IISS 2010 4th ITER International Summer School May 31 - June 4, 2010, Austin, TX

Nonlinear Consequences of Energetic Particle Instabilities

Boris Breizman Institute for Fusion Studies UT Austin

Outline

- Examples of Experimental Data
- Near-threshold Technique and Bump-on-tail Model
- Nonlinear Bifurcations and Phase Space Structures
- Generalization to Energetic Particles in Tokamaks
- Multiple Modes and Global Transport
- Concluding Remarks

NONLINEARITY IN ACTION

Nonlinear Splitting of Alfvén Eigenmodes in JET

A. Fasoli, et al., PRL **81**, 5564 (1998)

R. F. Heeter, et al., PRL **85**, *3177* (2000)

Rapid Frequency Sweeping Events

Alfvén Wave Instability and Particle Loss in TFTR

Saturation of the neutron signal reflects anomalous losses of the injected beams. The losses result from Alfvénic activity.

K. L. Wong, et al., PRL 66, 1874 (1991)

THEORY AT THE THRESHOLD

Near-threshold Nonlinear Regimes

Why study nonlinear response near the threshold?

- Typically, macroscopic plasma parameters evolve slowly compared to the instability growth time scale
- Near-threshold simulations are intrinsically challenging for most codes
- Identification of the soft and hard nonlinear regimes is crucial to determining whether an unstable system will remain at marginal stability
- Long-lived coherent nonlinear structures can emerge
- Multiple modes can keep the system near marginal stability

Key Ingredients in Theory

- □ Particle injection and effective collisions, v_{eff} , create an inverted distribution of energetic particles $F_0(v)$.
- Discrete spectrum of unstable modes.
- Instability drive, γ_L , due to wave-particle resonance (ω -kv=0).
- Background dissipation rate, γ_d , determines the critical gradient for the instability.

$$\frac{\partial F}{\partial t} + u \frac{\partial F}{\partial \zeta} + \frac{ek}{2m} \Big[\hat{E}(t) e^{i\zeta} + \text{c.c.} \Big] \frac{\partial F}{\partial u}$$
$$= \left[v^3 \frac{\partial^2}{\partial u^2} + \alpha^2 \frac{\partial}{\partial u} - \beta \right] \left(F - F_0 \right)$$

$$\frac{\partial \hat{E}}{\partial t} = -4 \frac{\omega}{k^2} \pi e \int f_1 du - \gamma_d \hat{E} \qquad u \equiv kv - \omega \\ \zeta \equiv kx - \omega t$$

$$F = F_0 + f_0 + \sum_{n=1}^{\infty} \left[f_n \exp(in\xi) + c.c. \right]$$
$$E = \frac{1}{2} \left[\hat{E}(t) e^{i\xi} + c.c. \right]$$

Page 10

Near-threshold Ordering

□ The time-scale of interest, τ , is shorter than the trapped particle bounce period:

$$\omega_{B} \tau = \left(e k \hat{E} / m \right)^{1/2} \tau << 1$$

□ Applicability window for near-threshold ordering:

$$\left(\gamma_L - \gamma_d\right) / \gamma_L \le \left(\omega_B \tau\right)^4 << 1$$

This ordering can hold indefinitely if the effective collision frequency is greater than the bounce frequency.

□ The ensuing ordering for the distribution function:

$$F_0 >> f_1 >> f_0, f_2$$

Mode Evolution Equation

Near marginal stability the mode amplitude *A* is governed by the following nonlinear equation:

$$\frac{dA}{d\tau} = A(\tau) - \frac{1}{2} \int_{0}^{\tau/2} dz \, z^{2} A(\tau - z) \int_{0}^{\tau - 2z} dx \, e^{-\beta(2z+x) - \beta^{3} z^{2}(2z/3+x) + i\hat{\alpha}^{2} z(z+x)} \times A(\tau - 2z - x) A^{*}(\tau - 2z - x)$$

