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Abstract

The processes governing the propagation of low frequency vortex-wave convective

disturbances in the two different physical systems of neutral fluids on rotating planets

and plasmas confined by magnetic fields are explored with (i) physical descriptions of

the convective transport, (ii) establishing the relevant conservation laws and (iii) com-

puter simulations. The role of a global, ambient temperature gradient in driving the

three-dimensional baroclinic instability is compared with the ion temperature gradient

instability in magnetically confined plasma. Steady-state power balance and the turbu-

lent viscosities and thermal diffusivities are analyzed using the same class of turbulent

transport formulas.
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1 Drift Waves–Rossby Waves

There are important similarities in the geophysical fluid dynamics and the low frequency

drift wave dynamics in magnetized plasmas. In both systems the motions are quasi-two-

dimensional, meaning that there are large horizontal velocities v⊥ that can often be taken

nearly independent of the vertical coordinate z or the direction parallel to the magnetic

field in the plasma. The fundamental reason for the similar structure of the low-frequency

dynamics in the two systems with completely different physical properties, neutral fluids

versus the charged particle system, is the mathematical form of the horizontal acceleration.

In a fluid system rotating with angular velocity ΩΩΩ the Coriolis force 2ρv×ΩΩΩ where ρ is the

mass density, has exactly the same mathematical form as the Lorentz force eanava × B/c

acting on the charged fluid with a cyclotron frequency ΩΩΩa = ea B/ma c for charge species

ea,ma with density na and pressure pa = nakBTa.

The degree of the correspondence of the two systems is made precise by establishing the

form of the potential vorticity q(x, y, t) in the two systems and the form of Ertel’s theorem

dq/dt = 0. The parallel between the drift wave dynamics and the geophysical fluid dynamics

was first emphasized by Hasegawa and Mima (1978), Hasegawa et al. (1979). The homology

is clarified through the use of Ertel’s theorem by Meiss and Horton (1983). Meiss and Horton

introduce the name Charney-Hasegawa-Mima (CHM) equation to describe the isomorphism

between the two systems that occurs in the strictly 2D limit where the Taylor-Proudman

theorem holds in the strong sense. Meiss and Horton (1983) also describe the generalization

of the system to include the motion parallel to the rotation axis. When the coupling to

the vertical velocity w(v‖) is important the GFD and plasma dynamics begin to differ due

to the stable stratification from the buoyancy effects in the atmosphere and oceans. To

the extent that the stratification dynamics given by the Brunt-Väisälä frequency N is rapid

compared to the Coriolis frequency parameter f = 2Ω sin θ where θ is the latitude (N À f)
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the net effect of the stratification on the long-time scale T > 1/f dynamics is to maintain

the quasi-two-dimensionality of the large-scale (L > ρR) dynamics. Here ρR is the Rossby

radius measuring the horizontal scale for dispersion of the Rossby waves and the exponential

decay length for localized vortex structures. The effect of the vertical stratification is to

decrease the effective Rossby radius from the shallow water value ρR = (gH)1/2/f to the

internal deformation radius ρI = NH/f . The origin of this change in the Rossby radius

due to the vertical stratification of the fluid is explained in the section on vertical motion in

stratified medium.

In Sec. 2 we introduce the instabilities that occur from the horizontal temperature gra-

dient. In the GFD system this instability is called the baroclinic instability and is perhaps

the most important and universal form of instability in the atmosphere (Gill, 1982, ch. 13).

The fastest growth rate occurs for the horizontal wavenumber k⊥ such that the k⊥ρR ∼ 1

(Pedlosky, 1987, p. 521) which for ρR = 1000 km gives the azimuthal mode number m = 6

for the Earth. Monin (1972) attributes the peak in the power spectrum of the kinetic en-

ergy fluctuations at the period of four days to this source of turbulence. These facts are

similar to the situation in confined plasmas when appropriately scaled. The ion temperature

gradient instability (Horton et al., 1980, 1981, and 1992) has a peak in the wavenumber

spectrum at k⊥ρs ∼ 0.3 with ω/Ωi ' 0.3ρs/LT . Here Ωi is the ion cyclotron frequency and

ρs = cs/Ωi is the ion inertial scale length which are the plasma analogs of f and ρR as shown

in Table 1. The scale length of the radial temperature gradient is LT . Examples of the large-

scale quasi-two-dimensional convection cells obtained from direct numerical simulations are

presented.

We conclude in Sec. 3 by comparing the turbulent thermal transport problem for the

atmosphere and the plasma. We discuss the alternative scaling laws for the effective thermal

diffusivity χ. Arguments are given to show that both for the atmosphere and the plasma

the Prandtl number constructed from the ratio of the large-scale turbulent viscosity (L >
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Table 1: Analogy Between Drift Wave and Rossby Wave

Drift Wave Rossby Wave

H-M equation: Charney equation:

(1−∇2)∂φ
∂t

+ vd
∂φ
∂y
− [φ,∇2φ] = 0 (1−∇2)∂h

∂t
− vR ∂h

∂x
− [h,∇2h] = 0

Electrostatic potential φ(x, y, t) Variable part of fluid depth: h(x, y, t)

φ(x, y, t) =
(
Ln
ρs

)
eΦ

(
x
ρs
, y
ρs
, cs
rn
t
)/

Te h(x, y, t) =
(
LR
ρg

)
δH

(
x
ρg
, y
ρg
, cg
LR
t
)/

H

Lorentz force: mi ωci v⊥ × ẑ Coriolis force: ρfv⊥ × ẑ

E×B drift flow: v⊥ =
(
c
B

)
ẑ×∇∇∇Φ Geostrophic flow: v⊥ =

(
g
f

)
ẑ×∇∇∇δH

Cyclotron frequency: ωci = eB
cmi

Coriolis parameter: f

Drift coefficient: L−1
n = − ∂

∂x
`n n0 Rossby coefficient: L−1

R = ∂
∂y
`n
(
f
H

)
Larmor radius: ρs = cs

ωci
Rossby radius: ρg = cg

f

Ion acoustic speed: cs =
(
Te
mi

)1/2
Gravity wave speed: cg = (gH)1/2

where Te is electron temperature where H is depth of fluid layer.

Drift velocity: vd = cs ρs
∂
∂x
`n n0 Rossby velocity: vR = cg ρg

∂
∂y
`n
(
f
H

)
Dispersion relation: Dispersion relation:

ω = ky vd
1+k2 ρ2

s
ω = − kx vR

1+k2 ρ2
g
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1000 km using the Richardson four-thirds law) and the turbulent thermal diffusivity χ is

comparable to unity.

1.1 Physical mechanism of the drift wave–Rossby wave

With Fig. 1 showing the positive potential associated with a local excess of positive charge,

we can understand the drift wave propagation from the convection of the ion density. The

convection of the plasma density is given by

∂n

∂t
+ vE · ∇∇∇n = 0 (1)

where

vE =
cE×B

B2
=
cẑ×∇Φ

B
. (2)

Clearly the flow (2) is along the contours of constant electric potential Φ and from Eq. (1)

the higher density at the top of the frame is brought to the right and the lower density

beneath the structure is brought to the left. In time ∆t the amount of excess density δn that

accumulates to the right of the potential maximum Φ is δn∆x∆y = (n>vE−n<vE) · x̂∆y∆t.

The electron fluid is able to move freely and rapidly along the magnetic field B to neutralize

N(x)
N (x)

N (x)

B

z

x

E = -

y

φ

φ ,δn

ΓV

+

+

Γ-

<

>

E

1 1

φ ,δn2 2

∆

Figure 1: Drift wave mechanism showing E×B convection in a nonuniform, magnetized
plasma. The local potential maximum Φ produces clockwise rotation that moves the struc-
ture to the right with the speed given in Eq. (4)..
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the excess charge ni = ne(x) exp(eΦ/Te) ' n0(1 + eΦ/Te) for small ϕ = eΦ/Te. Combining

these results for δn with the flow through the midplane

vE · x̂∆y = cEy∆y/B = cΦ/B (3)

and the density excess

n> − n< = ∆x ∂n/∂x

gives that the potential maximum Φ moves to the position y + ∆y at the speed

∆y

∆t
=
−cTe
eBn

∂n

∂x
= vde. (4)

Even with constant n the structure will translate when v>E 6= v<E due to ∆x∂B/∂x. This is

the basic mechanism of the plasma drift wave.

