 4y < wg modes are
present, then a weighted spectrum average must be performed. Finally,
note that the basic structure of strong 5p dependence and inverse T,
dependence persists in the large wg regime.

It is interesting to observe that the factor I(Dn + iw*e)/Dnl in
Eq. (80) indicates that when wg > Dy, the level of electromagnetic
fluctuations increases relative to that of electrostatic fluctuations.
This indicates that while inclusion of diamagnetic effects may result
in a growth rate reduction relative to the predictions of
magnetohydrodynamics, it may also result in an increase in other
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effects contributing to heat transport. This is an example of the
dangers inherent in the practice of assuming that anomalous transport
behavior directly tracks the behavior of linear growth rates.

VI. CONCLUSIONS

The finear and nonlinear kinetic theory of resistive ballooning
modes has been presented. It has been shown that the inclusion of
kinetic effects associated with finite Larmor radius, diamagnetic
frequency, and drift frequency in general medifies the linear stability
of resistive ballooning modes. However, for equilibria associated with
high Bp ISX-B discharges, these effects do not fundamentally change the

linear stability spectrum in the range of relevant toroidal mode

numbers (n § 50). Therefore, these instabilities are expected to be
present in the experiment.

The nonlinear kinetic theory modifies the predicted value of the
electron heat diffusivity derived in the reduced MHD model.® However,
the modification is quantitatively small. Although the wy, effects
reduce the linear growth of the instability and, thus, the saturated
level of the electrostatic fluctuations, the level of the
electromagnetic fluctuations increases with wy relative to that of
electrostatic fluctuations. Therefore, the overall wy effect on the
electron heat transport is weaker than what naively would be expected.
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Figure Captions

- Fig. 1. Solid curves are the solution of Re(A) = 0 [ef. Eq. (34)] and
broken curves are solution of dispersion relation [Eq. (32)] for the
cases T; = T, [plot (a)] and wy; =0 [plot (b)]. Since in both cases
the curves only intersect at wy = @ the Re(A) > 0 for all wy; and wyg
[N.B.: the case wy, = 0 trivially verifies Re(A) > 0].

Fig. 2. Growth rates as a function of wy, for the case T, =T;,
Bp=1.29,T'=0, p=0.5, and n2/S = 107°.

Fig. 3. Growth rates as a function of wy for the same parameters as
Fig. 2 but with wy, = 0 (upper plot) and wye; = 0 (lower plot).

Fig. 4. Growth rates as a function of wy for the case T, =T,
B, =20,p=052nd07,T=0,8= 10° and n = 15.

Fig. 5. Growth rates as a function of wy for the same parameters as
Fig. 4 showing the effects of compressibility (" =5/3) on the p = 0.7
surface.

Fig. 6. Real (light curves) and imaginary (thick curves) growth rates
as a function of wy for the same equilibrium as Fig. 2 but with
n2/5 =4 x 107*. The finite wg behavior of a few of the many unstable
roots is shown, with the corresponding real and imaginary parts

depicted by the same type of curve.




