Lecture #6 Potentials

E lectric Po tential (unit of potential = volt) av = -E. as V = - S = i.e. electric

potential at point ř, related to electors field Also leads to: - y JV(x, y, z) - 2 JV(x, y, z) $\tilde{E} = -\hat{X} \frac{\partial V(X, Y, Z)}{\partial X}$ relation between (this is inverse electric potential electric field, and

Celectric potential
"Voltage"

(V)

frequently called)

Electric Potential of charge point V(r) = kgo $E_{L} = -\frac{3L}{3L} = -\frac{K\sigma_{0}}{2L} = \frac{K\sigma_{0}}{L}$ point charge Given a

Given a point charge

qo, at the origin, how much

work must it take to

bring charge q, to point

Equipotential
Surfaces are
perpendicular
to electric
field lines

Figure 25-24 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

We obtain the net potential energy by assembling the charges, first moving q_2 into the Coulomb potential of q_1 ...

1/23 = K P1 + P2

Figure 25-27 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

For constant electric field the potential difference (voltage) is V=E d

Figure 25-30. Physispe minimum energy to create this configuration is? (a) 0; (b) qV; (c) qV/2

2. The energy required to bring a small charge

q, across conducting plates is

create charged plates to Minimun Energy and two ways to look at stored energy energy V= Ed E = Q AG DW = DQV=DQEd= DQQd Done on charged plates Minimum Work $M = \begin{cases} dv, & (do, N(0)) \end{cases}$ V(Q')= Q'd AEO = (20'0'd/eA= = Q d / = QV ZAE. Q'd = EDA d Q = ED Y EZ = $\epsilon_0 E$ W = Energy Density/Volume Energy Density fundamental relationship; Energy in fields)

what is the minimum work required to take charge, 9, from A to B?

Does this work depend on path?

...and more negative nearer to -Q.

Figure 25-25 Physics for Engineers and Scientists 3/e © 2007 W.W. Norton & Company, Inc.

Midplane between charges is an equipotential.

Figure 25-11 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

on each conductor? How will the potential vary

a. Since there are many

b. Each conductor will have its vary on each conductor Conductors, the potential will

Figure 25-29 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

what is the surface charge on the conductor in terms of the electoric fields

1 6 6 m

It takes no energy to move a charge along a surface of constant potential.

Figure 25-26 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

For empty cavity, any field line would have to begin and end at surface

conducting cavity.

2000

inside

fold

would imply a potential Path parallel to field line difference: impossible!

everywhere in cavity. **Electric field is zero**

© 2007 W.W. Norton & Company, Inc. Figure 25-19 Physics for Engineers and Scientists 3/e

© 2007 W. W. Norton & Company, Inc. Figure 25-20 Physics for Engineers and Scientists 3/e difference between and sphere 2, v What is sphere 1 I sphere 2, when there so a conducting when there so both conducting spheres? (a) sphere tonducting wire (c) in determinate Which More potential (b) sphere 2 sphere has sphere 2

Physics in Practice 25-1 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

Physics in Practice 25-3 Physics for Engineers and Scientists 3/e IT Stock Int'l/indexphoto.com

Are the car occupants in danger?

Figure 25-22 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

point $oldsymbol{P}$ on the positive x axis. We find the potential at a

Figure 25-15 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

$$K(P) = \sum_{k=1}^{\infty} \frac{d(k)}{R^{2} + y^{2}}$$

$$= \frac{Qk}{(R^{2} + y^{2})^{3/2}}$$

$$= \frac{Qk}{(R^{2} + y^{2})^{3/2}}$$

$$= \frac{Qk}{(R^{2} + y^{2})^{3/2}}$$

$$dV = \frac{k dx' \lambda}{(x+x')}, \lambda = \frac{Q}{L} \quad \text{Notes off}$$

$$V = \lambda k \int \frac{dx'}{(x+x')}$$

$$= \lambda k \left[\ln (x+x') \right]$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(1 + \frac{L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(1 + \frac{L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(1 + \frac{L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(\frac{1+L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(\frac{1+L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(\frac{1+L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \left(\frac{1+L}{x} \right)$$

$$= \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right) = \frac{Q}{L} k \ln \left(\frac{x+L}{x} \right)$$

Electric Field along axis of rod

$$E = -\hat{x} \frac{\partial V}{\partial x}$$

$$= -x \frac{\partial k}{\partial x} \frac{\partial x}{\partial x} \ln(x^{2} + x^{2})$$

$$= -\frac{\partial k}{\partial x} \left[\frac{1}{x} - \frac{1}{x^{2}} \right]$$

$$= +\frac{\partial k}{\partial x} \left[\frac{1}{x} - \frac{1}{x^{2}} \right]$$

$$= \frac{\partial k}{\partial x} \left[\frac{1}{x} - \frac{1}{x^{2}} \right]$$

$$= \frac{\partial k}{\partial x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

$$= \frac{\partial k}{x^{2}} \left[point \ charge \ result$$

Uniform cylindrical

charge. Total charge col

uniformly distributed for rea

What 18

potential, relative

to the axis

at radius r,

if r < 9

r > 0

2 = Q

L

$$E = \frac{Q(r)}{\epsilon_0} = \frac{Q(r)}{\epsilon_0}$$

$$Q = \frac{Q}{L \pi a^2}$$

$$Q = \frac{Q}{L \pi a^2}$$

$$Q = \frac{Q}{L \pi a^2}$$

$$Q = \frac{Q}{a^2}$$

$$E = \frac{\lambda}{2\pi\epsilon_0} \frac{\Gamma}{\alpha^2}$$

$$V = -\frac{\lambda}{2\pi\epsilon_0} \frac{\Gamma^2}{\alpha^2} \frac{1}{2}$$

$$V(a) = -\frac{\lambda}{4\pi\epsilon_0} \frac{\Gamma^2}{\alpha^2}$$

From E zarl =
$$\frac{2}{60}$$
 $\frac{2}{2\pi r}$ = $\frac{2}{2\pi r}$ $\frac{2}{2\pi r}$ $\frac{2}{60}$ $V = -\frac{2}{60}$ $\frac{2}{60}$ $\frac{2}$