For an incompressible fluid of depth H(x, y, t) the hydrostatic pressure is p = ρgH(x, y, t)

and the geostrophic flow velocity balances the pressure gradient −∇p+ ρfv× ẑ = 0 to give

v =
g

f
ẑ×∇H. (5)

Now reconsider Fig. 1 with depth of the fluid H0(x) corresponding to the density n(x). The

local potential Φ now corresponds to the excess column height gδH(x, y, t) of an anticyclone.

Again there is clockwise rotation bringing the deeper fluid to the right and the shallow

water to the left so that the bulge δH > 0 propagates to the right with the speed vR =

(g/f)(∂H/∂x). Reversing the sign of the perturbation δH < 0 changes the direction of

rotation for the low pressure cyclone. However, the depression again moves to the right

with the same speed since the counter clockwise rotation brings shallower fluid to the right.

For nonlinear finite amplitude disturbances h = δH/H the deeper anticyclonic perturbation

propagates faster than the cyclonic disturbance.

The dynamical equation for H(x, y, t) follows from integrating the incompressibility con-

dition

∇ · v⊥ +
∂w

∂z
= 0 (6)
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from z = HB(x, y) the bottom to z = H(x, y, t) + HB the free surface and using that

w(z = HB) ≡ 0 and w(z = H + HB) = dH/dt while taking v = ux̂ + vŷ independent of z

(Pedlosky, 1987, p. 62). The shallow water equation is then

∂H

∂t
+ v⊥ · ∇H +H∇ · v⊥ = 0. (7)

Using the geostrophic velocity with f = f(y) and H = H0(y) as in the standard GFD

coordinates, we obtain

∂

∂t
δH + g

∂

∂y

(
H0(y)

f(y)

)
∂δH

∂x
= 0 (8)

for the long wavelength Rossby wave equation. Note that y points northward and x eastward

with the Rossby wave propagating westward. The fusion coordinates in Fig. 1 are obtained

by rotating the GFD coordinates anticlockwise about ẑ by 90◦ so that the x̂ points in the

direction of the decreasing density n(x) and ŷ in the direction of the drift wave propagation.

The simulations presented here are expressed in terms of the fusion coordinates while we

leave the GFD equations in GFD coordinates.

In the presence of resistivity or the electron Landau resonance the density and potential

fluctuations develop a phase difference as shown in Fig. 2. Repeating the above argument

with the phase difference shows that there is now a net transport from 〈nvE · x̂〉y and that

there is a growth or decay of the amplitude of the structure depending on the direction of

the phase shift. The same situation will arise in Sec. 2 for the phase of the temperature

fluctuation relative to that of the stream function for the v⊥ flow velocity. For unstable

fluctuations the net transport is down the relevant density or temperature gradient which

determines the direction of the phase shift between the stream function and the transported

field. For large amplitude, coherent structures the phase shift tends to be small.
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Figure 2: (a) A segment of a drift wave fluctuation showing the variation of the electrostatic
potential perpendicular to the magnetic field at a given instant of time. The isopotential
contours in the plane perpendicular to Bẑ are the stream lines of the E×B particle motion.
(b) A segment of the correlated but phase shifted density variation. (c) Top view of the
potential and density contours in (a) and (b) in the case where the density and potential
variation are in phase. (d) Top view in the case where the potential and density variation
are out of phase by ψδn,ϕ.
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1.2 Ertel’s theorem

The isomorphism between the drift wave and the Rossby wave is most clearly and usefully

expressed by Ertel’s theorem in the reduced form suitable for geostrophic and E×B flows.

To see the action of the Coriolis force/Lorentz force in keeping the variation of v⊥ small with

z, it is useful to examine the rotational part first for the full 3D momentum equation and then

afterwards consider the rotational and the divergence parts of the horizontal components of

the acceleration equation separated from the vertical component. The full 3D acceleration

equation is

ρ
dv

dt
= −∇p+ ρv × f + ρg. (9)

Upon using the vector identity

v · ∇v = ∇
(
v2

2

)
− v × (∇× v) (10)

to rewrite the convective derivative we see that the effective pressure is the sum of the thermal

pressure and the dynamic pressure peff = p + ρv2 and the horizontal rotational acceleration

becomes v× (f +∇∇∇×v) where ωωω = ∇×v the vorticity in the rotating frame combines with

f to give the absolute vorticity f + ωωω.

Dividing Eq. (9) by the mass density and taking the rotational part yields

d

dt
(ωωω + f) = (ωωω + f) · ∇v − (ωωω + f)(∇ · v) +

∇ρ×∇p
ρ2

(11)

for the convection of the absolute vorticity. Equation (11) shows that in the rotating frame

the absolute vorticity f + ωωω plays the same role as ωωω in an inertial frame.

For p = p(ρ) the last term in Eq. (11) vanishes and the alternative form of Eq. (11)

familiar to plasma physicists is

∂t(ωωω + f) = ∇× [v × (ωωω + f)] .

This is the same as the “frozen in law” for the magnetic flux
∫

B · da in the limit of infinite

conductivity. Thus, the corresponding flux
∫
S(ωωω+f)·da through a surface S moving with the

10



fluid velocity v(x, t) is constant. This is the general form of the Taylor-Proudman theorem

according to Chandrasekhar (1961, p. 84).

The Taylor-Proudman theorem states that for stationary, incompressible flow with ∇p×

∇ρ = 0 the flow velocity v is independent of the z. The first term on the right-hand side of

Eq. (11) gives the differential form of the Taylor-Proudman theorem: f · ∇v = 0. For slow

d/dt¿ f,Ωi motions and with the vanishing of ∇p×∇ρ, the convective structure in fluids

and plasmas are quasi-two-dimensional due to this theorem. From the x-y components of

Eq. (11) we see that to keep the fluid vorticity ωωω pointing in the ẑ direction in the presence of

large f ẑ, the horizontal velocity must satisfy |∂zv⊥| ¿ f . The ẑ component of the vorticity

changes according to the vortex stretching given by ∂z w − ∇ · v = −∇⊥ · v⊥. The 2D

compression occurs from both the change in f given by β = ∂f/∂y and the ageostrophic

(polarization) drift velocity.

For p = p(ρ) the vertical (ẑ) component of Eq. (11) reduces to

d

dt
(f + ω) = (f + ω)

∂w

∂z
(12)

describing the exponential growth and decay of the absolute vorticity for a given positive or

negative value of stretching ∂w/∂z. In the full 3D system we will determine ∂w/∂z from the

total geostrophic convective time derivative of ∂p/∂z to rewrite Eq. (12) as dq/dt = 0. In

the 2D limit of shallow water the derivation of qG(x, y, t) is simple. Integrating Eq. (12) over

z from the bottom to the upper free surface and using that at the free surface w = dH/dt

gives H dt(f + ω) = (f + ω)(dH/dt). Thus qG = (f + ω)/H is conserved.

In both the GFD and plasma dynamics of vorticity the finite, or first order, Rossby

number R0 and finite Larmor radius (FLR) effects are essential to determine the horizontal

compression ∇⊥ · v⊥. Iterating on 1/f in the momentum Eq. (9) we obtain the next term

in the 1/f expansion by evaluating the convective derivative with the geostrophic velocity
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v = ẑ×∇p/ρf to obtain the ageostrophic velocity

vag = − 1

f

d

dt

(
1

fρ
∇⊥p

)
. (13)

For a single layer of shallow fluid with a free upper surface the height integrated divergence

free condition (6) evaluated with ageostrophic flow vag = −(g/f2)(d∇δH/dt) and the upper

boundary condition w = dH/dt yields the reduced form of Ertel’s theorem

d

dt

(
f + g

f
∇2δH

H0 + δH

)
= 0 (14)

describing the conservation of the potential vorticity qG.

