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Toroidal rotation impacts a variety of important
plasmas physics topics

• Determining the magnitude, profile and evolution of toroidal flow is
important in a number of topical areas
– E X B flow shear of anomalous transport
– Prevention of locked modes  --- penetration of resonant field errors
– Control of edge localized modes via resonant magnetic

perturbations
– Resistive wall mode

physics

Garofalo et al, PRL ‘99
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Mechanisms have been developed to
control/affect plasma rotation

•   Toroidal rotation is influenced by:
– External sources --- neutral beams
– Intrinsic rotation --- topic of considerable research

• A number of mechanisms have been proposed for intrinsic
rotation --- turbulence, etc.

– 3-D Magnetic fields
• Field errors
• Due to MHD instabilities
• Applied 3-D fields
--  both resonant and non-resonant

W. Zhu et al, PRL, 2006
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Describing toroidal rotation in tokamaks
is a transport problem

• To date, most treatments describing toroidal rotation evolution rely on:
– Braginskii formulation (collisional plasma ν > vth/qR) --- in

practice, never rigorously applicable to modern tokamaks
– Additional physics added in ad hoc manner

• Sources
• Collisional transport
• Radial plasma transport due to neoclassical effects
• Turbulent transport  --- often modeled as anomalous

diffusion/pinch coefficients
• 3-D fields
• Magnetic field transients
• etc.



4th ITER International Summer School
Austin, TX
May 31, 2010

Thesis

• A new approach to construct transport equations for tokamak plasmas
is derived. [Callen et al, NF 49, 085021 (2009), Callen et al PoP 16,
082504 (2009)].
– Starting point is kinetic equation, not Braginskii
– Multiple timescale equilibration processes
– Toroidal momentum balance (or Er) derived
– Ambipolar particle transport

• Momentum balance equation is derived that accounts for classical,
neoclassical collisional transport, anomalous transport, sources and
sinks, magnetic field transients, and the effects of 3-D fields
(neoclassical toroidal viscosity --- NTV).
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Outline

• Fluid moment equations
• Expansion procedure
• Multiple timescale approach

– Radial momentum balance
– Parallel momentum balance
– Toroidal momentum balance

• Physics of neoclassical toroidal viscosity (NTV)
– Theory
– Experimental validation

• Toroidal rotation equation
• Radial electric field and ambipolarity
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Starting point for the calculation is
the plasma kinetic equation

• Plasma kinetic equation for fs(x,v,t).

– C(fs)  =  Fokker-Planck collision operator
– S(fs)  =  Kinetic source  --- applied RF fields, neutral beams, etc.

• Fluid moment equations are obtained from velocity-space moments of
the plasma kinetic equation

– Evolution equations for low order velocity space moments
(ns,Vs,ps)
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Fluid equations require kinetically
determined closure moments

• Exact fluid equations
– Density

– Momentum

– Energy

• Closure moments are required for a closed set of equations
– Heat flux qs, viscous stress tensor πs determined kinetically
– Collision operator physics determines Qs, Fs
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A number of assumptions are made
to make analytic progress

• Small gyroradius expansion
– Consequences for how we describe flows

• Lowest order --- MHD force balance
• First order flows are within flux surfaces
• Second order “transport” fluxes across surfaces

• Lowest order axisymmetric magnetic fields --- nested toroidal flux surfaces
• Small 3-D non-axisymmetric magnetic fields --- no magnetic islands

– In practice, many 3-D fields of interest

• Small plasma fluctuations

• Slow magnetic field transients
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Multi-stage strategy is used to
determine transport equations

• Average the density, momentum and energy equations over fluctuations
(average over toroidal angle) and then average over the flux surfaces

• Sequentially consider specific components of the equilibrium force balance
equation and their consequences

– Radial --- zeroth order radial force balance enforced by compressional
Alfven waves to obtain relation between flows, electric field and pressure
gradients

