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Macroscopic Instabilities

• Two main types of macroscopic instabilities in tokamaks: a

– Catastrophic “ideal” (i.e., non-reconnecting) instabilities,

which disrupt plasma in few micro-seconds. Can be avoided by

limiting plasma pressure and current.

– Slowly growing “tearing” instabilities, which reconnect

magnetic flux-surfaces to form magnetic islands, thereby

degrading their confinement properties. Much harder to avoid.

aMHD Instabilities, G. Bateman (MIT, 1978).
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Magnetic Islands

tearing modePOLOIDAL

Resonant Surface Magnetic Island

Magnetic Flux-Surface

CROSS-SECTION

• Helical structures, centered on rational magnetic flux-surfaces

which satisfy !k · !B = 0, where !k is wavenumber of mode, and !B is

equilibrium magnetic field.

• Effectively “short-circuit” confinement by allowing heat/particles

to radially transit island region by rapidly flowing along magnetic

field-lines, rather than slowly diffusing across flux-surfaces.
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Need for Magnetic Island Theory

• Magnetic island formation associated with nonlinear phase of

tearing mode growth (i.e., when radial island width becomes

greater than linear layer width at rational surface).

• In very hot plasmas found in modern-day tokamaks, linear layers

so thin that tearing mode already in nonlinear regime when first

detected.

• Linear tearing mode theory largely irrelevant. Require nonlinear

magnetic island theory to explain experimental observations.
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MHD Theory

• Tearing modes are macroscopic instabilities which affect whole

plasma. Natural to investigate them using some form of

fluid-theory.

• Simplest fluid theory is well-known magnetohydrodynamical

approximation,a which effectively treats plasma as single-fluid.

• Shall also use slab approximation to simplify analysis.

aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).
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Slab Approximation
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Slab Model

• Cartesian coordinates: (x, y, z). Let ∂/∂z ≡ 0.

• Assume presence of dominant uniform “toroidal” !Bz !z.

• All field-strengths normalized to Bz.

• All lengths normalized to equilibrium magnetic shear-length:

Ls = Bz/B ′
y(0).

• All times normalized to shear-Alfvén time calculated with Bz.

• Perfect wall boundary conditions at x = ±a.

• Wavenumber of tearing instability: !k = (0, k, 0), so !k · !B = 0 at

x = 0. Hence, rational surface at x = 0.
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Model MHD equations

• Let !B⊥ = ∇ψ× !z and !V = ∇φ× !z, where !V is !E × !B velocity.

• !B ·∇ψ = !V ·∇φ = 0, so ψ maps magnetic flux-surfaces, and φ

maps stream-lines of !E × !B fluid.

• Incompressible MHD equations: a

∂ψ

∂t
= [φ,ψ] + η J,

∂U

∂t
= [φ, U] + [J,ψ] + µ∇2U,

where J = ∇2ψ, U = ∇2φ, and [A, B] = Ax By − Ay Bx. Here, η

is resistivity, and µ is viscosity. In normalized units: η, µ $ 1.

• First equation is z-component of Ohm’s law. Second equation is

z-component of curl of plasma equation of motion.
aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).
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Outer Region

• In “outer region”, which comprises most of plasma, non-linear,

non-ideal (η and µ), and inertial (∂/∂t and !V ·∇) effects

negligible.

• Vorticity equation reduces to

[J,ψ] % 0.

• When linearized, obtain ψ(x, y) = ψ(0)(x) +ψ(1)(x) cos(k y),

where B
(0)
y = −dψ(0)/dx, and

(

d2

dx2
− k2

)

ψ(1) −

(

d2B
(0)
y /dx2

B
(0)
y

)

ψ(1) = 0.

• Equation is singular at rational surface, x = 0, where B
(0)
y = 0.
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Tearing Stability Index

• Find tearing eigenfunction, ψ(1)(x), which is continuous, has

tearing parity [ψ(1)(−x) = ψ(1)(x)], and satisfies boundary

condition ψ(1)(a) = 0 at conducting wall.

• In general, eigenfunction has gradient discontinuity across rational

surface (at x = 0). Allowed because tearing mode equation

singular at rational surface.

• Tearing stability index:

∆ ′ =

[

d lnψ(1)

dx

]0+

0−

.

• According to conventional MHD theory,a tearing mode is unstable

if ∆ ′ > 0.
aH.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids 6, 459 (1963).
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x = +a

x −>

eigenfunction
tearing
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Inner Region

• “Inner region” centered on rational surface, x = 0. Of extent,

W $ 1, where W is magnetic island width (in x).

• In inner region, non-ideal effects, non-linear effects, and plasma

inertia can all be important.