For the magnetized plasma the vorticity equation (11) and continuity Eq. (1) yield

d

dt

[
Ωi + c

B
∇2Φ

n(x, t)

]
= 0 (15)

(Meiss and Horton, 1983). Using the Boltzmann relation n(x, t) = n(x) exp(eΦ/Te(x)) gives

the single PDE for Φ(x, y, t). The details of this analysis and further comparisons with GFD

are given in Horton and Ichikawa (1996, ch. 6).

Comparing Eqs. (14) and (15) we see that for the two analog systems the role of deep

water is played by the high plasma density and the gradient of the Coriolis parameter f is

equivalent to the gradient of the magnetic field. Both systems have a conserved potential

vorticity q with dq/dt = 0. The invariants derived from integrals of q, q2 and the x, y moments

of q are key ingredients of the Lyapunov stability analysis of the systems. The Lyapunov

stability is treated in Laedke and Spatschek (1986, 1988), Swaters (1986), Sakuma and Ghil

(1991), and Nycander (1992), but is too technical to develop here.

Equations (14) and (15) are highly nonlinear and do not have symmetry with respect

to the interchange of anticyclonic (δH > 0 or δΦ > 0) and cyclonic (δH < 0 or δΦ < 0)

disturbances. Clearly, the anticyclonic (AC) disturbance has ω = (g/f)∇2δH < 0 opposite

to f so that a localized disturbance may freely drift to larger f or smaller H0 while conserving
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qH by increasing its strength. The cyclonic (C) disturbance has ω of the same sign as f and

may propagate to smaller f while gaining strength.

Reduced dynamical equations showing the broken AC-C symmetry were given in a num-

ber of works including Tasso (1967), Petviashvili (1977), Horton and Petviashvili (1993),

Nezlin and Snezhkin (1993), and Horton and Ichikawa (1996). Su et al. (1991, 1992) in-

vestigate the properties of these equations in some detail showing how the Larichev-Reznik

(1976) dipoles are split in part with only the anticyclonic vortex forming along lined coherent

structure. Nezlin (1994) emphasizes the importance of the anticyclone over the cyclone in

Jupiter’s atmosphere and other geophysical vortices when the vortex radius r0 exceeds the

Rossby deformation radius ρR.

In the local limit where the potential vorticity in Eq. (14) reduces to

qH = ∇2h− 1

ρ2
R

h+ βy (16)

and in Eq. (15) to

qp = ρ2
s∇2ϕ− ϕ+ vdx (17)

the equation dq/dt = 0 gives the locally homogeneous pde called the Charney-Hasegawa-

Mima equation (hereafter called CHM). The relevant dimensionless coordinates are ρR or ρs

for x, y and the time unit ρR/vR or ρs/vd such that the Rossby/drift speed is unity. In these

space-time coordinates the amplitude is scaled as ρRβ/f ∼ ρR/Rp ¿ 1 and ρs/Ln ¿ 1 to

give the nonlinearity unit strength. Here Rp is the radius of the planet. The CHM equation

is then

(1−∇2)
∂ϕ

∂t
+
∂ϕ

∂y
− [ϕ,∇2ϕ] = 0 (18)

where we have taken x in the direction of the inhomogeneity (northward on the planet and

radially in the plasma) and y in the symmetry direction.

The nonlinear drift wave equation (18) exhibits both dispersive wave and coherent vortex

propagation. The vortex properties dominate, trapping the wake fields, when the amplitude
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Figure 3: Comparison of the linear and nonlinear drift wave–Rossby wave propagation from
an initial gaussian anticyclonic disturbance. The drift wave–Rossby wave speed is unity and
in the ŷ direction.

is such that the rotation period in the structure of size r0 = π/k⊥ is shorter than the cor-

ressponding wave period 2π/ωk⊥ . Here r0 is the radius of the incipient vortex and the trap-

ping condition requires max(vx) = (1/ρ0f)(∂δp/∂y) > vR or δH/H > r0/Rp for the shallow

fluid. These properties are illustrated in Fig. 3 which compares the propagation properties

of a small amplitude disturbance in the left column with a large amplitude disturbance well

above the trapping condition in the right column for an initial gaussian AC distribution. The

upward (westward) propagating wave contains wave fronts of speeds from zero to vR whereas

the large amplitude disturbance traps most of the wave energy and propagates coherently at
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the speed vR. The monopolar structure does not have the reflection symmetry required of

solution of Eq. (18) [ϕ(−x, y, t) = −ϕ(x, y, t)] so that an underlying odd dipolar component

is created in one rotation period. This reflection system is why the exact, localized station-

ary solutions must have odd mirror or reflection symmetry like the Larichev-Reznik dipolar

structures. However, in practice, as Fig. 3b shows that the dominant monopolar structure,

with a small dipolar component can form a long-lived, coherent structure. We will see this

again in the next example where a monopolar structure is the product of a collision between

two dipoles. The wakefield of the linear structure can be computed in detail. The tilted

chain of trailing waves is understood from the max(∂ω/∂kx) ∼= −2 max(kxkyρ
2
s)vR which

occurs for θ = tan−1(kx/ky) = 45◦.

In the atmosphere the trapped structure form by either the sudden creation of hot or cold

spots by nonadiabatic processes and/or the confluence of counterstreaming flows. Holland

(1995) describes both processes operating in the summer Asian monsoons in the western

Pacific in the tropics at ' 10◦N latitude. This region during the summer has a high birthrate

of mesoscale vortices, some of which grow into large, long-lived cyclonic depressions. An

example at an early state of development given in Fig. 4 from Holland (1995, fig. 15) shows

a structure that is similar to the first three vortices shown in the head of the wake in Fig. 3a.

Now we consider the interaction and structural stability of the dipolar vortices.

To further illustrate the properties of Eq. (18) let us launch two Larichev-Reznik dipole

solutions with opposite polarizations of the electric field or ∇δH — so that they collide.

Rather than taking the symmetric co-axial collision, it is more informative to have the dipole

centers offset by the impact parameter b comparable to the radius r0 of the Larichev-Reznik

dipoles. The situation is shown in Fig. 5 with r0 = 6ρR and b = 5ρR. In the coordinates of

Eq. (18) the Rossby-drift wave propagates with unit speed in the +y direction (westward).

This is also the direction of propagation of the lower dipole in Fig. 5 with the anticyclone

on the right and the cyclotron on the left. The upper dipole has the AC on the left and C
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u

Figure 4: A strong leading cyclonic Rossby wave disturbance with its wakefield of two
anticyclonic patches that appears to conform to the wakefield structure shown in Fig. 3a.
Other conditions relevant to this southwast Pacific typhoon are given in Holland (1995)
(courtesy of Holland).

on the right, and, by itself, will propagate downward (eastward). What we see happening is

the merging or coalescence of the two cyclonic regions to form a new, stronger cyclone. The

merger is of the type shown in Griffiths and Hopfinger (1986, 1987).

Now, which of the two AC’s pair up with the large cyclone depends on the stability of the

dipole system with out-of-balance monopolar components. This problem is investigated by

Javonović and Horton (1993) using Lyapunov stability theory and simulations. The stability

question can be answered, however, using Ertel’s theorem with more clarity than using the

heavy mathematical machinery of Lyapunov stability theory (Muzylev and Reznik, 1992).

