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Abstract

A six-dimensional nonlinear dynamics model is derived for the basic energy compo-

nents of the night-side magnetotail coupled to the ionosphere by the region 1 currents.

In the absence of solar wind driving and ionospheric dissipation the system is a three-

degree-of-freedom Hamiltonian system. The large ion gyroradius conductance of the

quasineutral sheet produces the energization of the central plasma sheet (CPS) while

the unloading is triggered when the net geotail current or current density exceeds a

critical value. For a steady southward IMF the model predicts an irregular sequence of

substorms with a mean recurrence period of about 1 hr as in the Klimas et al. (1992)

Faraday loop model. Here we use the new model as a nonlinear prediction filter on the

Bargatze et al. (1985) database. Starting with physics calculations of the 13 physical

parameters of the model we show that the average relative variance (ARV) is compara-

ble to that obtained with data-based prediction filters. To obtain agreement between

the predicted AL and the database AL it is essential to include the nonlinear increase

of the ionospheric conductance with power deposited in the ionosphere.

AGU Indices: Magnetospheric Physics: (MS) 2784, 2736, 2708, 2447, 2788, 7839
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1 Introduction

Developing a scientific understanding as well as obtaining predictive capability of substorm

dynamics requires global modelling of the power flow from the solar wind through the mag-

netosphere to the ionosphere. The problem is many faceted with a long history but recent

observations from the Geotail, Wind and Interball satellites bring into sharp focus the geo-

metrical structure and the energetics of the driven magnetospheric-ionospheric system. Even

quantifying the solar wind input is a difficult aspect of the problem (Perrault and Akasofu,

1978). The dominant model at the present time is that during periods of southward IMF

the solar wind driven dawn-to-dusk electric field Ey measured by vsw
x Bs, reduced by the

reconnection efficiency βsw (Hill, 1975), drives the geomagnetic tail plasma current until the

system is sufficiently stressed to undergo an unloading event (Baker et al., 1993). The precise

location and cause of the unloading event remains unknown. The two leading candidates are

the tearing of the thinned current sheet by the onset of the resistive MHD instability as seen

in MHD simulations (Birn and Hesse, 1996; Ogino et al., 1996), or the onset of a cross-field

current driven microinstability producing a current diversion (Lui et al., 1990). There is,

however, no clear statistical correlation between either of these models and observations.

Thus, there are other theories that argue either that the system is purely a driven system

(Akasofu, 1980) or that the trigger for the onset of the expansion phase of the substorm

lies in the condition of the solar wind (Lyons, 1996). Lyons argues that the trigger for sub-

storms is in the IMF orientation rather than an internal magnetospheric instability. Such

an IMF trigger appears compatible with the energy release mechanism described in Horton

and Tajima (1988).

While global MHD simulations (e.g. Brecht et al., 1982; Usadi et al., 1993; Fedder and

Lyon, 1995) provide useful coarse grain information on the solar wind-magnetospheric in-

teractions, kinetic processes (Ashour-Abdalla et al., 1994, Winglee and Steinolfson, 1993)
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are recognized to play a critical role in the energy conversions at the magnetopause and

the quasineutral sheet. Here we extend the low-dimensional energy conserving model of

Horton-Doxas (1996) to include the ionospheric coupling through the region 1 currents. The

Horton-Doxas nonlinear dynamics model (hereafter the NLD model) includes the large ion

gyroradius kinetic physics in the quasineutral sheet that converts E×B-convection to ther-

mal plasma energy through the chaotic conductivity [Horton and Tajima, 1990, 1991] and

the finite parallel heat flux neglected in ideal MHD.

The large ion gyroradius conductivity gives a finite conductance Σ and nonadiabatic ion

thermalization in the quasineutral sheet ∆Z = (ρiL)1/2 which vanishes in the MHD limit.

The conduction was derived from theory and test particle simulations and contains the

Lyons-Speiser (1982) energization mechanism for the transient ions as part of the ensemble

average over the modified Harris sheet equilibrium. The kinetic loss rate of thermal energy

is described by the parallel heat flux (the skewness of the ion velocity distribution) by a heat

flux limit parameter and the mean parallel flow velocity associated with the MHD parallel

flow kinetic energy, K‖(t). The Geotail particle data, currently being analyzed with respect

to the parallel thermal flux by Hoshino et al. (1997), shows that the minimum ratio of the

thermal plasma energy density p to the kinetic energy density 1
2
ρv2 found in the central

plasma sheet is consistent with a parallel heat flux q‖ taken as a fraction pv‖.