• Inner solution must be asymptotically matched to outer solution

already obtained.
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Constant-ψ Approximation

• ψ(1)(x) generally does not vary significantly in x over inner region:

|ψ(1)(W) −ψ(1)(0)| $ |ψ1(0)|.

• Constant-ψ approximation: treat ψ(1)(x) as constant in x over

inner region.

• Approximation valid provided

|∆ ′| W $ 1,

which is easily satisfied for conventional tearing modes.
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Constant-ψ Magnetic Island

• In vicinity of rational surface, ψ(0) → −x2/2, so

ψ(x, y, t) % −x2/2 + Ψ(t) cosθ,

where Ψ = ψ(1)(0) is “reconnected flux”, and θ = k y.

• Full island width, W = 4
√
Ψ.

X−point

x = 0

ky = 0 ky = π ky = 2π

separatrix: ψ = − Ψ
O−point:ψ = + Ψ

W

x

y
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Flux-Surface Average Operator

• Flux-surface average operator is annihilator of Poisson bracket

[A,ψ] ≡ !B ·∇A ≡ k x (∂A/∂θ)ψ for any A: i.e.,

〈[A,ψ]〉 ≡ 0.

• Outside separatrix:

〈f(ψ, θ)〉 =

∮
f(ψ, θ)

|x|

dθ

2π
.

• Inside separatrix:

〈f(s,ψ, θ)〉 =

∫θ0

−θ0

f(s,ψ, θ) + f(−s,ψ, θ)

2 |x|

dθ

2π
,

where s = sgn(x), and x(s,ψ, θ0) = 0.
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MHD Flow -I

• Move to island frame. Look for steady-state solution: ∂/∂t = 0.a

• Ohm’s law:

0 % [φ,ψ] + η J.

• Since η$ 1, first term potentially much larger than second.

• To lowest order:

[φ,ψ] % 0.

• Follows that

φ = φ(ψ) :

i.e., MHD flow constrained to be around flux-surfaces.

aF.L. Waelbroeck, and R. Fitzpatrick, Phys. Rev. Lett. 78, 1703 (1997).
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MHD Flow - II

• Let

M(ψ) =
dφ

dψ
.

• Easily shown that

Vy = x M.

• By symmetry, M(ψ) is odd function of x. Hence,

M = 0

inside separatrix: i.e., no flow inside separatrix in island frame.

Plasma trapped within magnetic separatrix.
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MHD Flow - III

• Vorticity equation:

0 % [−M U + J,ψ] + µ∇4φ.

• Flux-surface average, recalling that 〈[A,ψ]〉 = 0:

〈∇4φ〉 ≡ −
d2

dψ2

(

〈x4〉
dM

dψ

)

% 0.

• Solution outside separatrix:

M(ψ) = sgn(x) M0

∫ψ

−Ψ

dψ/〈x4〉

/ ∫−∞

−Ψ

dψ/〈x4〉.
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MHD Flow - IV

• Note that

Vy = x M → |x| M0

as |x|/W → ∞.

• V-shaped velocity profile which extends over whole plasma.

• Expect isolated magnetic island to have localized velocity profile.

Suggests that M0 = 0 for isolated island.

• Hence, zero MHD flow in island frame: i.e., island propagates at

local !E × !B velocity.
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Rutherford Equation - I

• Asymptotic matching between inner and outer regions yields:

∆ ′ Ψ = −4

∫−∞

+Ψ

〈J cosθ〉dψ.

• In island frame, in absence of MHD flow, vorticity equation

reduces to

[J,ψ] % 0.

• Hence,

J = J(ψ).
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Rutherford Equation - II

• Ohm’s law:
dΨ

dt
cosθ % [φ,ψ] + η J(ψ).

• Have shown there is no MHD-flow [i.e., φ ∼ O(1)], but can still be

resistive flow [i.e., φ ∼ O(η)].

• Eliminate resistive flow by flux-surface averaging:

dΨ

dt
〈cosθ〉 % η J(ψ) 〈1〉.

• Hence,

∆ ′ Ψ % −
4

η

dΨ

dt

∫−∞

+Ψ

〈cosθ〉2

〈1〉
dψ.
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Rutherford Equation - III

• Use W = 4
√
Ψ, and evaluate integral. Obtain Rutherford island

width evolution equation: a

0.823

η

dW

dt
% ∆ ′.

• According to Rutherford equation, island grows algebraically on

resistive time-scale.

• Rutherford equation does not predict island saturation.

aP.H. Rutherford, Phys. Fluids 16, 1903 (1973).
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Rutherford Equation - IV

• Higher order asymptotic matching between inner and outer

regions yields: a

0.823

η

dW

dt
% ∆ ′ − 0.41

(

−
d4B

(0)
y /dx4

d2B
(0)
y /dx2

)

x=0

W.