First consider the left side AC with the large, central cyclone. The anticlockwise velocity

field of the large cyclone rotates the left AC down under itself which strengthens it. The

strengthened left AC then rotates the central C to the left, allowing it to strengthen from

the reduced f . This result is a stable, oscillatory drift of this C-AC pair while propagating

downward (eastward). Now, if one considers the alternative possibility for the central C and
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and dipole radius a = 6ρs. (a) 15 contours of potential with the range ±54.7 at t = 0 and
−49.5 to 65.5 at t = 80; (b) 15 contours for perturbed distribution δf with the range ±54.7
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the right hand AC joining together, the system falls apart. The right side AC is weakened

by its rotation from the large cyclone. Thus, they (the C and right-hand AC) do not bind.

In fact, the same arguments are easy to use to show why the westward propagating dipole

is unstable to a slight de-symmetrization of the dipole lobe strengthens. The motion is such

that the initially stronger lobe continues to gain strength by drifting farther to the north

(for the AC > C) or to the south (for the C > AC).

This is in accordance with the mathematical stability analysis (Laedke and Spatschek,

1988) indicating that the eastward (ion-diamagnetic direction) dipole is stable. Difficulties

in giving a complete mathematical proof of stability are described by Nycander (1992). The

simulations and the point vortex models (Kono and Horton, 1991) and Hobson (1991) give

clear physical pictures for why the westward dipole is unstable. These stability properties

may account for the rather uncommon occurrence of the dipole structures in the atmosphere.

The effect of the temperature gradient is another reason for the lack of the dipoles (Jovanović

and Horton, 1993).

The collision is also inelastic with a wakefield generated similar to that shown in Fig. 3.

The right-hand side of Fig. 5 shows the contours of a passive field f convected by the flow.

The initial value of the passive f is trapped inside the dipoles.

1.3 Vertical motion in the stably stratified medium

The stable vertical stratification of the fluid introduces the restoring force from the buoyancy

of the fluid. This buoyancy frequency

N = (−g∂z`n ρ)1/2 (19)

follows from the convection of the density perturbation δρ by the vertical velocity w

dδρ

dt
+ w

∂ρ0

∂z
= 0 (20)
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and the vertical acceleration

ρ0
dw

dt
= − ∂

∂z
δp− gδρ. (21)

Here d/dt is the horizontal convective derivative with the geostrophic velocity. Taking d/dt

of Eq. (21) and using Eq. (20) for dδρ/dt gives

d2

dt2
w = −N2w − d

dt

(
1

ρ

∂

∂z
δp

)
. (22)

Thus, perturbed vertical pressure gradients drive vertical oscillations at the frequency N

about the initial stratified equilibrium position. For motions on long-time scales ∆tÀ 1/N

compared to the rapid (small amplitude) vertical motion, the time-averaged vertical velocity

is

w =
−1

N2

d

dt

(
1

ρ

∂δp

∂z

)
, (23)

following from the time-average of Eq. (22).

This determination of w is the primary difference with the plasma confinement where the

equilibrium is uniform along ΩΩΩ = Ωẑ with neutral stability with respect to translations along

ẑ. There are stable oscillations along ẑ in the plasma, but they are associated with the ion-

acoustic waves k2
‖c

2
s with c2

s = Te/mi not with stratification or an equilibrium restoring force.

The acoustic waves are low in frequency compared with Ωi = eB/mic. The acoustic waves

occur both above and below the drift wave frequency depending on the ratio of k‖cs/kyvde =

k‖Ln/kyρs.

Equation (23) describes the vertical outflow from a growing, localized high pressure (AC)

region. There is a balancing inward horizontal flow from the ageostrophic velocity. Balancing

the divergence of the inward horizontal flow with the outward vertical flows gives the basic

quasigeostrophic baroclinic equation for the eigenmodes of the system. Substituting Eq. (23)

into Eq. (12) gives

d

dt

{
f(y) +

1

fρ0

∇2
⊥δp+

∂

∂z

f

N2ρ0

∂δp

∂z

}
= 0 (24)
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where df/dt = (β/fρ0)∂xδp. The vertical eigenmodes with w = 0 at z = 0 and z = D are

approximately δpn = δpn(x, y, t) cos(nπz/D) giving the horizontal dynamics

d

dt

[
1

ρ0

∇2
⊥δpn −

f 2

N2D2
n

δpn

]
+
β

ρ0

∂

∂x
δpn(x, y, t) = 0. (25)

For a sufficiently smooth N(z)-profile the eigenvalues are Dn = D/nπ. For a strongly

localized N(z) of height ∆zm there are trapped internal modes when k⊥Nmax∆zm > πf

where k⊥ = (k2
x + k2

y)
1/2 is the horizontal wavenumber.

Thus, the internal Rossby deformation radius ρR is

ρR(n) = NDn/f (26)

where ρR(n = 0) → ∞ for the barotropic (flute) mode and ρR(n = 1) ' ND/πf for the

first baroclinic mode. The relation with the shallow water Rossby radius is found by noting

that N = [(∆ρ/ρ)(g/D)]1/2 so that ρR(n = 1) → [Dg(∆ρ/ρ)]1/2/f < (gH)1/2/f . For the

oceans the effect of ∆ρ/ρ and the eigenmode calculation is to lower ρR(n = 1) to about

80 km. Thus, the oceans have a much smaller value of ρR/Rp ∼ 10−2 more analogous to the

magnetic confinement experiments. Another, unfortunate, analogy of the oceans with the

plasmas is that detecting the Rossby wave structures in the oceans is much more difficult

than in the atmosphere.

2 Horizontal Temperature Gradients

Both magnetized plasmas and geophysical fluids are subjected to localized heating and cool-

ing resulting in substantial temperature gradients. The resulting temperature gradients can

drive large-scale convective motions that serve to transport thermal energy and momentum.

The stability analysis of the various equilibrium models is a classical problem in both fields.

Here we briefly compare the systems before showing the results for the plasma simulations.

The linear stability analysis gives an expression for the growth rate γ`(k, {µ}) for the

mode as a function of wave vector k and the system parameters {µ}. Generally, the fluctu-
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ations that maximize γ`k provide the dominant source of energy into the convection system.

The temperature gradient modes have a well-defined maximum growth rate at the wavenum-

ber k⊥ ∼ ρ−1 where ρ = ρI = ND/f in the baroclinic instability and ρ = ρs = (miTe)
1/2/eB

in the magnetized plasma.

2.1 Baroclinic instability

The baroclinic instability mechanism is a modification of the Rayleigh-Benard instability tak-

ing into account the role of the Coriolis force in the momentum equation and the constraints

of the vertical stratification. The thermal energy release is driven by the gravitational po-

tential energy obtained by interchanging lighter and heavier fluid parcels taking into account

their change in density ρ = ρ(p, T ) with temperature and pressure. For liquids the equation

of state is simpler with ρ = ρ(T ) for the usual range of pressures.

For the oceans and the rotating water tanks (liquids) the fractional change in density

is very small with ρ = ρ0(1 − α(T − T0)) with α = 2 × 10−3/◦C for water. Thus the

Boussinesq approximation applies where ρ = ρ0 = const except in the buoyancy term where

gδρ = −gρ0αδT . Gravitational potential energy is released to drive convection when the

lower level fluid is heated becoming lighter or the upper level is cooled becoming heavier.

For the atmosphere and plasma (gases) the compressibility of the gas determined by

the ratio of the specific heats Γ = Cp/Cv must be taken into account. For the diatomic

atmosphere gases Γ = 1.4 while for the collisionless plasma the value of Γ ranges from 5/3

to 3 as the effective number of degrees of freedom involved in the dynamics changes from

three to one. For the ITG instability the effective Γ is given in Kim and Horton (1991) from

kinetic theory considerations. For the ideal gas equation of state ρ = P/nRT so that the

volume expansion coefficient α = −∂`n ρ/∂T )p = 1/T ∼ 3× 10−3/◦C at T ∼ 300◦K.