– Parallel --- first order poloidal flows, heat fluxes within magneitc surface
– Toroidal --- require net radial current from all particle fluxes to vanish -->

establishes flux surface averaged toroidal momentum balance equation
• Use results of the net second order ambipolar fluxes back into flux

surface averaged transport equations to obtain comprehensive “radial”
transport equations for ns, Ts and toroidal rotation
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Small gyroradius expansion is used

• Gyroradius expansion:  order terms and physical processes such as
equilibrium, Pfirsch-Schluter flows, non-axisymmetries and
fluctuations

– Magnetic field is the sum of an axisymmetric magnetic field and
small 3-D fluctuations

– Fluctuation derivatives are large perpendicular to B --- ballooning-
like ordering
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Transport equations for density and pressure are
obtained by flux surface averaging

• Flux surface averaging density and energy equations with V’ = dV/dψ

– Cross-field particle/heat fluxes due to collisional and fluctuation
processes
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Flux surface average of the momentum balance
equation has three components

• Convenient to consider the “radial” <eψ.(momentum balance)>, parallel
<BO

.(momentum balance)>, and toroidal  <eζ.(momentum balance)>
projections

Radial O(δ0)

Parallel O(δ)

Toroidal O(δ2)
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The different orders of the momentum balance
equation refer to different timescales

• To leading order in δ, MHD force balance
– Summing radial momentum balance
– Radial force balance produces relationship between toroidal,

poloidal flows, Er and pressure gradient

• First order flows are on magnetic surfaces V1 ~ δ

• Radial flows perpendicular to flux surfaces are second order
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Poloidal flow is obtained from parallel force balance

• Summing the parallel force balance over species

– The poloidal flow is determined mainly by the parallel viscous
force

– Parallel viscosity is calculated from kinetic theory  --- collisional
process, accounts for the speed dependence of the Fokker-Planck
collision operator

– On times longer than the ion collision time
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Viscous damping occurs
in the direction of asymmetry

• Viscsous stress tensor can be written in CGL form

• Pressure anisotropies are driven by flows/heat fluxes in the direction
of Grad|B|

– To leading order, axisymmetric magnetic fields
– Lowest order flows are within magnetic flux surfaces

--->  Damping in the poloidal direction
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After determining the poloidal flow, there is a unique
relationship between Er and the toroidal rotation

• Recalling the radial force balance relationship

– Using parallel momentum balance result
– Relationship between radial electric field and toroidal flow

– Poloidal flow damping produces parallel plasma flow

  

! 

"t #
r 
V $ %& = '(d(

d)
+
1

niqi

dpi

d)
' q

r 
V $ %*)

  

! 

<
r 
B 0 " #"

t 
$ i >% 0

! 

Vt "
Er

Bp

#
1

niqiBP

dpi
dr

+
1.17
qiBp

dTi
dr

Pressure/temperature profiles 
determined by transport processes

  

! 

r 
V 1 =

r e "
r 
V # $" +

r e %
r 
V # $% = V||

r 
B 0
B0

+
r 
V &

r 
V & =

r 
B 0 ' $(

B0
2 (d)

d(
+
1

nsqs

dps0

d(
)

V|| * +R(d)
d(

+
1

niqi

dpi0

d(
) +
1.17R0

2

qiR
dTi

d(



4th ITER International Summer School
Austin, TX
May 31, 2010

Electron parallel momentum balance produces
parallel Ohm’s law

• Following the same logic for the parallel electron momentum balance
equation

– Using collision friction and neoclassical closure from kinetic theory

– Parallel Ohm’s law

  

! 

0 = "nee <
r 
E #

r 
B > " <

r 
B 0 # $#

t 
% e > + <

r 
B #

r 
R e > + <

r 
B 0 #

r 
S em >

"mene0 <
r 
B 0 #

r ˜ V e # $
r ˜ V e > "ne0e <

r 
B 0 #

r ˜ V e &
r ˜ B >

  

! 

r 
B 0 "

r 
R e #$||nee

r 
J "

r 
B 0

<
r 
B 0 " %"

t 
& e|| >= mene0 < B2 > (µe00Ue' + µe01Qe' )

  

! 

