

irfm

Real Time Control of advanced scenarios cadarache for steady-state tokamak operation

Xavier LITAUDON

CEA-IRFM, Institute for magnetic fusion research (IRFM) **CEA Cadarache**

F-13108 St Paul Lez Durance, France

e-mail: xavier_litaudon@cea.fr

Courtesy: J.F Artaud, A. Bécoulet, S. Brémond, D. Campbell, J. Ferron, G. Giruzzi, C. Gormezano, E. Joffrin, S. H Kim, D. Mazon, D. Moreau, P. Politzer, T. Suzuki, T. Tala

OUTLINE

irfm

cadarache

TOWARDS REAL TIME PROFILE CONTROL ?

> Challenges for continuous operation

- continuous tokamak reactor operation
- real time control requirement

> Real time control of kinetic & magnetic energy

- optimal profile for steady-state & MHD stable profiles
- approaches to profiles control
- Real time fusion D-T burn control
 - burn control with dominant bootstrap and α -heating ?
- Control of core performance with the plasma facing components constrains
 - wall scenario compatibility issues
 - simultaneous control of core & edge

- Externally driven, e.g. waves injection
 - To drive 15MA on ITER requires 150MW
 - 150MW coupled power requires ~ 1GW fusion

– Internally driven $\propto \nabla Pression$: bootstrap effect

Efficient reactor at high Q =P_{fus}/P_{add} relies on the optimisation of bootstrap current

[e.g. Kikuchi M Nucl. Fusion 1990, Gormezano C ITER physics basis Nuc Fus 2007]

Association Euratom-Cea Challenges of continuous tokamak operation

- ir f m > Fully non-inductive regime

cadarache

- > High confinement & bootstrap current
- Real time control of kinetic & magnetic configuration close to operational limits with a large fraction self α-heating & bootstrap

> Technology of Long Pulse Operation

 Coils, Plasma Facing Components, Structure Materials, Heating &Current Drive systems, Diagnostics, data acquisition, fuel cycle...

Worldwide research activity: physics, modelling, technology

Association Euratom-Cea Towards a continuous tokamak reactor A scientific and technical challenge DEMO Ir f m Image: Ceal Ceal JET JET JT60-SA Tore Supra Image: Ceal

P _{fusion} /P _{add}	DD	Q ~ 1	DD	Q ~ 10	Q ~ 30
duration	~400s	2s	~100s	400-3600s	Continuous
self-heating	0%	10%	0%	70%	80 to 90%
bootstrap	20%	20%	>60%	10-50%	60-80%

Existence and control of a self-organised plasma state for continuous tokamak operation ?

STEADY-STATE REACTOR : Optimisation of Q_{DT} & Bootstrap current

Association Euratom-Cea

irfm

(e)

cadarache

Steady-State operation at Q ~ 5 (P_α~P_{add}) with full non-inductive current drive + optimized current & pressure profiles

 q_{95} ~5 (9MA) at high κ , δ

> $I_{boot}/I_p \ge 50\%$ > $\beta_N \sim 3, H_{98(y,2)} \sim 1.5$ > $n_l \sim 7x10^{19} m^{-3}$ > $T_i/T_e \sim 1$ > $\tau_D \sim 3000 s$

[Gormezano Nuc Fus 2007, Campell Pop (2001), Green et al PPCF 2003 & ITPA steady-state group]

cadarache

Bringing Fusion to its "Reactor Era" requires an innovative programme of "discharge mastering", combining:

- real time control of the magnetic/kinetic configuration (non-linear and time effects)
- real time control of component integrity
- high-level algorithms and control schemes
- a consistent set of simulation tools:
 - first principles ("PFlops")
 - integrated modelling ("CPU hours")
 - fast simulators ("~ 10 ms")

[A. Becoulet & G.T. Hoang PPCF 2008 and Joffrin et al PPCF 2003]

Example of scenario: JET plasma

irfm **JET #67687**

cadarache

PROFILE CONTROL REQUIREMENTS FOR STEADY-STATE OPERATION

	NNBI 1MeV/D-	ICRH 40-55 MHz	ECRH 170 GHz	LHCD 5 GHz		
ITER	W/CW	20MW/CW		20MW/CW		
Heating	- electrons	-70% ions	-electrons	-electrons		
	- broad deposition	-central	-localised	-localised		
		neating	-start-up	-off axis		
CD	- yes	-no global	-yes	-yes		
	- broad deposition	CD	-localised	-off-axis ρ>0.7		
		- Central (MHD)	(MHD)			
Torque	yes	no	no	no		
Fuelling	small	no	no	no		
2010 ITED Summer School Austin USA 21 May 04 June Veyler Liteuden 10						

2010 ITER Summer School, Austin, USA, 31 May - 04 June Xavier Litaudon

Association Euratom-**Cea**

Control of a self-organised state ?