In the geophysical problem the effect of the horizontal temperature instability is com-

plicated by the vertical stratification of the fluid described in Sec. 1.3. For instability the
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Figure 6: For the sloping constant density surfaces at angle φ from the horizontal, grav-
itational potential energy is released by the interchange of fluid elements between A and
B.

buoyancy must be overcome by suitable restrictions on k, ω in geostrophic motions to give

rise to growth of the convection. To understand the origin of these restrictions consider the

sloping contours of the potential temperature and density shown in Fig. 6. Both Pedlosky

(1987, p. 519) and Gill (1982, p. 555) begin their discussion of the baroclinic instability by

calculating the gravitational potential energy released resulting from interchange motions for

the sloping contours shown in Fig. 6. The angle φ (in radians) of the slope of the isotherms

and isopycnals (constant density surfaces) required for fast-growing modes is very small. It

is evident (see Pedlosky and Gill for the calculation) that only interchanges of fluid parcels

A and B, within the small wedge of angle φ, will release potential energy. Interchange of A

and C requires work be down against g due to the stable stratification.

In the toroidal plasma confinement device the equilibrium pressure, density and tempera-

ture are independent of z having gradients perpendicular to B. The role of gravity g is played

by the curvature and gradient-B drifts of the charged particles producing through charge

separation an effective gravity term from the electric acceleration acting across the magnetic

field ΩΩΩi. The electric field produces an interchange of plasma that is mathematically of the

same form as that with the gravitational acceleration component k · g×∇ρ = kxg ∂ρ/∂y of
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the neutral fluid. The interchange is effective in lowering the plasma thermal energy. The

effective plasma g is given by g = c2
s/Rc where Rc is the radius of curvature of the field lines

(Hazeltine and Meiss, 1992).

To understand the conditions on the k, ω for the release of potential energy we analyze

the temperature equation dT/dt = 0 for the incompressible liquid or the adiabatic equation

dθ/dt = 0 for the compressible gas or plasma. Here θ = θ0(p/p0)1/Γ(n0/n) is the potential

temperature and Γ = Cp/Cv the ratio of specific heats.

For liquids with ∆ρ/ρ = α∆T < 10−2 the Boussinesq approximation is valid. In the

Boussinesq equations ρ = ρ0 = constant everywhere except in the buoyancy term where

δρg = −αρ0δT = −∂(δp)/∂z (27)

for slow motions that avoid the stabilizing vertical oscillations.

For the atmosphere the compression due to Γ is retained by working with θ = θ0 + δθ

where δθ/θ0 = −δρ/ρ0 + δp/Γp0 for adiabatic motion. Pedlosky (1987, p. 365) introduces

the horizontal velocity streamfunction ψ = δp/fρ0 and uses gδρ = −∂zδp to show that(
g

f

)
δθ0

θ0

= ∂z

(
δp

fρ0

)
(28)

when ∂z`n ρ0 = −g/c2 with c2 = Γp0/ρ0.

The equilibrium constant-slope surfaces of Fig. 6 are given by θ = θ0(z − φy) and ρ =

ρ0(z − φy). The perturbation in the temperature δT , or perturbed potential temperature

δθ, in the absence of thermal diffusion ω À k2χ is governed by(
∂

∂t
+ u

∂

∂x

)
δθ + (−vφ+ w)

∂θ0

∂z
= 0 (29)

where we use ∂θ0/∂y = −φ∂θ0/∂z due to the slope φ. Multiplying Eq. (29) by g/θ0 and

recognizing that the Brunt-Väisälä buoyancy frequency is

N2 =
g

θ0

∂θ0

∂z
(30)
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and using Eq. (28) we obtain

−i(ω − kxu)
∂

∂z

(
δp

ρ0

)
+N2(−φv + w) = 0. (31)

From Eq. (31) it is clear that the stable vertical oscillations from the buoyancy restoring

effect N2w in Eq. (31) are lost when

w(−φv + w) < 0. (32)

A simple estimate of the conditions on k, ω implied by condition Eq. (32) is obtained from

the shallow water equations w = dδH/δt = −iωδH and v = (g/f)∂xδH = i(kxg/f)δH

giving the necessary condition

ω(ω − ω∗) < 0. (33)

for instability where ω∗ = −kxgφ/f . A sufficient condition for instability requires finding

the actual dynamics required to release the energy by solving for the wave function and

eigenvalues as in the Eady problem, for example. The shallow water approximation shows

that for φ ∼ 10−4 and kx ∼ 10−4m−1 waves with ω <∼ 10−4 s−1 Hz satisfy ω < ω∗. The

phase velocity ω/kx must be parallel to ∇ρ × g and low enough to release the potential

energy (φv > w). Without the β = ∂f/∂y effect the ŷ-direction is the direction of the local

temperature gradient without regard to the north-south direction. An estimate for ω∗ taking

into account the 3D nature of the baroclinic motion is obtained by using w from Eq. (23) and

v = ikxδp/ρ0f in Eq. (31). The result is ω∗(3D) = kxDN
2φ/f whereupon using ρI = ND/f

gives

ω∗ ∼= kxρRNφ. (34)

Thus, for kxρR ∼ 1 the upper limit of ω∗ and the growth rate γ of the unstable mode is

Nφ. For large slopes φ ∼ f/N ∼ 10−2 the instability breaks the quasigeostrophic condition

|ω| ¿ f . This regime may occur in sharp fronts.
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The classical baroclinic instability analysis (the Eady and Charney problems, Gill, 1982,

pp. 556–563) is briefly given for completeness. The linearization of Eq. (24) gives vertical

eigenvalue problem [
d2

dz2
− N2k2

⊥
f 2

(
1 +

kxβ

ωk2
⊥

)]
δp

ρ0

= 0 (35)

with solutions

δp

ρ0

= A sinh(qz) +Bcosh(qz) (36)

where q = (k⊥N/f)(1 + kxβ/ωk
2
⊥)1/2. Equation (31) determines wk(z) since all other terms

are known from Eq. (36) with v = (ikx/f)(δp/ρ0). Now the vertical equilibrium gρ(z−φy) =

−∂p/∂z demands that there is shear in the horizontal velocity u(z) = −(1/ρ0f)∂p/∂y with

∂u/∂z = φN2/f .

The simplest case is the Eady problem which has a rigid lid so that w = 0 at both

z = ±D/2 and has β = 0. The eigenvalues follow from substituting Eq. (36) into Eq. (31)

and evaluating the equation at z = ±D/2. The determinant of the 2× 2 system in the A,B

coefficients yields

ω = ±i |kx|φN
2D

f

[(
coth

(
qD

2

)
− qD

2

)(
qD

2
− tanh

(
qD

2

))]1/2

(37)

for the unstable complex conjugate modes for qD < 2.4. The modes (37) coalesce and go

to stable modes for qD = k⊥ND/f > 2.4. The maximum growth rate γmax = 0.31fu′/N =

0.31Nφ occurs at ky → 0 and kx(ND/f) = 1.6 corresponding to a wavelength 2π/kx ' 4ρI =

4(ND/f). Pedlosky states that for ρI ∼= 103 km this wavelength is in excellent agreement

with the most energetic synoptic scale atmospheric disturbances. Monin (1972) shows the

energy spectrum in Fig. 7 computed from wind fluctuations with a pronounced peak at

a period corresponding to approximately 100 hr ∼ 4 days that agrees with the baroclinic

instability as the source of energy into the spectrum. The wavelength corresponding to the

peak is approximately such that kx ' m/R0 with m ∼= 6 consistent with λ ∼ 4000 km and

R0 = RE cos θ ≈ 4000 km at θ = 30◦.
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Figure 7: Energy-like spectrum fS(f) constructed from the power spectrum S(f) of the
horizontal wind velocity time series taken from Monin (1972). The dominant peak in the
spectrum is at a period of 100h ≈ 4 days. Monin interprets the peak as the position of the
energy injection from the large baroclinic instability. For ρR = 103 km the peak corresponds
to kxρR = 1 for a longitudinal mode number m = 6 (from Monin, 1972).

