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Objectives of Talk 

• Learn some control terminology 

• Develop some intuition about control concepts 

- Details occasionally (and intentionally) omitted 

• Understand the multiple objectives of control 
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Model-Based Control Design Process 

1.  Make system model 
2.  Verify model predicts behavior of system 
3.  Design controller 
4.  Test using models in closed-loop simulation 
5.  Implement and test implementation 
6.  Deploy in operation 

• Using only 5-6 is feasible and often successful – why do steps 1-4? 
–  Requires empirical tuning, cost = $50,000 - $100,000 per day on present devices 
–  Performance: 

–  Large systems (many inputs / outputs) difficult to tune properly for best control 
–  Nonlinear systems require retuning over many equilibrium states.  

–  Even if Steps 5-6 is chosen approach, studying models is useful to understand how 
control affects system  

–  Next Generation devices (e.g. ITER) will not allow empirical tuning 
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•  A Block Diagram consists of two parts: 
–  Signals (arrows in diagram) 
–  Operations (blocks in diagram) 

•  Example (poloidal field system producing plasma shape) 

•  Equivalently, hiding all details: 

Introduction to System Representation - Block Diagrams 

Power 
Supply	


Plasma / 
conductors	


Control 
parameter 

transformation	

Power Supply	


Commands	

Shape & Position 

Parameters 	

(e.g. gaps, X point R,Z)	


V	
 B,ψ	


Shape Control 
System	


Power Supply	

Commands	


Shape & Position 
Parameters 	


(e.g. gaps, X point R,Z)	
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System Representation – Ordinary Differential Equations 

• State Space Models  
–  General (x is "state"): 

–  Note ordinary differential equation (ODE) is 1st order 
–  Linear, time-invariant (LTI) system: 

–  Example (plasma + conductors): 

–  I(t) = toroidal conductor currents (perturbations δI from equilibrium  states x); 
M*=mutual inductance matrix (modified by plasma response), R=resistance matrix  

–  y(t) = coil currents, flux and field in vacuum region; C=green functions 
–  v(t) = input voltage from power supplies (δv from equilibrium); U = ones for coils, 

zeros for vessel conductors 

System	
u(t)	


€ 

˙ x = f (x,u,t)
y = g(x,u,t)

y(t)	


€ 

˙ x (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

€ 

M*
d(δI)
dt

+ Rδ I =Uδv

y = CI

€ 

d(δI) dt = AδI + Bv
⇒ y = CI

(A = −M*
−1R, B = M*

−1U)

ITER	
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System Representation – Laplace Transform 

•  Definition: For a given function f(t) with f(0)=0, Laplace transform of f is: 

•  Nice properties: 

•  For an example of how it's used, apply to : 

€ 

˙ x (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

  

€ 

F(s) = L f (t){ } = e−st f (t)dt
0

∞

∫ , s =σ + jω

complex ("s") plane	

("frequency domain")	


€ 

σ
€ 

jω

  

€ 

L
df
dt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= sF(s), L
d2 f
dt 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= s2F(s), ... etc...

L f (τ)dτ
0

t
∫⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
1
s
F(s)

€ 

sX(s) = AX(s) + BU(s)
Y (s) = CX(s) +DU(s)

€ 

sX(s) = AX(s) + BU(s) ⇒ (sI − A)X(s) = BU(s) ⇒ X(s) = (sI − A)−1BU(s)

€ 

Y (s) = CX(s) +DU(s)

= C(sI − A)−1BU(s) +DU(s) ⇒ Y (s) = C(sI − A)−1B +D( )U(s)

€ 

⇒
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System Representation - Transfer Functions 

•  Transfer Function = ratio of Laplace Transforms of (scalar) output and input signals:  

•  Example (simple mechanical system; x is displacement):  

•  Example (lowpass RC filter): 

•  General LTI case, from previous page: 

•  If Y, U are scalars:                  (Single-Input-Single Output (SISO) system) 

•  If Multi-Input-Multi-Output (MIMO) system, each element in matrix  
    is a scalar transfer function, so still called "transfer function" 