• Hence, saturated (d/dt = 0) island width is

W0 =
∆ ′

0.41

(

−
d2B

(0)
y /dx2

d4B
(0)
y /dx4

)

x=0

.

aF. Militello, and F. Porcelli, Phys. Plasmas 11, L13 (2004). D.F. Escande, and

M. Ottaviani, Physics Lett. A 323, 278 (2004).
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MHD Theory: Summary

• Tearing mode unstable if ∆ ′ > 0.

• Island propagates at local !E × !B velocity at rational surface.

• Island grows algebraically on resistive time-scale.

• Saturated island width:

W0 =
∆ ′

0.41

(

−
d2B

(0)
y /dx2

d4B
(0)
y /dx4

)

x=0

.
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Drift-MHD Theory

• In drift-MHD approximation, analysis retains charged particle drift

velocities, in addition to !E × !B velocity.

• Essentially two-fluid theory of plasma.

• Characteristic length-scale, ρ, is ion Larmor radius calculated with

electron temperature.

• Characteristic velocity is diamagnetic velocity, V∗, where

ne !V∗ × !B = ∇P.

• Normalize all lengths to ρ, and all velocities to V∗.
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Basic Assumptions

• Retain slab model, for sake of simplicity.

• Assume parallel electron heat transport sufficiently strong that

Te = Te(ψ).

• Assume Ti/Te = τ = constant, for sake of simplicity.
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Basic Definitions

• Variables:

– ψ - magnetic flux-function.

– J - parallel current.

– φ - guiding-center (i.e., MHD) stream-function.

– U - parallel ion vorticity.

– n - electron number density (minus uniform background).

– Vz - parallel ion velocity.

• Parameters:

– α = (Ln/Ls)
2, where Ln is equilibrium density gradient

scale-length.

– η - resistivity. D - (perpendicular) particle diffusivity. µi/e -

(perpendicular) ion/electron viscosity.
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Drift-MHD Equations - I

• Steady-state drift-MHD equations: a

ψ = −x2/2 + Ψ cosθ, U = ∇2φ,

0 = [φ− n,ψ] + η J,

0 = [φ, U] −
τ

2

{
∇2[φ, n] + [U, n] + [∇2n,φ]

}

+[J,ψ] + µi∇4(φ+ τn) + µe ∇4(φ− n),

0 = [φ, n] + [Vz + J,ψ] + D∇2n,

0 = [φ, Vz] + α [n,ψ] + µi ∇2Vz.

aR.D. Hazeltine, M. Kotschenreuther, and P.J. Morrison, Phys. Fluids 28, 2466

(1985).
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Drift-MHD Equations - II

• Symmetry: ψ, J, Vz even in x. φ, n, U odd in x.

• Boundary conditions as |x|/W → ∞:

– n → −(1 + τ)−1 x.

– φ → −V x.

– J, U, Vz → 0.

• Here, V is island phase-velocity in !E × !B frame.

• V = 1 corresponds to island propagating with electron fluid.

V = −τ corresponds to island propagating with ion fluid.

• Expect

1 ) α) η, D, µi, µe.
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Electron Fluid

• Ohm’s law:

0 = [φ− n,ψ] + η J.

• Since η$ 1, first term potentially much larger than second.

• To lowest order:

[φ− n,ψ] % 0.

• Follows that

n = φ+ H(ψ) :

i.e., electron stream-function φe = φ− n is flux-surface function.

Electron fluid flow constrained to be around flux-surfaces.
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Sound Waves

• Parallel flow equation:

0 = [φ, Vz] + α [n,ψ] + µi ∇2Vz.

• Highlighted term dominant provided

W ) α−1/2 = Ls/Ln.

• If this is case then to lowest order

n = n(ψ),

which implies n = 0 inside separatrix.

• So, if island sufficiently wide, sound-waves able to flatten density

profile inside island separatrix.
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Subsonic vs. Supersonic Islands

• Wide islands satisfying

W ) Ls/Ln

termed subsonic islands. Expect such islands to exhibit flattened

density profile within separatrix. Subsonic islands strongly coupled

to both electron and ion fluids.

• Narrow islands satisfying

W $ Ls/Ln

termed supersonic islands. No flattening of density profile within

separatrix. Supersonic islands strongly coupled to electron fluid,

but only weakly coupled to ion fluid.
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Subsonic Islands a

• To lowest order:

φ = φ(ψ), n = n(ψ).

• Follows that both electron stream-function, φe = φ− n, and ion

stream-function, φi = φ+ τn, are flux-surface functions. Both

electron and ion fluid flow constrained to follow flux-surfaces.