The Horton-Doxas NLD model is closely related to the Klimas et al. (1992, 1994) Faraday

loop model (FLM) which uses the “dripping faucet” analogue for the release of stored energy.

In the NLD model the release of stored energy is triggered by the geotail current or current

density exceeding a critical value Ic and the unloading rate is taken from the parallel ion

thermal flux q‖(t) that occurs at the onset time I = Ic. Under a steady southward IMF the

system undergoes a sequence of loading-unloading cycles with mean recurrence time of order

1 hour as reviewed in Klimas et al. (1996). Here we report the development and behavior

of a new extension of the model to include a self-consistent coupling to the ionosphere. The
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new model is a three degree of freedom Hamiltonian model in the limit of no driving and

dissipation.

There are many works describing the onset condition for tearing modes (Terasawa, 1981,

Birn and Hesse, 1996) and the cross-field current driven instabilities (Lui et al., 1990). We

do not dwell further on the details of the trigger in this work.

2 The Magnetospheric-Ionospheric Nonlinear Dynam-

ics Model

Without repeating the derivation of the d = 4 geotail model in Horton-Doxas (1996) we

describe the d = 6 model, and in particular the coupling of the region 1 current loop to the

geotail current loop and the conductance of the ionosphere. The state space for the original

model is given by Xα = [I, V, P,K‖]. The geotail system has 9 parameters {µ}9
i=1 based

on the physical analysis of the MHD system with the kinetics of the large ion gyroradius

quasineutral layer and the parallel ion thermal flux. The state space for the present model

is d = 6 with the state vector

Xα = [I, V, P,K‖, I1, VI ]. (1)

The four additional physical parameters required for this extended model are (i) the mutual

inductance M , (ii) the self-inductance L1, (iii) the capacitance C1 and (iv) the conductance,

ΣI , of the ionosphere. The complete parameter list for the model is

{µ} = [βsw,L, C,Σ,Ωcps, τ‖, u0, I0,∆I,M,L1, C1,ΣI ]. (2)

The closest comparable analog model is that of Klimas et al. (1994) that couples the

earlier Faraday loop dripping faucet model (Klimas et al., 1992) to the ionosphere by a

linear second order filter for the AL index. The nonlinear dynamics part of the Klimas

et al. (1994) model has the three-dimensional state space variables: (1) the average cross-

tail electric field E(t) corresponding here to V (t)/Ly, (2) the time varying magnetic flux
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φ(t) in the lobe corresponding here to LI(t) and (3) a dimensionless measure β(t) of the

plasma trapped in the lobe reversed magnetic field P0 = B2
L/2µ0 corresponding here to P0(t).

The fourth equation of the Horton-Doxas system for the parallel streaming kinetic energy is

replaced in the Klimas et al. model by a switching rule that dictates a strict linear in time

rise or fall of the β-variable according to whether the magnetic flux φ(t) is below or above a

critical value φc. Below φc the loading rate is dβ/dt = CLε0(t) where ε0(t) is the scaled value

of VswBs, and above φc the unloading rate is dβ/dt = −CDφ̇(tc) where φ̇ = dφ/dt is taken

at the most recent crossing of φ > φc. The variability of φ̇ according to the phase of the

{E, φ, β} system gives rise to the chaos in this three-dimensional system. To connect this

magnetotail model to a VBs-AL database requires the time scale τ0 ∼ (LC)1/2 choice from

the dimensionless time τ of the model, the solar wind coupling efficiency βsw, the damping

ν, and three parameters of the Weimer-type linear, passive filter — rise time τr, decay time

τd and coupling strength C0 = δ(AL)/δE. Thus, the equivalent Klimas et al. (1994) analog

model requires 9 parameters {βsw, τ0, ν, φc, CL, CD, τr, τd, C0}.

