(a) de convex image you

planar (c) a concave nimer

Bo Zaunders/Corbis. Figure 34-95 Physics for Engineers and Scientists 3/e

The image we see of the five

is due to @ planer minner

Figure 34-41b Physics for Engineers and Scientists 3/e The im 4 se you see is courtesy of John Markert (a) xirtual (b) real

(c) indetermined

Figure 34-43b Physics for Engineers and Scientists 3/e David Parker/Photo Researchers, Inc.

Figure 34-43a Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

MIRROR AND LENS EQUATION

But there is a difference in notation between mirror and lens

MIRROR; s > 0 on left;

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{f}; \quad M = \frac{-s'}{s} \quad \text{s'>0, s' on left}$$

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{f}; \quad M = \frac{-s'}{s} \quad \text{s'>0, s' on left}$$

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{s'}; \quad M = \frac{-s'}{s} \quad \text{s'>0, s' on left}$$

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{s'}; \quad M = \frac{-s'}{s'} \quad \text{s'>0, s' on left}$$

$$\frac{1}{s} + \frac{1}{s} = \frac{1}{s'}; \quad \text{wirtual upright image}$$

$$\frac{s' < 0 \text{ on right}}{s' < 0 \text{ on right}}$$

$$f = R/2 < 0, \text{ diverging convex mirror}$$

LENS; s > 0 on left real image (inverted)

s'>0, s' on right

 $1/f = (n-1)(1/R_1+1/R_2) > 0$, converging convex lens virtual upright image

s' < 0, on left $1/f = (n-1)(1/R_1+1/R_2) < 0$, diverging concave migror Jens

© 2007 W. W. Norton & Company, Inc.

Figure 34-45b Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

© 2007 W.W. Norton & Company, Inc.

Figure 34-47 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

direction of propagation of light

Figure 34-48 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

from image point, image is virtual. Since rays only appear to come

Figure 34-50 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

tor nation of reduced upment inaso

Since rays only appear to come

Figure 34-51 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

Figure 34-55 Physics for Engineers and Scientists 3/e © 2007 W. W. Norton & Company, Inc.

vitreous humor

Figure 34-89 Physics for Engineers and Scientists 3/e © 2007 W.W. Norton & Company, Inc. cornea crystalline lens **1.2.2 cm** → TOTION