€ 

Y (s) = C(sI − A)−1B +D( )U(s)

€ 

m˙ ̇ x (t) + d˙ x (t) + kx(t) = u(t) ⇒ ( ms2 + ds + k)X(s) = U(s) ⇒
X(s)
U(s)

=
1

( ms2 + ds + k)€ 

Y (s)
U(s)

€ 

Y (s)
U(s)

= C(sI − A)−1B +D( )

€ 

C(sI − A)−1B +D

Vin	
 Vout	
C	
R	


€ 

⇒
Vout (s)
Vin (s)

=
1

RCs+1
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System Representation - Equivalent Representations 

•  Block Diagram   State Space (1st order ODE)  Transfer Function 

mechanical 
system	


RC	

filter	


Shape 
Control 
System	


force	

u	


displacement	

x	


€ 

m 0
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
d
dt

v
x
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ +

d k
−1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
v
x
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

u
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 

y = 0 1[ ]
v
x
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 

€ 

Y (s)
U(s)

=
1

(ms2 + ds+ k)

Vin	
 Vout	


€ 

Vout (s)
Vin (s)

=
1

RCs+1

€ 

˙ V out (t) = −
1

RC
Vout (t) +

1
RC

Vin (t)

y(t) = Vout(t)

€ 

Y (s) = C(sI − A)−1B +D( )U(s)

€ 

˙ x (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

PS	

Commands	
 Shape 	


Parameters 	


€ 

m˙ ̇ x + d˙ x + kx = u
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System Representation – Feedforward/Feedback 

Power 
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Control 
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 shape 
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 V	
 B,ψ	
Feedback	

Controller	
shape	


request 	

error	
+	
+	

-

Open-Loop Control	


Closed-Loop Control	

shape 

params 	


Combined	
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•  What is undriven "natural" behavior of system? 

•  Defined by the eigenvalues    : 

•  An arbitrary vector v can be expressed as sum of eigenvectors: 

•  Then:  

•  That is, we can analyze as n scalar ODE's:  

•  To determine stability of the system:  

•  If ANY eigenvalue has Re(λ)>0 => system is UNSTABLE. 
•  Otherwise, system is STABLE. 

Analysis of Dynamics (Time Dependent Behavior) 

complex-plane	

(               )	


€ 

σ
€ 

jω

€ 

˙ x (t) = Ax(t) + Bu(t)

€ 

λ

€ 

λx = Ax

€ 

v = αk xk
k=1

n

∑

€ 

Av = αk Axk
k =1

n

∑ = αkλk xk
k =1

n

∑ ⇒ ˙ x = αk ˙ x k
k =1

n

∑ = αkλk xk
k =1

n

∑

€ 

σk = real(λk ) < 0 ⇒ xk (t)→0, t →∞

σk = real(λk ) > 0 ⇒ xk (t)→∞, t →∞

(stable)	

(unstable)	
 x 

unstable λ	


stable λ	


x 

€ 

˙ x k = λk xk ⇒ xk (t) = eλk t xk (0)

€ 

λ =σ + jω
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•  Poles and zeros of Transfer Functions: 
–  Complex function theory terminology: 

•  Roots of denominator polynomial a(s) = poles 
•  Roots of numerator polynomial b(s)= zeros  

•  If ANY poles have σ=Re(s)>0, system is UNSTABLE,   
•  otherwise, STABLE.  (Explanation in a moment.) 
•  Examples: 

Analysis of Dynamics (Laplace Domain) 

€ 

y(s)
u(s)

=
b(s)
a(s)

complex-plane	

(               )	


€ 

σ
€ 

jω

€ 

s =σ + jω

€ 

Y (s)
U(s)

=
1

(ms2 + ds+ k)

has 1 poles (in LHP) and no zeros  => STABLE 

LHP	
 RHP	


€ 

Vout (s)
Vin (s)

=
1

RCs+1

has 2 poles (in LHP) and no zeros => STABLE 

€ 

Vout (s)
Vin (s)

