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Material

All the material (slides + source code) can be downloaded
from

http://wpage.unina.it/detommas/iiss.html

http://wpage.unina.it/detommas/iiss.html
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Plasma current and shape control

I This hand-on session focuses on:

1. PF Current Control
2. Plasma Current Control
3. Plasma Shape Control (in an XSC-flavor)

I The JET tokamak will be considered

I We will assume the plasma is vertically stabilized on a
faster timescale (wrt the current and shape control time
scale)
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Plasma linearized model of JET tokamak

The linearized plasma model used in this session is

δẋ = Aδx + Bδu

δy = Cδx

where the state and input vectors are given by

δx =

(
δIPF
δIp

)
and δu =

(
δVPF

δVp

)
I δIPF , δVPF are the PF current and voltage variations

I δIp, δVp are the plasma current and loop-voltage
variations
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Model Outputs

The output vector is equal to

δy =

 δIPF
δIp
δg


where δg holds the plasma shape descriptors, i.e.

I gaps

I strike-points

I x-points
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Plasma shape descriptors at JET
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JET PF circuits

The 9 currents in the PF coils are

I IP1 - current in the P1 circuit

I IP4T - current in the P4 circuit

I IIMB - imbalance current in the P4
circuit

I IPFX - current in the FX circuit

I ISHP - current in the shaping circuit

I ID1 , ID2 , ID3 , ID4 - currents in the
divertor coils
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Reference Control Scheme

I SC generates current references

I A PF currents controller must be designed
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JET Current Controller

Plasmaless model

VPF =


L1 M12 . . . M1N

M12 L2 . . . M2N

. . . . . . . . . . . .
M1N M2N . . . LN

 dIPF
dt

+


R1 0 . . . 0
0 R2 0 0
. . . . . . . . . . . .
0 0 . . . RN

 IPF

Resistive compensation

VPFref = R̂IPF + K(Yref − Y)

Static relationship between PF coils current and controlled variables

Y = TIPF

Control Matrix

K = M̂T−1Λ−1 with Λ diagonal matrix
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JET Shape Controller

Closed-loop system

MT−1Ẏ + RIPF = MT−1Λ−1(Yref − Y) + RIPF ⇒
⇒ Ẏ = Λ−1(Yref − Y)

By a proper choice of the T matrix it is possible to achieve:

I current control mode

I plasma current control mode

I gap control mode
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Material

All the material (slides + source code) can be downloaded
from

http://wpage.unina.it/detommas/iiss.html

http://wpage.unina.it/detommas/iiss.html
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Plasma current model

A simplified model of the plasma current circuit is
considered

I plasma resistance is neglected

I only the mutual inductance with the P1 circuit is
retained

The following broadly valid linear model can be derived

İp(t) = −cİP1(t) , with c > 0 .
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eXtreme Shape Controller (XSC)

I The eXtreme Shape Controller (XSC) controls the
whole plasma shape, specified as a set of 32 geometrical
descriptors, calculating the PF coil current references.

I Let IPFN
(t) be the PF currents normalized to the

equilibrium plasma current, it is

δg(t) = C δIPFN
(t).

It follows that the plasma boundary descriptors have the
same dynamic response of the PF currents.

I The XSC design has been based on the C matrix. Since
the number of independent control variables is less than
the number of outputs to regulate, it is not possible to
track a generic set of references with zero steady-state
error.

δIPFNreq
= C†δgerror
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eXtreme Shape Controller (XSC)

I The XSC has then been implemented introducing weight matrices
both for the geometrical descriptors and for the PF coil currents.

I The determination of the controller gains is based on the Singular
Value Decomposition (SVD) of the following weighted output
matrix:

C̃ = Q̃ C R̃
−1

= Ũ S̃ Ṽ
T
,

where Q̃ and R̃ are two diagonal matrices.

I The XSC minimizes the cost function

J̃1 = lim
t→+∞

(δgref − δg(t))T Q̃
T
Q̃(δgref − δg(t)) ,

using n̄ < 8 degrees of freedom, while the remaining 8 − n̄ degrees
of freedom are exploited to minimize

J̃2 = lim
t→+∞

δIPFN (t)T R̃
T
R̃δIPFN (t) .

(it contributes to avoid PF current saturations)
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XSC - Gap controller
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Development of control systems – V Cycle 1/2

The traditional development cycle of control systems follows the three phases:

I design

I implementation

I testing
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Development of control systems – V Cycle 2/2

I the design phase ends with the functional requirement specification;

I the implementation phase starts with the software requirements;

I the test and validation phase is mainly carried out on-site.
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Motivations

Due to the additional efforts and costs, often the
architectural design is carried out without any modeling and
simulation support.
However, if

I the system to be controlled is non-conventional or new;

I the required performances are very demanding;

I the plant is not yet available and/or the testing on-site
is very risky;

then the use of modeling and simulation tools during
the design phase becomes highly recommended.
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Design aided with modeling, simulation and rapid
prototyping tools

For the design and development of a critical system, it is
more appropriate to resort to modeling, simulation and rapid
prototyping tools.
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Prototype of the control system as formal description of
the requirements

I The high-level description of the prototype represents an
unambiguous description of the control system behavior.

I It can be used as formal specification of the
requirements.
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Tools

The proposed approach is based on the availability of
I several plant models (at different level of details)
I automatic tools for the rapid prototyping of both

control systems and plant models
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Setup 1/3

Two operational setups have been provided

I the offline setup to perform the design of the control system,

I the real-time setup whereto perform test and validation with
hardware-in-the-loop (HIL) simulations.
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Setup 2/3

I A simplified model of both the plant (CSS-OPS) and of
the controller (CCS-PROT) have been developed in the
Matlab/Simulink environment.

I Exploiting the Labview Simulation Interface Toolkit
(SIT) we:

I Develop a common Human-Machine Interface both for
the offline and for the real-time (that can be accessed
even remotely, thanks to a web server application)

I Deploy the plant on a PXI Real-Time target to perform
HIL simulations with a PLC-based controller
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Experimental setup deployed at ITER for the rapid
prototyping of the CSS
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Rapid prototyping via NI Labivew SIT
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Common HMI with Labview
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CSS Rapid prototyping - Reference

More details can be found in

G. Ambrosino et al.
Rapid Prototyping of Safety System for Nuclear Risks of
the ITER Tokamak
IEEE Transactions on Plasma Science, accepted for
publication, Jul. 2010.
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