Krook factor:
 $\hat{\beta} \equiv \beta / (\gamma_{L} - \gamma_{d})$
Diffusion factor:
 $\hat{\nu} \equiv \nu / (\gamma_{L} - \gamma_{d})$
Drag factor:
 $\hat{\alpha} \equiv \alpha / (\gamma_{L} - \gamma_{d})$
Drag factor:
 $\hat{\alpha} \equiv \alpha / (\gamma_{L} - \gamma_{d})$
Drag factor:
 $\hat{\alpha} \equiv \alpha / (\gamma_{L} - \gamma_{d})$
 $\hat{\alpha} = \alpha / (\gamma_{L} - \gamma_{d})$

*t*IFS

Transition from Steady Nonlinear Saturation to the Explosive Regime (Krook collision case)

$$\hat{\beta} \equiv \frac{V_{eff}}{\left(\gamma_L - \gamma_d\right)}$$

Mode Saturation Diagram (diffusion+drag)

□ For diffusion + weak drag, steady state solution does exist

- For an appreciable amount of drag, this solution becomes unstable (pitchfork splitting)
- □ The solution is explosive when drag dominates

Fast Particle Driven TAEs

R. F. Heeter, et al., PRL **85**, 3177 (2000)

R. F. Pinches, et al., PPCF **46**, *S*47(2004)

SPONTANEOUS FREQUENCY SWEEPING

(phase space holes and clumps)

Spontaneous Chirping of Weakly Unstable Mode

- □ Simulation of near-threshold bump-on-tail instability (*N. Petviashvili*, 1997) reveals spontaneous formation of coherent phase space structures (clumps and holes) with time-dependent frequencies.
- □ The phase space structures seek lower energy states to compensate energy losses due to background dissipation.
- □ Clumps move to lower energies and holes move to higher energy regions.

Spatially averaged distribution function

Mode power spectrum

Dynamics of Holes and Clumps at Early Times

- Holes/clumps are the original resonant particles
- □ They move slowly compared to the bouce period

The wave amplitude is constant:

$$\omega_{B} = \left(16 / 3\pi^{2}\right) \gamma_{L}$$

- Particles cant get inside separatrix.
- Hole/clump gets deeper/ higher as it moves:

$$\delta\omega = \left(16 / 3\pi^2\right) \gamma_L \sqrt{2\gamma_d t / 3}$$

H.L. Berk, B.N. Breizman, N.V. Petviashvili, Phys. Lett. A 234, 213 (1997)

Effect of Drag: Holes Grow Faster, Clumps Decay

TIFS

Simulations by M.K. Lilley (2010)

Drag+Diffusion Give Hooked Frequency Pattern

 $(1 - \gamma_d) = 1.30$, $\alpha/(\gamma_L - \gamma_d) = 1.50$, $\gamma_d/\gamma_L = 0.900$, 10 Harm, 10.0 box, $dt < \gamma_L = 0.020$, 1001 s points,

AUG Shoet: 19782 : Chn: XMC_OMA/110 Time: 0.1562 to 0.1721 npt:524288, metp:128 sfft:1024 ff:73.80 f2:139.6 species v3.14 (spine) - User: service :Thu ion 22.1125152 2008

M.K. Lilley, TTF Meeting (2010)

Simple Model for Drag-Diffusion Competition

D Poisson equation:
$$\delta\omega\omega_B = (16 / 3\pi^2)g\gamma_L$$

Chirping and drag deepen the hole, diffusion fills it:

$$dg / dt + gv^3 / \omega_B^2 = d\delta\omega / dt + \alpha^2$$

□ Energy balance equation:

$$\gamma_{d}\omega_{B}^{3} = 3\left(16 / 3\pi^{2}\right)g\gamma_{L}\left(d\delta\omega / dt + \alpha^{2}\right)$$

<i>tifs

How to Treat Long-range Frequency Sweeping

Observation:

Experiments exhibit signals with large (order of unity) frequency sweeping.

Issue:

How can a small group of particles ^{••} Produce a large change in the mode frequency?

Proposed physics mechanism:

Initial instability leads to particle trapping and creates a modulated beam of resonant particles (BGK-type structure).

