Adaptable Particle-in-Cell Algorithms for Graphical Processing Units

Viktor K. Decyk1,2 and Tajendra V. Singh2

1Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90230, USA
2Institute for Digital Research and Education, University of California, Los Angeles, Los Angeles, CA 90230, USA

decyk_at_physics.ucla.edu

Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations \cite{1}. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a relativistic 2-1/2D electromagnetic skeleton code whose inner loop (containing 10 subroutines) runs entirely on the NVIDIA Tesla C1060. The performance obtained varies from 2.8 to 3.7 nsec/particle/time step, depending on the plasma temperature. This is a speedup of about 33-44 compared to a single 2.66 GHz Intel i7 (Nehalem) processor, which has a performance of 123 nsec/particle/time step.