• Let

M(ψ) = dφ/dψ, L(ψ) = dn/dψ.

• Follows that

VE×B y = x M, Ve y = x (M − L), Vi y = x (M + τL).

aR. Fitzpatrick, F.L. Waelbroeck, Phys. Plasmas 12, 022307 (2005).
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Density Flattening

• By symmetry, both M(ψ) and L(ψ) are odd functions of x.

Hence,

M(ψ) = L(ψ) = 0

inside separatrix: i.e., no electron/ion flow within separatrix in

island frame.

• Electron/ion fluids constrained to propagate with island inside

separatrix.

• Density profile flattened within separatrix.
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Analysis - I

• Density equation reduces to

0 % [Vz + J,ψ] + D∇2n.

• Vorticity equation reduces to

0 %
[

−M U − (τ/2)(L U + M∇2n) + J,ψ
]

+µi ∇4(φ+ τn) + µe ∇4(φ− n).

• Flux-surface average both equations, recalling that 〈[A,ψ]〉 = 0.
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Analysis - II

• Obtain

〈∇2n〉 % 0,

and

(µi + µe) 〈∇4φ〉 + (µi τ− µe) 〈∇4n〉 % 0.

• Solution outside separatrix:

M(ψ) = −
(µi τ− µe)

(µi + µe)
L(ψ) + F(ψ),

where

L(ψ) = −sgn(x) L0/〈x2〉,

and F(ψ) is previously obtained MHD profile:

F(ψ) = sgn(x) F0

∫ψ

−Ψ

dψ/〈x4〉

/ ∫−∞

−Ψ

dψ/〈x4〉.
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Velocity Profiles

• As |x|/W → ∞ then x L → L0 and x F → |x| F0.

• L(ψ) corresponds to localized velocity profile. F(ψ) corresponds to

non-localized profile. Require localized profile, so F0 = 0.

• Velocity profiles outside separatrix (using b.c. on n):

Vy i % +
µe

µi + µe

|x|

〈x2〉
,

Vy E×B % −
(µi τ− µe)

(1 + τ) (µi + µe)

|x|

〈x2〉
,

Vy e = −
µi

µi + µe

|x|

〈x2〉
.
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Island Propagation

• As |x|/W → ∞ expect Vy E×B → VEB − V, where VEB is

unperturbed (i.e., no island) !E × !B velocity at rational surface (in

lab. frame), and V is island phase-velocity (in lab. frame).

• Hence

V = VEB +
(µi τ− µe)

(1 + τ) (µi + µe)
.

• But unperturbed ion/electron fluid velocities (in lab. frame):

Vi = VEB + τ/(1 + τ), Ve = VEB − 1/(1 + τ).

• Hence

V =
µi

µi + µe
Vi +

µe

µi + µe
Ve.

So, island phase-velocity is viscosity weighted average of

unperturbed ion/electron fluid velocities.
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Polarization Term - I

• Vorticity equation yields

Jc %
1

2

(

x2 −
〈x2〉
〈1〉

)

d[M (M + τL)]

dψ
+ I(ψ)

outside separatrix, where Jc is part of J with cosθ symmetry.

• As before, flux-surface average of Ohm’s law yields:

〈Jc〉 = I(ψ)〈1〉 = η−1 dΨ

dt
〈cosθ〉.

• Hence

Jc %
1

2

(

x2 −
〈x2〉
〈1〉

)

d[M (M + τL)]

dψ
+ η−1 dΨ

dt

〈cosθ〉
〈1〉

.
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Polarization Term - II

• Asymptotic matching between inner and outer regions yields:

∆ ′ Ψ = −4

∫−∞

+Ψ

〈Jc cosθ〉dψ.

• Evaluating flux-surface integrals, making use of previous solutions

for M and L, obtain modified Rutherford equation:

0.823

η

dW

dt
% ∆ ′ + 1.38β

(V − VEB) (V − Vi)

(W/4)3
.

• New term is due to polarization current associated with ion fluid

flow around curved island flux-surfaces (in island frame).

Obviously, new term is zero if island propagates with ion fluid:

i.e., V = Vi.

41



!

"

#

$

Drift-MHD Theory: Summary

• Results limited to large islands: i.e., large enough for sound waves

to flatten density profile.

• Island propagates at (perpendicular) viscosity weighted average of

unperturbed (no island) ion and electron fluid velocities.

• Bootstrap term in Rutherford equation is destabiizing.

• Polarization term in Rutherford equation is stabilizing provided ion

(perpendicular) viscosity greatly exceeds electron (perpendicular)

viscosity (which is what we expect), and destabilizing otherwise.
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