As the beam particles slow down significantly, they produce a signal that deviates considerably from the initial mode frequency.

B.N. Breizman, Nucl. Fusion, to be published (2010)

Hot electron interchange modes in Terrella (Courtesy of Michael Mauel, Columbia University)

Slowly Varying Periodic Electrostatic Wave

Wave electrostatic potential (with a spatial period λ):

 $\varphi \Big[z - s(t); t \Big]$

Lab-frame Hamiltonian:

$$H(p;z;t) = \frac{p^2}{2m} - |e|\varphi[z-s(t);t]$$

Wave-frame Hamiltonian:

$$H(p;x;t) = \frac{\left(p - m\dot{s}\right)^2}{2m} - \left|e\right|\varphi(x;t) \qquad x = z - s(t)$$

Adiabatic invariants

Passing particles:
$$J_{\pm} = \int_{0}^{\lambda} \left\{ m\dot{s} \pm \sqrt{2m \left[H + |e|\varphi(x;t) \right]} \right\} dx$$

Trapped particles: $J_{trapped} = \oint \sqrt{2m \left[H + |e|\varphi(x;t) \right]} dx$

Downward Drift of Phase Space Clump

Page 24

BGK Mode Equation

Electron potential energy U has a given spatial period λ , a slowly varying shape, and a slowly varying phase velocity \dot{s} :

 $U[z-s(t);t] = -|e|\varphi$

Perturbed density of plasma electrons:

$$\delta n = n_0 U / m \dot{s}^2$$

Local width of the separatrix:

$$\delta V = 2\sqrt{2/m}\sqrt{\left(U_{\rm max} - U\right)}$$

Perturbed density of trapped electrons:

$$\delta n_t = \left[F_b(\dot{s}_0) - F_b(\dot{s}) \right] 2\sqrt{2/m} \left[\sqrt{\left(U_{\text{max}} - U \right)} - \left\langle \sqrt{\left(U_{\text{max}} - U \right)} \right\rangle \right]$$

Nonlinear Poisson equation in the wave frame:

$$\frac{\partial^2 U}{\partial x^2} = -k^2 U - A(k) \left[\sqrt{\left(U_{\text{max}} - U \right)} - \left\langle \sqrt{\left(U_{\text{max}} - U \right)} \right\rangle \right]$$

$$k^{2} = \omega_{p}^{2} / \dot{s}^{2}$$
$$A(k) = 8\pi e^{2} \left[F_{b}(\dot{s}_{0}) - F_{b}(\dot{s}) \right] \sqrt{2/m}$$

Power Balance and Chirping Rate

Spatially periodic solution with variable phase velocity s :

$$U = \frac{m\dot{s}^2}{2} \left\{ \frac{8\dot{s} \left[F_b(\dot{s}_0) - F_b(\dot{s}) \right]}{3n_0 \cos \alpha} \right\}^2 \left\{ \frac{1 + 2\cos^2 \alpha}{2} - \frac{3\sin 2\alpha}{4\alpha} - \left[\cos \alpha - \cos \left(\alpha \frac{2x}{\lambda} - \alpha \right) \right]^2 \right\} \qquad \alpha(\dot{s}) = \frac{\lambda \omega_p}{4\dot{s}}$$

"Seed" profile of the wave:
$$U = \frac{m\dot{s}_0^2}{4} \left\{ \frac{32}{3\pi^2} \frac{\gamma_L}{\omega_p} \right\}^2 \cos\left(\frac{2\pi x}{\lambda}\right) \qquad \frac{\gamma_L}{\omega_p} = \frac{\pi}{2} \frac{\dot{s}_0^2}{n_0} \frac{\partial F_b}{\partial \dot{s}_0}$$

Collisional dissipation in the bulk: $Q = v n_0 \frac{1}{m \dot{s}^2} \int_0^{\lambda} U^2 dx$

Power release by the phase space clump:

$$P = -2m\dot{s}^2\lambda \Big[F_b(\dot{s}_0) - F_b(\dot{s})\Big] \frac{8\dot{s}\Big[F_b(\dot{s}_0) - F_b(\dot{s})\Big]}{3n_0\cos\alpha} \Bigg| \Big(\frac{\sin\alpha}{\alpha} - \cos\alpha\Big)\frac{d\dot{s}}{dt}$$

Power balance condition (Q = P) determines chirping rate.