=
RCs
RCs+1

(high-pass filter) has 1 pole (in LHP) and 1 zero (at 0) 
                => STABLE 

LHP/RHP = Left/Right Half Plane 

x x 
x 

x 
o o o 

polynomials 	
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•  Eigenvalue is a complex number λ satisfying: 
–                        for some             
–                           does not exist  
–          determinant 

•  Note similarity to portion of Transfer Function:  

•  In fact,  

•  A common situation is D=0, so that the transfer function is: 

•  That is, the POLES of the transfer function = roots of determinant of (sI-A)  
   = EIGENVALUES of A 

Analysis of Dynamics (Time vs. Laplace Domains) 

€ 

(λI − A)x = 0

€ 

(λI − A)−1

€ 

Y (s) = C(sI − A)−1B +D( )U(s)

€ 

(sI − A)−1 =
1

sI − A
Adj(sI − A) where: 

€ 

1
sI − A

CAdj(sI − A)B( )
polynomial in s 

matrix of  
polynomials in s 

€ 

λI − A = 0
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€ 

x ≠ 0

€ 

X = determinantof X
Adj(X) = adjugateof X (matrixof cofactors)



complex-plane	

(                    )	


€ 

σ

€ 

jω

x 

x x x 

Understanding System Response – Correspondence 
Between Eigenvalue (Pole) Location and Time Response 

x 
x 

x 

x 

€ 

˙ x k = λk xk ⇒ xk (t) = eλk t xk (0)

€ 

λ = s =σ + jω
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•  Recall Laplace Transform definition: 

•  Restrict to jω axis obtains Fourier Transform if f(t<0)=0 : 

•  For a system with transfer function Y(s)/U(s), 

•  System Gain is defined to be |Y(jω)/U(jω)| 

•  System Delays: Two types: 
–  Phase lag = frequency dependent time delay 

–  Pure delay  = frequency independent time delay  

Understanding System Response – Frequency Response 

  

€ 

F(s) = L f (t){ } = e−st f (t)dt
0

∞

∫

€ 

σ
€ 

jω

€ 

s =σ + jω

  

€ 

F( jω ) = F f (t){ } = e− jωt f (t)dt
−∞

∞

∫

gain	


€ 

Y ( jω )
U( jω )

=
Y ( jω)e j ⋅phase(Y ( jω ))

U( jω)e j ⋅phase(U ( jω ))

pure	

delay	
€ 

lag = phase(Y ( jω)) − phase(U( jω))

low frequency = small delay,  high frequency = large delay	
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•  Examples: 

Understanding System Response – Bode Plots of 
Frequency Response 

Lowpass filter Highpass filter 

€ 

Vout (s)
Vin (s)

=
1

RCs+1

€ 

Vout (s)
Vin (s)

=
RCs
RCs+1

phase lag 

phase lead 

gain "roll-off" 

gain(s=0)=1 

gain(s=0)=0 

NOTE: Bode gain plot is ratio of powers (20log10(amplitude ratio)). 
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•  Control plasma major radius: 
-  Assume plasma current (Ip) is positive 
-  Radial hoop force FR pushes plasma outward 
-  Vertical field (Bz) produced by outer coils 

holds it in desired location (regulation) ... 
-  ... or moves plasma in/out to match a time-

dependent request (tracking) 

Objectives of Control – Tracking and Regulation 

tokamak positive current sign 
convention (viewed from above)	
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•  Control plasma elongation: 
-  Increasing elongation (κ) has been shown 

to improve performance, so we want to 
control: 

-  Control accomplished by "pulling" on top 
and bottom of plasma 

-  However, elongating plasma introduces 
destabilizing field curvature (explained in a 
moment) 

Objectives of Control – Tracking and Regulation 

€ 

κ =
b
a
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•  Derivation of Closed-Loop Transfer Function: 

•  What we want: 

commands	
K(s)	
requested	

params 	


error	
+	
+	

- controlled	


params 	


Objectives of Control – Tracking and Regulation 

G(s)	