The situation for tokamaks is that with substantial ion heating a peak in the fluctuation

spectrum appears at k⊥ρs ∼ 0.5 that is identified (Brower et al., 1987, 1989) with the

ion temperature gradient by the direction of propagation being in the direction parallel to

B×∇pi (corresponding to eastward in the Rossby Wave–Drift Wave analog). The electron

drift wave spectrum (westward Rossby wave) is universally present: whereas the ion feature

in the spectrum occurs only when the ion temperature gradient exceeds the adiabatic gas

threshold condition.

2.2 Nonlinear dynamical equations for the Baroclinic instability

For the case of a liquid the equation of state is simpler than for a gas or plasma with

the standard model taking the linear relation ρ = ρ(T ) = ρ0 [1− α(T − T0)]. In this case

dρ/dt = ρ′dT/dt = ρ′χ∇2T where χ is the thermal diffusivity. In this model the fluctuation
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dynamics for fixed ∂ρ/∂y ∝ ∂T/∂y suitable for numerical integration are given by

d

dt

(
∇2
⊥δp

fρ0

)
+

β

fρ0

∂

∂x
δp = f

∂w

∂z
+

µ

fρ0

∇4
⊥δp (38)

ρ0
dw

dt
= −gδρ− ∂

∂z
δp (39)

d

dt
δρ+

1

fρ0

∂ρ0

∂y

∂

∂x
δp+

∂ρ0

∂z
w = χ∇2δρ. (40)

For the liquid we may take ρ0, ∂ρ0/∂y and ∂ρ0/∂z constant throughout the volume Ω of the

system which simplifies the analysis and simulations. Equation (38) is the same vorticity

equation as in the Rossby waves, but now the vortex stretching by the vertical velocity w is

controlled by the change in δρ both through horizontal convection and vertical convection.

The stable vertical stratification is overcome and the total fluctuation energy grows ex-

ponentially due to the horizontal temperature gradient ∂T/∂y = (−1/αρ0)(∂ρ0/∂y). In the

steady state the energy production by the meridional thermal flux balances the dissipation

in Eqs. (38)–(40). To demonstrate this balance we need to analyze the flow of fluctuation

energy through the system (38)–(40). Multiply Eq. (38) by δp/f0, Eq. (39) by w and Eq. (40)

by δρ and integrating over the volume Ω yields

∂

∂t

1

2

∫
Ω

(∇⊥δp)2

f 2ρ0

d3x

 = −
∫
Ω

δp
∂w

∂z
d3x− µ

f 2ρ0

∫
Ω

(∇2
⊥δp)

2d3x (41)

∂

∂t

1

2

∫
Ω

ρ0w
2 d3x

 = −g
∫
Ω

wδρ d3x−
∫
Ω

w
∂δp

dz
d3x (42)

∂

∂t

1

2

∫
Ω

δρ2d3x

 = −∂ρ0

∂z

∫
Ω

δρwd3x− ∂ρ0

∂y

∫
Ω

δρvd3x− χ
∫
Ω

(∇δρ)2d3x. (43)

For simplicity the boundary surface integrals over ∂Ω have been dropped. Thus the three

fluxes 〈δp ∂w/∂z〉 , 〈wδp〉 and 〈δρ v〉 transfer energy between the kinetic and potential energy

components

K⊥ =
1

2

∫
Ω

ρ0(u2 + v2)d3x, (44)
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Kz =
1

2

∫
Ω

ρ0w
2d3x. (45)

and

U = g
∫
Ω

zρd3x =

[
−g

(∂ρ0/∂z)

]
1

2

∫
Ω

δρ2d3x (46)

is the potential energy. To show the last relationship for the potential energy one uses that

for dρ/dt = 0 the Casimir
∫
Ω
ρ2d3x =

∫
Ω

(ρ0 + zρ′0 + δρ)2d3x is a constant of the motion.

Combining Eqs. (40)–(43) yields

d

dt

∫
Ω

[
ρ0

2
(∇⊥ψ)2 +

ρ0

2
w2 − g

∂ρ0/∂z

(δρ)

2

2]
d3x (47)

= gφ
∫
Ω

vδρd3x− µρ0

∫
Ω

(∇2ψ)2d3x+
gχ

∂ρ0/∂z

∫
Ω

(∇δρ)2d3x. (48)

From the first energy integral we see that the requirement of stable vertical stratification leads

to the positive definiteness of the energy integral W . For stable stratification the system

has a linear instability driven by the slope φ = −(∂ρ0/∂y)/(∂ρ0/∂z). In the nonlinear

steady saturated state of this instability Eq. (48) states that the product of the thermal flux

proportional to φ
∫
vδρd3x which multiplied by g balances the dissipation due to small scale

viscosity µ and thermal diffusivity χ to produce the saturated state.

In the form given here with three pdes in Eqs. (38)–(40) the baroclinic instability dynamics

is similar in form to the ITG plasma equations. This is not the case when the further

reduction to the quasi-geostrophic form is made as follows. For the stably stratified medium

the vertical velocity w adjusts adiabatically to ∂z∂p such that Eq. (23) for w applies. Then

δρ = −g−1∂zδp and the energy integral w now reduces to W → Wg with

Wg =
∫
Ω

[
ρ0

2
(∇⊥ψ)2 +

ρ0f
2

2N2
(∂zψ)2

]
d3x (49)

which is the energy associated with gyrostrophic motions. The minimization of W with

respect to ψ gives the elliptic baroclinic (β = 0) equation for ψ(x, y, z).
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2.3 Temperature gradient driven convection in magnetized plasma

The plasma equations for temperature gradient driven convection have f → Ωi(∼ 108/s), ρR →

ρs(∼ 0.1 cm) and ε = ρs/Ln ∼ 0.1 cm/10 cm = 10−2. The growing linear modes oc-

cur for k‖Ln < kyρs < 1 with kmax
y ∼ 1/2ρs ∼ 5 cm−1 and γmax ∼ 0.1cs/LT ∼ 105/s

being typical. The signature of the ITG mode in the laboratory plasma is propagation

of part of the drift wave fluctuation spectrum in the ion diamagnetic direction (∼ east-

ward). This is opposed to the resistivity and electron-wave Landau resonance instability

that occurs for the usual universal drift wave fluctuations propagating in the electron dia-

magnetic direction (∼ westward). For example, in the Ohmically heated TEXT tokamaks

(R/a = 1 m/0.27 m, B = 2 T, I = 0.3 MA the electron drift wave fluctuations are always

present, but the fluctuations characteristic of the ion temperature gradient only appear

when the conditions are such as to have ηi = d`n Ti/d`n = Ln/LTi > 1 and Ti ' Te.

With powerful auxiliary heating in the large fusion devices (I > 1 MA), conditions with

Ti/Te > 3 and ηi À 1 are achieved and the signatures of the ion temperature gradient driven

turbulence are widely reported. In these devices the power balance analysis reveals that

the effective ion thermal diffusivity χi > χe and χi values consistent with the ∇Ti-driven

drift waves. The value of χi inferred from power balance is typically consistent with the

mixing length estimate χi = γmax/k2
⊥ = (105/s)/(5 cm−1)2 = 5× 103 cm2/s = 0.5m2/s. The

ratio of this turbulent χi to the collisional (neoclassical) χneo
i varies widely from machine

to machine and over the radius of a given discharge but is substantially greater than unity

(Scott et al., 1994). A detailed stability-transport analysis of a key ITG experiment in the

TFTR tokamak may be found in the team project Horton et al. (1992). A critique of ITG

theory is found in Ottaviani et al. (1997).