Wave Profile Evolution During Strong Chirping

❑Wave amplitude decreases due to trapped particle leak❑The final profile has multiple harmonics

GENERALIZATION

(how to apply the bump-on-tail model to fast particles in tokamaks)

Wave-Particle Lagrangian

• Perturbed guiding center Lagrangian:

$$L = \sum_{\text{particles}} \left[P_{\vartheta} \dot{\vartheta} + P_{\varphi} \dot{\varphi} - H \left(P_{\vartheta}; P_{\varphi}; \mu \right) \right] + \sum_{\text{modes}} \dot{\alpha} A^{2} + 2 \operatorname{Re} \sum_{\text{particles, modes, } l} AV_{l} \left(P_{\vartheta}; P_{\varphi}; \mu \right) \exp(-i\alpha - i\omega t + in\varphi + il\vartheta)$$

- Dynamical variables:
 - $P_{\vartheta}, \vartheta, P_{\varphi}, \varphi$ are the action-angle variables for the particle unperturbed motion
 - A is the mode amplitude
 - α is the mode phase
- Matrix element $V_l(P_{\theta}; P_{\varphi}; \mu)$ is a given function, determined by the linear mode structure
- **Mode energy:** $W = \omega A^2$
- Resonance condition:

$$\Omega = n\omega_{\varphi}\left(\mu; P_{\varphi}; E\right) - l\omega_{\theta}\left(\mu; P_{\varphi}; E\right) - s\omega_{\psi}\left(\mu; P_{\varphi}; E\right) - \omega = 0$$

The quantities n, l, and s are integers with s = 0 for low-frequency modes.

Dynamical Equations

• Unperturbed particle motion is integrable and has canonical action-angle variables I_i and ξ_i .

- Unperturbed particle motion is periodic in angles ξ_1 , ξ_2 , and ξ_3 .
- Single resonance approximation for the Hamiltonian:

 $H = H_0(I) + 2\operatorname{Re}\left[A(t)V(I)\exp(i\xi - i\omega t)\right]$

• Kinetic equation with collisions included:

$$\frac{\partial f}{\partial t} + \Omega \left(I \right) \frac{\partial f}{\partial \xi} - 2 \operatorname{Re} \left[i A(t) \exp(i\xi - i\omega t) \right] \frac{\partial f}{\partial I} = v_{eff}^3 \left(\partial \Omega / \partial I \right)^{-2} \frac{\partial^2 f}{\partial I^2}$$

Equation for the mode amplitude with background damping included:

$$\frac{dA}{dt} = -\gamma_d A + \frac{i\omega}{G} \int d\Gamma V^* \exp(-i\xi + i\omega t) f$$

Estimates of Resonance Width

• Bump-on-tail kinetic equation $(u = kv - \omega)$:

$$iuf_1 - v^3 \frac{\partial^2 f_1}{\partial u^2} = -\frac{ek}{2m} \hat{E} \frac{\partial F_0}{\partial u}$$

- Compare collisional term to convective term to obtain $\Delta u \sim v$.
- 1-D reduction of collision operators for resonant particles in a tokamak:

$$\frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{D} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left\langle \frac{\partial P_{\phi}}{\partial \mathbf{v}} \cdot \mathbf{D} \cdot \frac{\partial P_{\phi}}{\partial \mathbf{v}} \right\rangle \left(\frac{\partial \Omega}{\partial P_{\phi}} \right)^{2} \frac{\partial^{2} f}{\partial \Omega^{2}}$$
$$\Delta \Omega_{\text{Diff}}^{3} \left(\mathbf{c.f. } \mathbf{v}^{3} \right)$$

$$\frac{\partial}{\partial \mathbf{v}} \mathbf{b} f = \left\langle \frac{\partial P_{\phi}}{\partial \mathbf{v}} \cdot \mathbf{b} \right\rangle \left(\frac{\partial \Omega}{\partial P_{\phi}} \right) \frac{\partial f}{\partial \Omega}$$
$$\mathbf{\Delta} \Omega_{\text{Drag}}^2 \left(\text{c.f. } \alpha^2 \right)$$