<
r 
E "

r 
B 0 >=#||

nc <
r 
J "

r 
B 0 > $#||[<

r 
J "

r 
B BS > + <

r 
J "

r 
B CD > + <

r 
J "

r 
B dyn >]

  

! 

"||
nc ="|| (1+

"#µe00

"||$ e

) <
r 
J %

r 
B BS >= &

"#µe00

"||$ e

(I dp
d'

& neeUi( < B2 >)

<
r 
J %

r 
B CD >= &

<
r 
B %

r 
S em >

nee"||

<
r 
J %

r 
B dyn >=

1
"||

(<
r 
B 0 %

r ˜ V e )
r ˜ B > +

me

e
<

r 
B 0 %

r ˜ V e % *
r ˜ V e >)

Boostrap current, curent drive from external sources, dynamo due to fluctuations



4th ITER International Summer School
Austin, TX
May 31, 2010

Toroidal torque from force balance gives radial flows

• Toroidal force balance produces an equation for radial particle flux

– Particle flux is induced by toroidal torques on the plasma

– Flux surface averaged toroidal momentum balance equation
produces equation for particle flux
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Parallel Ohm’s law is used to describe collisional
ambipolar particle flux

• Consider the particle fluxes from collisional friction

– Vector identity used to facilitate analysis

– Collisional-friction can be decomposed into parallel and
perpendicular contributions
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Particle flux has many contributions --- six ambipolar
components

• The intrinsically ambipolar contributions to particle fluxes can be
identified
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Plasma fluctuations influence particle flux/toroidal
momentum balance

• At O(δ2), plasma fluctuation effects enter into the toroidal momentum
balance
– Microturbulence effects --- turbulent Reynolds/Maxwell stresses
– 3-D magnetic fields --- error fields, applied 3-D coils

• Resonant magnetic perturbations --->  localized electromagnetic
torques

• Non-resonant magnetic perturbations ---> Neoclassical toroidal
viscosity

• In general, these effects are not intrinsically ambipolar and hence will
affect toroidal momentum balance.
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Resonant magnetic fields produce localized
electromagnetic torques at rational surfaces

• Inherent magnetic field errors or applied 3-D magnetic coils may have
components that are resonant in the plasma

– Two asymptotic limits
• Fully penetrated - radial magnetic field produces a magnetic island at

the rational surface
• Fully shielded - eddy currents flow in a resistive layer at q = m/n,

magnetic perturbation does not penetrate, current sheet
– Sufficient plasma rotation relative to the 3-D field source provides effective

shielding --- rotation sustains current sheet
• Produces localized electromagnetic perturbation (Fitzpatrick and

Hender ‘91)
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3-D magnetic fields produce neoclassical toroidal
viscous forces (NTV) throughout the plasma

• In an axisymmetric magnetic field, the toroidal component of the
parallel viscous stress tensor is zero (µdB/dζ = 0)

– However, in the presence of 3-D magnetic fields, toroidal torques
on toroidally flowing plasmas are generated.

• Physics --- transit-time magnetic pumping, banana-drift, ripple-
trapping effects

• Generally, the ion component dominates (the ion root of
stellarator physics)

• Ion viscous damping coefficient µit depends on collisionality, Er
• Beff

2 is a weighted average sum over all m and n.
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The NTV force is felt throughout the plasma

• Unlike torques due to resonant 3-D magnetic fields, the NTV force is
global
– Applied 3-D fields on NSTX demonstrated the damping effect of

toroidal flow (Zhu et al, PRL ‘06)

• Favorable comparison
to analytic predictions

• NTV physics has been
seen on NSTX, DIII-D, 
MAST, JET
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Another unusual aspect of NTV is the appearance of
an off-set rotation frequency

• NTV force ~  µi Beff
2(Ω − Ω*)

– Offset velocity Ω* is a diamagnetic-type toroidal rotation frequency
proportional to ion temperature gradient

• Physics of the offset is due to ions of different energy having
different radial drift speeds  --- produces ct.  Poloidal flow
damping coefficient cp due to parallel viscosity.! 