Association

Euratom-Cea

> Tore Supra* & DIII-D**

(i) non-linear coupling between j & T (ii) non-linear interplay of heating, CD & MHD s<0, double tearing, ideal MHD limits ...

\succ ITER SS \rightarrow extra coupling via α -heating

(i) non-linear coupling between j & T (ii) non-linear interplay of heating, momentum, CD & MHD $P_{\alpha}(T), \beta \text{ limits,}$ *Giruzzi et al PRL 03 $TAE (\alpha-particles), ...$

**Politzer et al NF 05

Association

Furatom-Cea

Association Euratom-Cea Oscillation in bootstrap-dominated regime

ACCESS TO HIGH β_{N} OPTIMAL PROFILES ?

Association Euratom-Cea REAL TIME CONTROL OF KINETIC ENERGY

Association **Control of electron temperature gradient** Euratom-Cea #53697 Active control 1.8MA/3.4T \succ **P**_{LHCD} to slow irfm 3.0 down q(r,t) LHCD[M 2.0 I_p[MÅ] 1.0 **P_{NBI} RT controlled** cadarache 15 P_{NBI} [MW] 10 by neutron EF**jet** PICRH [MW] 5 > P_{ICRH} RT 1.2 Reference controlled by ρ_s/L_{Te} 0.8 10¹⁶ neutron/s where $L_T = \nabla T/T$ 0.4 > proportionalρ_s/L_{te} (x10⁻²) 6 integral 4 2 Reference $P(t)[MW] = P(t_0) + G_p \Delta X(t) + G_I \int_{t_0}^{t} \Delta X(u) du,$ 1.2 0.8 $V_{s}[V]$ 0.4 0 [Mazon, Litaudon, 12 10 2 4 6 8 Moreau et al PPCF 02] Time [s]

2010 ITER Summer School, Austin, USA, 31 May - 04 June

Xavier Litaudon

RT control of magnetic energy

Feedback control for non-inductive operation:

1. Primary voltage $\propto V_{loop}$ - $V_{loop, ref}$

P_{LHCD}
$$\propto$$
 I_{p ref} - **I**_p

3.
$$n_{//-LHCD} \propto L_{iref} - L_i$$

with $L_i \propto \langle \beta_{\theta}^2 \rangle / \beta_{\theta}^2$ (a)

More recently*

 $n_{//-LHCD} \propto$ Hard X Ray width representative of LHCD absorbed & J profile

[Wijnands Nuc Fus 1997, Litaudon PPCF 1998, *Joffrin Nuc Fus 2007]

RT control of minimum q, q_{min}

- Feedback control of q₀ or q_{min} during the plasma current rampup phase
- Change of plasma conductivity through electron heating
 - ECRH or NBI
- RT q-profile using MSE data

RT q-profile control in high β -phase

Association Euratom-Cea Control of kinetic & magnetic profiles

Xavier Litaudon

2010 ITER Summer School, Austin, USA, 31 May - 04 June

37

Association Euratom-Cea Control of kinetic & magnetic profiles

38

MHD

instability

Identification of a dynamical model Future: closed loop experiments

- Generic approach: can be applied to any tokamak with any
 - set of actuators and real-time measurements

Association Euratom-Cea

irfm

> Model identified on JET, JT-60U and DIII-D (on-going)

Association Euratom-Cea Modelling of real time control of Te and q

RT control in dominated bootstrap & α -heating regimes : open issues

irfm

(2)

cadarache

> existence of a stable and unique state with selfconsistent pressure and current ?

- control at high I_{boot} with $P_{\alpha} \ge P_{add}$?
 - rely mainly on q-profile control with minimum external CD?
 - pressure control requirements should be minimized

model based control?