The lower dimensions of the state space and smaller parameter set is an advantage of the

Klimas et al. model. The restriction of the model to a linear dynamics of β(t) and the loss

of the parallel mass flow prediction would appear to be a serious restriction in describing

the state of the geotail. Perhaps the most serious difference in the two models, however,

follows from the inability of the Klimas et al. model to describe the nonlinear dynamics

of the ionospheric coupling. The ability of the present model to keep track of the various

magnetospheric and ionospheric energy components throughout the evolution of a substorm

is thought to be a significant advantage worth the cost of the higher dimensionality of the

model. Clearly, an important future task is to compare the performance of the two models

on the same database. Here, however, we concentrate on presenting the new six-dimensional

NLD model.
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2.1 Six-dimensional nonlinear dynamics equations

The d = 6 magnetotail-ionospheric nonlinear dynamics model is given by

L dI
dt

= Vsw(t)− V +M
dI1

dt
(3)

Ccps
dV

dt
= I − I1 − Ips − ΣV (4)

3
2

dP

dt
= Σ

V 2

Ωcps

− u0 K
1/2
‖ Θ(I − Ic)P (5)

dK‖
dt

= IpsV −
K‖
τ‖

(6)

LI
dI1

dt
= V − VI +M

dI

dt
(7)

CI
dVI
dt

= I1 − ΣIVI (8)

Here the pressure gradient driven current is given by Ips(t) = αP 1/2(t) as derived from

j × B = ∇P force balance and Amperé’s law. The solar wind driving voltage in Eq. (3) is

Vsw = βswv
sw
x B

IMF
s Ly. The coefficient βsw reflects the efficiency with which the solar wind

electromotive force is translated into a cross-tail potential drop. For reference the value of

βsw taken following Goertz et al. (1993) is βsw = 0.1. The solar wind voltage Vsw(t) is the

input time series from the nonlinear driven-dissipative system.

The form of the Eqs. (3)–(8) can be understood as the variational equations for the

action S for the electromagnetic fields when the current paths are fixed and the current-

voltage pairs (I, V, I1, VI) are the variational parameters on the specified current paths. The

arrangement of the linked current systems and the definitions of the voltages is shown in

Fig. 1. The associated magnetic fields and the coupling of the flux from the magnetotail

current through the region 1 current loop is shown in Fig. 2. The variational description for

the electromagnetic field equations is given by the Lagrangian density B2/2µ0− εE2/2 with

the E and B fields expressed through the vector potential A and the scalar potential φ(x, t).
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Maxwell’s equations follow from the functional variation of

S =
∫
d3xdt

(
B2

2µ0

− 1
2
ε(x)E2

)
(9)

with respect to A and φ. Once the current paths are specified the magnetic energy term

WB in Eq. (9) reduces to

WB =
∫ B2

2µ0

d3x = 1
2
ΣiLiI2

i + Σi,jMijIiIj (10)

where Li and Mi,j are the standard well-defined path integrals for the self and mutual

inductances. The definitions for the capacitances follow from reducing the electric field

energy

WE = 1
2

∫
ε⊥(x)E2

⊥d
3x = 1

2
CcpsV

2 + 1
2
C1V

2
1 (11)

where ε⊥ = ρm(x)/B2(x) accounts for the polarization of the plasma. Thus, the electric

field energy, WE = 1
2

∫
ρmV

2
Ed

3x, is the E×B kinetic energy from plasma convection. More

details on the derivation of Eqs. (3)–(8) are given in Horton-Doxas (1996).

From Fig. 2 it is clear that growth of the magnetotail current I(t) produces a negative

∆Bz in the Earthward edge of the central plasma current sheet that links the I1-current

loop with M = (µ0LxILyI/Lx)`n(LxI/LyI) ∼ 10 H where LxI and Lx are the lengths of

the region 1 and geotail current loops and LyI is the dawn-dusk dimension of the region 1

current loop in the central plasma sheet. The Faraday loop integral around the region 1

current circuit gives Eq. (7) where we see that during the growth phase of the magnetotail

current MdI/dt > 0 there is an inductive electric field driving up the region 1 current.

The conservation of charge for the quasineutral system follows from the volume integral of

∇ · j = 0 yielding Eq. (8) which states that the total region current I1 equals the sum of

the plasma polarization current from jp1 = (ρm/B
2)(dE1/dt) and the ionospheric current

from the Pedersen conductivity ΣI . This conductivity arising from the neutral collisions

is the only true dissipation in the system. Due to this ionospheric dissipation the quiet
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time magnetosphere (with vsw
x B

IMF
s = 0) has an ambient 30–35 kV potential for V = Vsw

in Eq. (3) (Reiff et al., 1981). Thus, the empirical solar wind driven voltage has the base

level V0 ' 30 kV with Vsw = V0 + βswv
sw
x B

IMF
s Ly in Eq. (3). For the steady state this gives

I1 = ΣIV0 which for ΣI = 3 mho gives the ambient I1 ' 105A. The capacitance C1 is difficult

to calculate: currently we are using C1 = 103 F giving the RC1—decay time for the quiet-

time I1 current loop of τ = C1/ΣI
∼= 5 min. A more detailed description including pressure

gradient sources in the region 1 currents will be developed following Yang et al. (1994) in

the future.