Controlled System	


(Plant)	

Feedback Controller	


r(s)	
 p(s)	


€ 

p(s) =G(s)K(s)(r(s) − p(s))
(I +G(s)K(s))p(s) =G(s)K(s)r(s)

~1 in 
control  
band 

~0 at high 
frequencies 

€ 

⇒
p(s)
r(s)

=
G(s)K(s)

(I +G(s)K(s))

large at low 
frequencies 

small at high 
frequencies 

Open-Loop 
Transfer 
Function	


Closed-Loop 
Transfer 
Function	


€ 

G(s)K(s)

€ 

G(s)K(s)
(I +G(s)K(s))
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Objectives of Control - Stabilization 

•  Open-loop instability: 

•  Plasma vertical instability (caused 
by destabilizing curvature): 

FEEDBACK 

applied 
force 

applied 
force 

FEEDBACK 

Anti-symmetric coils 
provide radial field to 

apply force that opposes 
plasma vertical motion 
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Objectives of Control – Avoid Closed Loop Instability 

•  Gain cannot be considered 
independently from phase. 

•  If gain > 1 .... 

•  ... when phase = -180 (opposite sign) 

•  => positive-feedback at that frequency 
and result is control-driven instability...  

€ 

σ
€ 

jω

x 

x 

... and closed-loop 
transfer function has 
pair of poles in RHP   

control pushes too hard 

system "overshoots" 

control pushes too hard 
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Objectives of Control – Closed Loop Stability 

•  Need to consider both gain AND phase: 

large at low 
frequencies 

small at high 
frequencies 

Pay attention to stability 
(phase) in the middle 

Gain margin 

Phase margin 

•  Need gain <<1 for phase=-180o 

•  Need phase lag << 180o for gain >1 

(Gain/Phase margins are one 
example of stability margins.) 

Previous gain K reduced to achieve 
positive gain and phase margins. 
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P(s)	
 T(s)	
 C(s)	
com	

V disturbance: dV(s)	
 B,ψ disturbance: dB(s)	


K(s)	

shape request 	
 error	
+	
+	


- shape params 	


Objectives of Control – Disturbance & Noise Rejection 

+	


+	
+	

+	


+	
 +	

+	


noise: n(s)	

+	


+	

Power Supply	
 Plasma/conductors	
 calc control params	
Controller	


•  Disturbance rejection means ratio of norms of errors to input is small: 

•  Noise rejection means ratio of norms of errors to input noise is small: 

•   These are ensured by making norms of transfer functions small, e.g.: 

•  For example, large gains in controller K can make this small. 

€ 

e(s)
dV (s)

<<1, e(s)
dB (s)

<<1

r(s)	
 p(s)	


error: e(s)	


€ 

e(s)
n(s)

<<1

€ 

e(s)
dV (s)

≤ −(I +CTPK)−1CT <<1

(attenuate effect of disturbances)	


(attenuate effect of noise)	
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Performance Requirements – Time Domain 

rise time  

•  Typical Specifications on Step Response: 
–  Rise Time < X seconds 
–  Percent Overshoot < Y % 
–  Settling Time < Z seconds (within ε %) 

90%  

10%  

overshoot 

settling time  

ε%  
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•  Consider plant 
used in Bode 
plots: 

•  Root Locus 
diagram shows 
stability changes  
with K: 
-  Open-loop 

stable plant 
-  Stable closed 

loop, K=10 
-  Unstable 

closed loop,  
K=200 

commands	
K	
requested	

params 	


error	
+	
+	

- controlled	


params 	


Performance Requirements - Stability 

Plant	
Feedback Controller	


r(s)	
 p(s)	


€ 

2e8
s3 +2100 s2 +2.2e6 s +2e8

open-loop  
poles (x) K=10 poles => 

stable closed loop 

Increasing gain 
K => eventually 

unstable 

x 

x 
x 

x 

x x 

Root Locus	

Diagram (in s-plane) 	
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System Representation – Sampled Data Systems 

•  Modern plasma control mixes discrete- and continuous-time systems: 

•  Approach (1) to Control Design: 
–  Treat entire system as continuous time. Develop continuous controller K(s), 

then convert to discrete controller K(z).   
–  Issues:  Close to original physics models, but sampling rate must be fast 

enough to justify treating discrete controller as continuous. 