- strong requirements in terms of integrated transport modelling

Simulate' in present day experiment α-heating with additional electron heating source

 Experiments performed on JET & JT-60U to mimick α-heating in standard ELMy H mode regimes: how to extend to noninductive operation ? Association

SIMULATION OF ALPHA PARTICLE PLASMA SELF-Euratom-Cea HEATING USING ICRH UNDER REAL-TIME CONTROL

- **ICRH** applied in response to real-time measured plasma parameters (e.g. **neutron rate**) simulating the selfheating effect
- part of the external heating plays the role of auxiliary heating
- **Demonstrate stable** control of the simulated burn?

SIMULATION OF ALPHA PARTICLE PLASMA SELF-Association Euratom-Cea **HEATING USING NBI UNDER REAL-TIME CONTROL**

Mimick the self-alpha heating and self-driven current in present day non-inductive experiments

irfm

cadarache

Association Euratom-Cea

Integrated fusion burn control experiment to prepare Long Pulse Operation on ITER & DEMO

– ICRH/ECRH 'mimic' the α -power

ECCD/LHCD 'mimic' bootstrap

- Remaining powers for control

$$\rightarrow$$
 P_α and P_{fus}
 \rightarrow f_{Boot} > 50%
 \rightarrow P_{control}

 \rightarrow **Q**_{eff} = **P**_{fus} /**P**_{control} ~ 5-20

- Could be tested on long pulse tokamaks : Tore Supra, JT-60SA, EAST etc ...
- Proof of principle" through modelling using a simplified version of CRONOS, METIS
- Combination of H&CD powers & density actuators are required for burn control:
 - Powers : fast and precise control
 - Density : slow and coarse control

METIS : A tool for (burn) control simulation

irfm

Mixed 0D and 1D equations Coupled to "Simulink" for

- real time control design
 - Fast dynamic simulation
 - ~ 1minutes for 300 time slices
 - 2s per time slice when coupled to Simulink
 - Included in the CRONOS suite to prepare integrated modelling

METIS work-flow organisation

[Artaud, Litaudon et al EPS 2008]

Plasma Facing Components: Wall scenario compatibility

Wall Scenarios Compatibility:

- maximum performance
- minimum T-retention
- minimum erosion
- maximum life-time of PFC

> ITER plasma facing components

- Be wall
- Divertor: W-baffle + CFC
- CFC/W changeout during shutdown preceding D and D-T phase
- All components actively cooled!

>Effort in EU tokamaks to investigate PFC-scenario issues

- Tore Supra: long pulse operation with actively cooled CFC components
- ASDEX Upgrade: conversion to all tungsten PFCs complete
- JET: installation of beryllium wall and tungsten divertor in 2010

simultaneous control of transient (ELMs) Euratom-Cea and stationary power load

ASDEX Upgrade

Association

Exhaust power controlled by impurity injection:

- noble gases usually chosen
- limit heat flux & divertor temperature to minimize erosion

Feedback control of gas flow:

- radiated power to be actively adjusted
- heat flux to target adjusted in response to variations in loss power (fusion power)

[P Lang et al Nucl. Fusion 2005]

Simultaneous real time control of core confinement and heat exhaust

- Control of confinement by acting on D_2 flux
 - Highest density at a given confinement
- Control of p_{rad}/p_{tot} by acting on Argon flux
 - reduce divertor heat load
- Control matrix from open loop exp.

$$\begin{pmatrix} \Delta(P_{rad}/P_{tot})\\ \Delta H98(y,2) \end{pmatrix} = \underline{\mathbf{M}} \begin{pmatrix} \Delta \Phi_{D_2}\\ \Delta \Phi_{Ar} \end{pmatrix}$$

Association Euratom-Cea

Simultaneous real time control of core confinement and heat exhaust

Association Euratom-Cea

Simultaneous control of

- Density by gas puffing near the top of the vessel
- Divertor radiation by gas puffing in divertor
- Energy content by NBI power
- Non-diagonal matrix control between actuators & sensors deduced from open loop experiments

Association Euratom-Cea Simultaneous Profile and Heat load control

irfm

Association

Furatom-Cea

- New & active field of research that needs a wide range of knowledge from plasma physics to control engineering, experiments & modelling
- Major & recent experimental progress to tackle real time control issues for steady-state tokamak operation

Challenging issues for future research direction

> Integrated modelling towards tokamak simulator ?

Develop generic methods, modelling of RT diagnostics, control loops, plasma physics, tokamak control system etc

> integration and compatibility of the control schemes ?

- integrate control of fusion performance & stability with control of power and particle exhaust during the whole plasma operation
- > demonstration of the controllability of bootstrapdominated regime with dominant α -heating ?
 - experiments & modelling