Linear Resonance Produces a BGK-mode

- Each resonance can be treated separately when there is a large spacing between them
- The single-resonance Lagrangian has the form

$$L = P_{\theta}\dot{\theta} + P_{\varphi}\dot{\varphi} - H(P_{\theta}; P_{\varphi}; \mu) + 2\operatorname{Re}\left[AV_{l}(P_{\theta}; P_{\varphi}; \mu)\exp(-i\omega t + in\varphi + il\theta)\right]$$

- Additional Fourier harmonics build up when the linear mode becomes a BGK-mode, but periodicity of the perturbation is preserved.
- Generalization to the case of slowly evolving BGK-mode:

$$L = P_{\vartheta}\dot{\vartheta} + P_{\varphi}\dot{\varphi} - H(P_{\vartheta}; P_{\varphi}; \mu) - U(\int \omega dt - n\varphi - l\vartheta; P_{\theta}; P_{\varphi}; \mu; t)$$

• Potential energy *U* is a periodic function of its first argument $\psi = \int \omega dt - n\varphi - l\vartheta$ and a slow function of time.

Resonant particles in a BGK-mode (contd.)

- Perturbed potential $U(\int \omega dt n\varphi l\vartheta; P_{\theta}; P_{\varphi}; \mu; t)$ describes a traveling wave in phase space
- Particle motion in the wave is one-dimensional due to conservation of magnetic moment μ and $lP_{\varphi} nP_{\theta}$.
- Similarly to the electrostatic problem, adiabatic invariant is conserved, except for the flow around the separatrix.
- The distribution function of trapped particles is constant within the separatrix.

Resonant Particle Convection

- The resonance carries trapped particles along the dotted lines.
- Initial distribution along the resonance (color coded) is preserved.
- Nonlinear particle response can be expressed analytically in terms of the perturbed fields (via waterbag approximation).

MULTIPLE MODES AND GLOBAL TRANSPORT

(mode bursts and profile stiffness)

Effect of Resonance Overlap

The overlapped resonances release more free energy than the isolated resonances

TIFS

Page 37

Particle Transport Mechanisms of Interest

- Neoclassical: Large excursions of resonant
 particles (banana orbits) + collisional mixing
- Convective: Transport of phase-space holes and clumps by modes with frequency chirping
- Quasilinear : Phase-space diffusion over a set of overlapped resonances
- Important Issue:
- Individual resonances are narrow. How can they affect every particle in phase space?

Intermittent Quasilinear Diffusion

Simulation of Intermittent Losses

Numerical simulations of Toroidal Alfvén Eigenmode (TAE) bursts with parameters relevant to TFTR experiments have reproduced several important features:

- synchronization of multiple TAEs
- timing of bursts
- stored beam energy saturation

Y. Todo, et al., Phys. Plasmas 10, 2888 (2003)

Issues in Modeling Global Transport

• Reconciliation of mode saturation levels with experimental data

- Simulations reproduce bursty losses and particle accumulation level
- Wave saturation amplitudes appear to be larger than the experimental values (however, this discrepancy may not affect the fast particle pressure profiles)
- Edge effects in fast particle transport
 - Sufficient to suppress modes locally near the edge
 - Need better description of edge plasma parameters
- Creation of transport barriers for fast particles

CONCLUDING REMARKS

- All particles are equal but resonant particles are more equal than others.
- Near-threshold kinetic instabilities in fusion-grade plasmas exhibit rich but comprehensible non-linear dynamics of very basic nature.
- Nonlinear physics offers interesting diagnostic opportunities associated with bifurcations and coherent structures.
- Energetic particle driven turbulence is prone to intermittency that involves avalanche-type bursts in particle transport.