•  Approach (2) to Control Design: 
–  Treat entire system as discrete and develop discrete controller directly.  

(Methods exist to convert mixed continous/discrete to all discrete system.)  

–  Issues:  Direct production of discrete controller with given sample rate, but  
difficult to retain physical intuition.	


P(s)	
 T(s)	
 C(s)	
K(z)	
+	
+	

- Power 	


Supply	
 Plasma/	

conductors	


control 	

params	


Controller	

r(s)	
 p(s)	


D/A	

continuous time (analog) system	


A/D	

discrete time (digital) system	


NOTE	
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System Representation – Discrete Time Systems 

•  Time now represented by integers k=1,2,...  (i.e., time = sample number) 

•  State-Space models are difference equations: 

•  Now we have Z-transform instead of Laplace transform 

•  Nice properties: 

•  Transfer functions now defined on "z"-plane: 

System	
u(k)	
 y(k)	


€ 

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k)

€ 

F(z) = Z{ f (k)} = f (k)
k=−∞

∞

∑ z−k

1-sample 
delay	
U(z)=F(z)	
 Y(z)=z-1F(z)	


€ 

zX(z) = AX(z) + BU(z)
Y (z) = CX(z) +DU(z)

⇒ Y (z) = C (zI − A)−1BU(z)( ) +DU(z)

complex-plane	

(               )	


€ 

z = ξ + jη

€ 

jη

€ 

ξ

stable pole 

x 

x 

unstable pole	

€ 

1

u(k)=f(k)	
 y(k)=f(k-1)	
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Controllers – Example Digital Implementations 

• Simple gain multiplier: 
- Command signal u(k) = K * e(k)      (error e(k) = r(k) - y(k)) 

- K can be scalar (SISO) or matrix (MIMO) 

• Digital filter (SISO): 

• State Space: 
-  Either SISO or MIMO: 

- Output computed from present error and previous state 

- Controller state is updated at each time step 

€ 

u(k) = a1u(k −1) + ...+ anu(k − n)
+ b0e(k) + b1e(k −1) + ...+ bme(k −m)

€ 

⇒
U(z)
E(z)

=
b0 + b1z

−1 + ...+ bmz
−m

1− a1z
−1 − ...− anz

−n

only previous samples	


present and previous samples	


€ 

u(k) = Ccxc (k −1) +Dce(k)
xc (k) = Acxc (k −1) + Bce(k)
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Next – some examples of types of controllers 

• Why different controller types? 
-  Simple versus difficult to use 

-  SISO versus MIMO system 

- Highly coupled versus mostly diagonal system 

- How problem is posed (what you "care about") 

- Noise characteristics of system 

- Disturbance sources/effects and characteristics 

-  Level of knowledge of system dynamics (model uncertainty) 

- Guaranteed stability including uncertainty versus nominal 
stability (not accounting for uncertainty) 

- Guaranteed performance including uncertainty versus 
nominal performance (not accounting for uncertainty) 
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•  PID = Proportional, Derivative, Integral feedback  
–  Ideal: 
–  e(t) = error signal, u(t) = command to control actuator   

•  Simple and often all that is needed (DO NOT confuse "often" with "always") 
•  Purpose of each term: 

–  KP: Tracking (KPG/(1+KPG) ~ 1 over control bandwidth) 
–  KI: Regulation (gain is infinite at jω=0 => steady-state error = 0) 
–  KD: Damping, phase lead 

•  Issues: 
–  KP: can destabilize if too large   (implemented as simple gain multiplier) 
–  KI:  integrator windup   (implemented as digital filter) 
–  KD: amplifies noise at high frequencies  (implemented as digital filter) 