"* =
cp + ct
qi

dTi
d#
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Experiments on DIII-D have demonstrated the
presence of the NTV offset velocity

• Off-set rotation velocity observed on DIII-D (Garofalo et al ‘08)

Initially, slowly rotating
Plasmas sped up to the
Offset NTV velocity when
3-D fields are applied
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Recent experiments on DIII-D have demonstrated a
peak in the NTV force at zero radial electric field

• The toroidal damping rate (µti) is sensitive to the value of the radial
electric field
– Damping rate corresponds to different collisionality regimes of

stellarator neoclassical transport
– Smoothed formula constructed to model different collisionality

regimes (Cole et al, ‘10)

Peaks at ωE ~ 0

Recent experiment on DIII-D
Demonstrates peak NTV at ωE ~ 0 
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Particle flux has 8 non-ambipolar contributions

• Not intrinsically ambipolar
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Zero radial current produces torque balance relation

• Summing radial species currents to obtain net radial plasma current

– Charge continuity requires no net radial current

– Setting radial current equal to zero produces a comprehensive
toroidal torque balance relation
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Toroidal rotation equation includes many different
effects

• Equation for toroidal angular momentum density Lt = mini0<R2Ωt>

– NTV damping by 3-D magnetic fields

– Collision damping

– Microturbulence-induced ion Reynolds stresses causes radial
transport of Lt (diffusion, pinch, residual stress)
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Toroidal rotation determines radial electric field
required for net ambipolar particle flux

• From toroidal rotation equation, radial electric field is determined

• The resultant electric field causes the electron and ion non-ambipolar
radial particle fluxes to be equal (ambipolar)
– Hence, the net ambipolar particle flux is the sum of Γa + ΓΝΑ(Εr),

which is easiest to evaluate in ion root [ΓιΝΑ(Εr) ~ 0]

– Procedure is familiar to stellarator researchers
• Nonlinear dependences of Γs on Er can lead to different ‘roots’,

transition barriers, etc.
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This is approach is different than Braginskii-like
approach and has some consequences

• Key differences in this new approach for plasma transport equations
– First solve for flows of electrons, ions in flux surfaces --- Ohm’s

law, poloidal ion flow
– Derivation of particle flux and toroidal flow are naturally joined
– Simultaneously solve transport equations for n, T, Ωt

– Effects of micro-turbulence are all included self-consistently
– Fluctuation induced particle flux is determined from

Reynolds/Maxwell stresses
– Source effects, poloidal field transients are included
– Net transport equations follow naturally from extended two-fluid

moment equations --- consistent with formulations of extended
MHD code frameworks (NIMROD, M3D)
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Summary

• Comprehensive transport equations for n, T, Ωt have been derived
• Radial, parallel and toroidal components of force balance are

considered
– Radial force balance --- relationship between Vt, Vp, Er and dpi/dψ
– Parallel viscous damping determines neoclassical Ohm’s law and

poloidal ion flow
– Radial particle fluxes arise from average toroidal torques on the

plasma
• Radial particle flux has many contributions --- ambipolar and non-

ambipolar
• Requiring ambipolar particle flux yields evolution equation for toroidal

angular momentum density
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Summary

• 3-D magnetic fields have an important effect of flow evolution
– Localized EM torques from resonant magnetic fields
– Neoclassical toroidal viscosity (NTV) from variations in |B|

• Many aspects of NTV theory are being tested against experiments
– Global damping of toroidal flow profile
– Appearance of an offset rotation ~ dTi/dψ
– Peak of NTV torque near Er ~ 0