2.2 Energy Conservation

The NLD model is based on the six energy components essential in describing the disturbed

times of the magnetotail-ionospheric system. These components are also the key energy

components of the resistive MHD dynamics of reconnection. They are: (1) lobe magnetic

field energy:
∫

lobe
B2

2µ0
d3x = 1

2
LI2 (∼ 8×1015 J); (2) E×B kinetic energy:

∫
cps

1
2
ρmu

2
⊥d

3x =

1
2
CcpsV

2 (∼ 4 × 1013 J); (3) parallel kinetic energy:
∫

cps+psbl

1
2
ρmu

2
‖d

3x = K‖ (∼ 3 × 1014 J);

(4) central plasma sheet thermal energy: Up =
∫

cps

(
P⊥ + 1

2
P‖
)
d3x ∼= 3

2
PΩcps (∼ 3×1014 J);

(5) ionospheric E×B kinetic energy: Wi = 1
2
CIV

2
I (∼ 3 × 1012 J); and (6) ionospheric

magnetic energy: 1
2
LII2

1 (∼ 1012 J) associated with the region 1 current. There is also an

interaction energy component Wgt,i = −MII1 from the linkage of the lobe magnetic flux

from I through the region 1 current loop as indicated by Fig. 2.

The total energy W is the sum of these components

W = 1
2
LI2 + 1

2
LII2

1 −MII1 + 1
2
CcpsV

2 + 1
2
CIV

2
I + 3

2
PΩcps +K‖. (12)

The dynamical Eqs. (3)–(8) give the rate of change of the energy

dW

dt
= IVsw − 3

2

PΩcps

τE(I,K‖)
− K‖

τ‖
− ΣIV

2
I (13)
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Here τE(I,K‖) is the confinement time for the thermal plasma energy given by

1

τE(I,K‖)
=

2u0

3
K

1/2
‖ Θ(I − Ic)

where u0 is a constant (Luciani et al., 1983) such that τE ∼ Lx/v‖ in the I > Ic unloading

state. From the derivation of Eq. (5) the loss rate P/τE accounts for the thermal flux leaving

the central plasma sheet volume Ωcps through Earthward and tailward fluxes (Horton and

Doxas, 1996).

In the dissipationless limit and in the absence of the solar wind driving the energy W is

conserved. The eigenmodes of the W = const system are discussed in Appendix A. Now we

discuss the energy transfer from the E×B flows to the thermal plasma energy.

The value of the plasma sheet conductance is calculated by Horton and Tajima (1990,

1991a, b) to be

Σ = σ0
nq

|Bz|

(
ρi
Lz

)1/2
(
LxLz
Ly

)
. (14)

with σ0 = 0.1. This may be compared to an estimate from the finite Larmor radius (FLR)

two-component fluid theory (e.g. Braginskii, 1965), which gives a momentum stress tensor

conductance of (nq/Bz)(ρi/Lz)(LxLz/Ly). Thus the effect of the large-ion-orbits in the

quasineutral layer, that are outside the domain of validity of FLR-MHD theory, is to change

the exponent on the ρi/Lz dependence of the Hall-type conductance.

In the absence of driving and coupling to the ionosphere and ring current the system

has the energy integral in Eq. (12). The energy integral in Eq. (12) corresponds directly to

the MHD energy integral containing the total magnetic energy WB, the total perpendicular

E×B flow energy KE, the parallel kinetic energy K‖ and the thermal energy Up.

2.3 Ionospheric Conductance

Initial studies of the NLD model used a constant conductance of a few mhos for the iono-

spheric response. The resulting values of the I1 current were too low in magnitude and too
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slowly varying in time to account for the AL index. Realizing that the power deposited into

the ionosphere is large (≥ 109 W) we turned to using a nonlinear conductance Σ(Pion) that

increases with the joule heating Pion = I1VI deposited by the westward electrojet current.