Here we briefly describe the ITG dynamics indicating some similarities and differences

with the baroclinic instability. The vorticity equation arises from the condition ∇ · j = 0
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stating that current loops must be closed in the quasineutral plasma. The large vE =

cE×B/B2 = cẑ×∇Φ/B velocities cancel in the current j so that the ion current from the

finite inertia (polarization) drift vp, corresponding to the ageostrophic drift,

vp =
−c2mi

eB2

(
∂

∂t
+ (vE + vD) · ∇∇∇

)
∇∇∇⊥Φ, (50)

balances the divergence of the parallel current ∇‖j‖. Since the ion fluid is hot Ti/Te >∼ 1

the ion gyroradius ρi = c(miTi)
1/2/eB >∼ ρs and there are important collisionless stresses

from ∇ · πππi(vE) — the divergence of the off-diagonal terms in the momentum stress tensor

mini 〈vαvβ〉 = piδαβ +πi,αβ where πi,αβ is a linear function of ∂vE/∂x. The effect of the stress

tensor shows up as the new term K∇2
⊥∂yφ in the vorticity equation giving the change of

the drift wave propagation at short wavelengths to the ion diamagnetic direction. In Fig. 8

we show the result of repeating the initial value experiment given in Fig. 3 for the ITG

equations. Now we see that the long wavelength waves propagate in the electron direction

(upward) while the short wavelength modes propagate in the ion diamagnetic direction

(downward). The right panel shows that the nonlinear binding effect still applies to the ITG

mode fluctuations.

The appropriate dimensionless space-time variables are

x̃ =
x− x0

ρs
, ỹ =

y

ρs
, z̃ =

z

Ln
, τ =

tcs
Ln
. (51)

and the amplitudes of the fluctuations scale as

φ =

(
eΦ̃

Te

)(
Ln
ρs

)
,

v =

(
ṽ‖
cs

)(
Ln
ρs

)
, (52)

p =

(
p̃i
pi0

)(
Ln
ρs

)(
Ti
Te

)
. (53)

The E×B convective derivative is

{f, g} = ẑ · ∇⊥f ×∇∇∇⊥g =
∂f

∂x̃

∂g

∂ỹ
− ∂f

∂ỹ

∂g

∂x̃
, (54)
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Figure 8: Same as Fig. 3 but for the ion temperature gradient vorticity equation. Now
the long wavelength components propagate upward (westward) and the short wavelength
components propagate downward (eastward). The strong nonlinear self-binding is still a
dominant effect.
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and due to the shearing of the helical magnetic field

B = B

{
ẑ +

[
(x− x0)

Ls

]
ŷ

}
, (55)

the parallel derivative B · ∇∇∇ = B∇‖ is given by

∇∇∇‖ =
∂

∂z̃
+ Sx̃

∂

∂ỹ
(56)

where S = Ln/Ls measures the strengths of the magnetic shear. (Note that S = 0 is a

well-defined limit applicable to cylindrical devices.)

The ITG convective turbulence is then described by

(1−∇2
⊥)
∂φ

∂τ
= −(1 +K∇2

⊥)
∂φ

∂ŷ
−∇∇∇‖v + {φ,∇2

⊥φ} − µ⊥∇4φ, (57)

∂v

∂τ
= −∇∇∇‖(φ+ p)− {φ, v}+ µ⊥∇2

⊥v + µ‖∇2
‖v, (58)

∂p

∂τ
= −K ∂φ

∂ỹ
− Γ∇∇∇‖v − {φ, p}+ χ⊥∇2

⊥p+ χ‖∇2
‖p. (59)

An example of the turbulent fields created by this system is shown in Fig. 9. In this case

K = 3,Γ = 2, S = 0.3 and µ‖ = χ‖ = 1, µ⊥ = χ⊥ = 0.01. The variation of the turbulence

with the system parameters and the shooting code solutions of the linear eigenvalue problem

are thoroughly developed in Hamaguchi and Horton (1990, 1992). The first 3D simulation

is found in Horton-Estes-Biskamp (1980).

Examining the convection in Fig. 9 shows that the saturation level is such that the

convection around the vortical structure is completed within the correlation time τc of the

field. This is a φ̃-level such that the E×B-rotation number RE = ΩE/∆ω >∼ 1 where

ΩE = k · vE ∼ kxkyc/φ̃/B. The time 2π/ΩE can also be understood by computing the time

to convect around the rectangular cell given by λx/|vx| + λy/|vy| = 2π/kxky(c/φ̃/B). As

shown earlier, the nonlinear self-binding becomes effective for RE > Rcrit
>∼ 1. Thus, this

particular saturated state is just into the nonlinear self-binding regime.
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Figure 9: The isopotential contours in the saturated state of a 3D simulation of the ITG
equations. Size of the convective cells is' 6ρs only slightly larger than π/kmax

y for maximizing
the linear growth rate. The E×B rotation rate ΩE ' 0.9 [cs/Ln] larger than the maximum
growth rate and wave frequency by a factor of 1.5.
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The saturation level RE = 1 may also be understood as the level where the mean-square

fluctuating pressure gradient just balances the ambient background gradient driven by the

auxiliary heating. This level is called the mixing length level and is the standard methods

of calculating the turbulence level driven by ambient gradients.

For a given amplitude level of the fluctuations the convective transport depends on the

phase relation between δn or δpi and δφ as discussed in Sec. 1.1. As the rotation number

RE becomes appreciably larger than unity the pressure fluctuation becomes aligned with φ:

δpi ≈ f(φ) and there is only transport across the separatrices between the trapped regions

(Ottaviani, 1997). For RE < 1, however, the phase relation remains not too far from the

linear relation between δpi and φ. Thus, quasilinear calculations for the convective flux are

typical with the linear δpi/δφ-formula used for calculating the phase relations.

In the simulations the effective diffusivity χi is defined by

χi =
〈p̃iṽir〉
−p′i0

=
ρs
Ln

(
cTe
eB

)〈
p
∂φ

∂y

〉
K−1. (60)

Here the

g(t) = lim
T→∞

1

T

T∫
0

g(t)dt

and

〈f〉 =
1

∆LyLz

Lx∫
−Lx

dx̃

Ly∫
0

dỹ

Lz∫
0

dz̃, f(x) (61)

where ∆ denotes the width of the region of appreciable turbulence, i.e. the “support” of

a function f(x) for homogeneous turbulence ∆ → 2Lx. Figure 10 shows a typical result

for the temperature gradient dependence of χi in the units of the gyro-Bohm diffusivity

χgB = (ρs/Ln)(cTe/eB) for the model in Eqs. (57)–(59) and for the parameters given above.

The energy integral ET for system (57)–(59) is

ET =
1

2

∫
Ω

d3x
[
φ2 + (∇φ)2 + v2 +

1

Γ
p2
]
.
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Figure 10: The turbulent ion thermal conductivity in units of the gyroBohm conductivity
as a function of the deviation from the critical adiabatic gradient. (a) Increase of thermal
conductivity with deviation from the critical ion temperature gradient Kc = 1.3 for fixed
magnetic shear S = Ln/Ls = 0.1 and adiabatic gas constant Γ = 2. The dots are from
steady state averages in the 3D simulation and the heavy line proportional to K −Kc from
bifurcation theory; (b) Decrease of the thermal diffusivity with increasing magnetic shear S
for fixed temperature gradient K = 3 with other parameters the same as in (a).35



Figure 11: The linear phase of a global ITG mode in a tokamak obtained by the Parker
group as part of the fusion Grand Challenge Supercomputer project. The method used is
an extension to guiding centers of the classical particle-in-cell simulation technique.

Similar to Eq. (47) for the barotropic instability before the hydrostatic equilibrium ap-

proximation is used. The power transfer fluxes between the three energy components are〈
v∇‖φ

〉
,
〈
p∇‖v

〉
and Q = −〈p∂yφ〉 with rate of change of the total energy given by

dET
dt

=
KQ

Γ
−

5∑
α=1

Pα

where Pα are the positive definite dissipation integrals µ⊥ 〈(∇2φ)2〉, µ⊥ 〈(∇⊥v)2〉 , µ‖
〈
(∇‖v)2

〉
,

χ⊥ 〈(∇⊥p)2〉 and χ‖
〈
(∇‖p)2

〉
. In the turbulent steady state the thermal flux Q times the

temperature gradient K balances the viscous-thermal diffusive dissipation.