•  Advantage: 
–  Simple, tunable 

•  Disadvantage 
–  Difficult to determine gains in highly coupled systems 

Controller Types – PID controllers 

€ 

u(t) = KPe(t) + KD ˙ e (t) + KI e(t)dt∫
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•  LQG= Linear, Quadratic, Gaussian ("optimal control") 
–  Assume the linear system has Gaussian noise v(t), w(t): 

–  Minimize objective functional J ... 
–  ... where Q>0, R>0 (quadratic cost)  
–  Typically, states x are variations around a stable equilibrium x0 

–  Sometimes J has terms for output y or error e = reference - output   

•  Main idea: keep signals small "on average" (variation due to noise) 
•  Optimal controller is given by: 

–  First equation is the Kalman Filter, which provides an optimal estimate for x 
–  If state measured directly, insert x in place of x-hat and use 2nd equation only 

•  Advantage: 
–  Straightforward to generate controller optimal against "noise", once J is defined 

•  Disadvantage 
–  Matrices Q and R typically determined through trial and error 

Controller Types – LQG controllers 

€ 

˙ x (t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) + w(t)

€ 

J = x(t)T Qx(t) + u(t)T Ru(t)d
0

∞

∫ t

€ 

ˆ ˙ x (t) = Aˆ x (t) + Bu(t) + K(y(t) −Cˆ x (t))
u(t) = −Lˆ x (t)
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•        = method for synthesizing robust controllers ("Hardy space, infinity norm") 
•  Robust = guaranteed stability/performance with unknown (but bounded) 

uncertainty in plant model 
–  Infinity ("worst case") norm :  

•  Main idea 
–  Remove Δ from picture ... 
–  ... and make transfer function from Δout to Δin as small as possible 

•  Advantage: 
–  Guarantees on stability and performance in the deployed feedback system 

•  Disadvantage: 
–  More difficult to understand and to use; some tools produce conservative designs 

Controller Types – H-infinity ("robust") controllers 

€ 

H∞

commands	
K(s)	
error	
+	
+	

- G(s)	


Nominal Plant	
Controller	

r(s)	
 p(s)	


Δ(s)	


+	

+	


+	


€ 

Δ ∞ < bound

Δout(s)	
Δin(s)	


Uncertainty	

nominal plant model	


uncertainty band	


ga
in
	


ph
as

e	
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Summary 

•  Control Terminology and Concepts: 
–  Linear/Nonlinear systems, Linear-Time-Invariant system, Discrete time 

system, System gain/phase, s-plane, z-plane, poles, zeros, pure delay, 
phase lag, phase lead, SISO, MIMO, feedforward, feedback, open-loop 
instability, control-driven instability, LHP, RHP, frequency response, roll-off, 
gain margin, phase margin, stability margin, disturbance, overshoot, rise 
time, settling time  

•  Control Tools and Methods: 
–  Block Diagrams, Transfer Functions, State Space Models, Laplace Transform, 

Z-Transform, Fourier Transform, Bode plot, derivation of closed-loop transfer 
function, Root Locus, PID controllers, LQG controllers, H-infinity controllers 

•  Multiple Objectives of Control: 
–  Stability,  
–  Tracking and Regulation 
–  Disturbance Rejection 
–  Noise Rejection 

–  Robustness 
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Further Reading 

•  Free downloadable books: 

–  Wikibook of automatic control systems, http://en.wikibooks.org/wiki/
Control_Systems (not how you would want to learn control, but useful as a 
reference) 

–  Kwaakernak and Sivan, Linear Optimal Control Systems, http://
www.ieeecss.org/PAB/classics/ 

–  Wikibook of signals and systems, http://en.wikibooks.org/wiki/
Signals_and_Systems 

–  Matlab documentation at http://www.mathworks.com/access/helpdesk/
help/helpdesk.html 

–  Control System Toolbox, Robust Control Toolbox 

•  Good entry-level control books: 
–  Franklin, Powell, Emami-Naeini, Feedback Control of Dynamic Systems 

–  Friedland, Control System Design: An Introduction to State-Space Methods	
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