Since the time of this work (Hamaguchi and Horton, 1990) the ITG modeling has received

much attention due to its almost unique ability to explain the power balance in the large

fusion confinement devices. Now much more sophisticated fluid descriptions called gyrofluids

using up to 13 pdes are used to describe the turbulence. The turbulence was also chosen

as the topic for the fusion Grand Challenge project in super computing. In this project

large particle simulation codes in the full 3D torus are used for the simulations of drift wave

turbulence. A typical result is shown in Fig. 11 from Parker et al. (1996). Waltz et al.

(1994) gives a comprehensive analysis with the gyro-Landau equations and compares the

results with three discharges from TFTR.

36



3 Thermal Balance in the Atmosphere

Solar energy is the primary source of atmospheric heating. Other thermal sources from the

upper mantle and dissipation of ionospheric currents are negligible in comparison. Of the

total solar power intercepted by the Earth, about 40% is estimated to be reflected back

into space and the remaining power P0
∼= 1017 W is preferentially absorbed in the equatorial

zone where angle of incidence is normal. The distribution of the absorbed solar power is

about 27% into the atmosphere and 73% into the ocean and land (Gill, 1982, p. 10). The

atmosphere and the oceans each transport northward from the equitorial region a power

of about 3 × 1015 W. For comparison the power dissipated by ionospheric currents reaches

1012 W during magnetic substorms that occur on average every few hours (Horton and Doxas,

1997). The result is a substantial temperature gradient between the equatorial zone and the

polar regions which derives atmospheric zonal flows and large three-dimensional convection

cells. The atmospheric turbulence is divided into large space scale-long-time scale synoptic

motions (L ∼ ρR > 1000 km,∆t > 1/f ∼ 1 day) and smaller scale-faster motions for which

the gradient of the Ciriolos parameter β = ∂f/∂y is not important. The large scale motions

are directly analogous to the low frequency drift instabilities of the magnetized plasma. The

role of the baroclinic instability driven by the horizontal temperature gradient ∂T/∂y is

the analog of the ion temperature gradient instability in plasma. Thus, it is important to

compare the role of turbulent thermal convection in the two systems.

We now estimate the thermal diffusivity χ implied by the solar input power to the equato-

rial atmosphere and the meridional temperature gradient showing that the result is consistent

with corresponding plasma thermal diffusivity formulas used in magnetic fusion research. In

plasma confinement studies there are two forms of the thermal diffusivity scaling (gH/f and

(gH)3/2/f2Rp) in plasma confinement studies called Bohm and gyro-Bohm, respectively, that

are currently used. The gyro-Bohm is the formula shown in Fig. 10. In the Bohm scaling the
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system is near the critical gradient for convection so that there is a small coefficient in the

Bohm formula. For the drift wave or gyro-Bohm, thermal diffusivity formula the coefficient

is order unity.

In terms of the atmospheric parameters these two thermal diffusivity formulas are χB =

5× 10−3(gH/f) and χgB = 0.3(ρR/Rp)(gH/f) = 0.3(gH)3/2/Rpf
2 respectively. Let us take

(gH)1/2 = 300 m/s and f = 7.3 × 10−5/s and the planetary radius Rp = 6 × 106 m. These

formulas give χB = 106 m2/s and χgB = 1.5 × 107 m2/s. The small coefficient in the Bohm

formula is interpreted to express the fact that the large scale convective cells L = (ρRRp)
1/2

observed in the global simulations force the temperature profile to relax, keeping the system

close to marginal stability.

The empirical case for the Bohm transport model is presented in Erba et al. (1995) for

discharges up to 7 MA of plasma current. The stored plasma thermal energy is approximately

106 J with power flux through the plasma of order 20 MW/80 m2 ∼= 2 × 105 W/m2. The

thermal energy confinement (storage) times is τE = E/P ∼= 0.5 s. The ion thermal diffusivity

χi is approximately three times the electron χe.

In the drift wave (gyro-Bohm) formula the system is in a state of well-developed tur-

bulence (well away from marginal stability) with the horizontal scales L ' 4ρR and the

correlation time τc = 1/max(ωk) ' 5Rp/
√
gH corresponding to the maximum wave fre-

quency at k⊥ρR = 1. Correlation times of this order correspond to a few days.

3.1 Power balance in the atmosphere

The energy content of the atmosphere is divided into thermal energy Ep = (5/2)nkBT

and mean kinetic energy Ek. The kinetic energy is divided into mean zonal flows Ek and

turbulent flows Ẽk. We calculate for the energies Ep = 1024 J, Ek = 1021J and Ẽk = 1020J.

Monin (1972) considers the confinement time for the energy Ek arguing that 2% of the

absorbed solar power Ps = 1017 W is converted into kinetic energy Ek = 1021 J giving
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τ = Ek/2 × 1015 W = 5 × 105 s∼= 1 week. Monin notes that this decay time is consistent

with the Richardson’s four-thirds law νL = ε1/2L4/3 for the Ẽk = 5 × 1020 J. The turbulent

viscosity νL is compared with the turbulent thermal diffusivity in the following subsection.

The thermal flux from the equatorial zones to the polar regions is

F = −nχ dT
dy
' nχ∆T

RE

= 3× 1015 W
/[

1.3× 1011 m2
]

= 2× 104 W/m2 (62)

where we require for steady state that the flux F times the cross-sectional area A =

2πRE cos θLH at the latitude θL = 50◦ equals the fraction of the solar input power 3×1015 W

that is transported northward through the atmosphere (Gill, 1982, p. 15) to the arctic region.

Equation (62) introduces the definition of the effective thermal diffusivity χ due to the turbu-

lent convection. Taking the equator-polar temperature gradient as ∆T/RE = 10◦C/6×106 m,

we infer the mean turbulent diffusivity from Eq. (62) is

χ
PB

= 3× 107 m2/s (63)

for steady-state power balance (PB). This power balance thermal conductivity is approx-

imately two times the standard plasma physics analogs for temperature gradient driven

thermal diffusivities estimated above for χgB.

3.2 Anomalous viscosity and the turbulent Prandtl number

The thermal diffusivity (63) may be compared to the large scale turbulent viscosity νL. Monin

(1972) gives that νL = 107 m2/s at the scale L = 2200 km. Using this value for the turbulent

viscosity and Eq. (63) for the turbulent thermal diffusivity gives the effective Prandtl number

of νL/χ = 1/3. To extrapolate νL at L = 2200 km to L = RE = 6340 km using the Richard-

son four-thirds law would increase the turbulent viscosity to νL = 107 m2/s(6340/2200)4/3 =

4× 107 m2/s making the effective Prandtl number close to unity.

The effective viscosity also follows from the Kolmogorov eddy lifetime. Monin, citing

Palmén (1961), estimates the Kolmogorov energy injection constant ε = 4 cm2/s3 using 2%
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of the solar input power as driving the turbulent convection. This value of ε is close to that

of Brunt (1926) ε = 5 cm2/s3 based on independent arguments.

In conclusion, the turbulent diffusivity of thermal energy from the equator to the poles

is of the same order as the turbulent eddy viscosity. The same situation is found in toroidal

plasmas where the toroidal flow velocities of order a 100−300 km/s are known to decay with

a turbulent viscosity νφ that is approximately 2/3χ where χ is the thermal diffusivity from

the temperature gradient driven turbulence (Sugama and Horton, 1997). The reason that

the Prandtl number for the large scale fluctuations is order unity for both the plasma and

the geophysical fluid is that the mechanism for the transport of both the momentum and

the thermal energy is the large scale geostrophic E×B horizontal turbulent flows.
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