Thus, we adopt the Robinson et al. (1988) formula for the power flux ΦE dependence of the

Pedersen conductivity which is proportional to Φ
1/2
E . The Robinson et al. (1988) conductiv-

ity is Σ = ΣΦΦ
1/2
E ∼ few mhos for ΦE = 1 erg/cm2 · s = 10−3 W/m2. Thus, we use for the

ionospheric conductance model

ΣI = 1.0 + 2.0× 10−4(I1VI)
1/2 (15)

giving the base level of 1 mho and the increase to 1 + 2(10)1/2 = 7.3 mho for an ionosphere

power deposition of I1VI = 109 W. In terms of power per unit area ΦE the coefficient in

Eq. (15) is equivalent to the Robinson et al. (1988) value for an auroral arc region of size

∆θ a few degrees at θ = 70◦ latitude with a longitudinal length of `φ = 1800 km (∆φ = 50◦)

receiving Pion = 1 GW of joule heating. Instead of one long auroral arc the system may have

multiple shorter arcs with the same area ∼ 1012 m2.

The conductance formula (15) brings the model into agreement with the profile of con-

ductance taken from the Hilat satellite passage over Sondre Stromfjord shown in Fig. 5 of

Robinson et al. (1988). In that figure the conductances rises from ≈ 1 mho to a broad peak

from 4 to 8 mhos within the latitude range θ = 69◦ to 74◦.

An obvious future extension of the model is to add another (second) trigger function such

that parallel potential drops producing precipitating electron fluxes are triggered when the

upward region 1 current density j‖ > jcrit ∼ 10−6 A/m2. Adding the physics of the parallel

accelerator zones would allow the model to calculate the precipitating electron energy flux

while addressing the observations for the correlation of such potentials with substorms as

reported in the DE-1/DE-2 conjunction studies of Reiff et al. (1981). The nonlinear increase

of the ionospheric conductance by (I1VI)
1/2 in Eq. (15) is a model for the ionization produced
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by the precipitating electrons. A more complete model for this process should be included

in a future development.

The nonlinear increase of the conductance with Pion has the effect of making a sharp

increase of I1 that brings the model into much better agreement with the AL data. The

ionospheric response time τ1 = C1/ΣI is now a strong function of the phase and the strength

of the substorm.

3 Behavior of the NLD Model

Figure 3 shows the performance of the model as a nonlinear prediction filter using only the

VBs-input for interval 20 of the Bargatze et al. (1985) data. The six panels from top to

bottom show (1) the Vsw input voltage, (2) the geotail V (t) and ionospheric VI(t) voltages

which are equal in the steady state, (3) the current I(t) in the magnetotail current (4) the

average central plasma sheet pressure P (t), (5) the net kinetic energy K‖(t) in parallel mass

flows and (6) the current I1(t) in the westward electrojet formed by the ionospheric closure

of the nightside region 1 current loop.

In Fig. 4 we compare the model AL(t) index computed from I1(t) and the AL(t) for this

40-hour interval from Bargatze et al. (1985). For this interval there are three well separated

peaks of ∼ 200 nT and one four-hour period (16-20 hr) with multiple intensification peaks

two of which exceed 500 nT. For the standard comparison of the model AL to the data, we

define the average relative variance (ARV) by

ARV =

M∑
j=1

(
Oj − Ôj

)2

M∑
j=1

(Oj −O)
2

where O = measured output here− AL(t), Ô = predicted output taken as αI1(t), and O =

mean value of the output data.
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The overall 40 hr average-relative-variance ARV for the model is 0.33 while for the subin-

tervals containing the ∼ 200 nT substorm peaks, broken out in Fig. 4b and c, the ARV’s

are 0.23 for the period [5–12 hr] and 0.24 for the period (32–39 hr). Qualitatively, the best

prediction is for the last substorm (32–40 hr) where only the AL(t) fine structure is missing

in Fig. 4c. In the first-subinterval (5–12 hr), while the ARV is equally low, there is a qual-

itative problem with the growth phase continuing too long (by ∼ 20 min) and the rate of

increase of −AL in the expansion phase being too slow.

3.1 Parameter Values for the NLD Model

The values of the parameters used in the example given here were set as follows. First the

values are calculated from the geometrical and plasma parameters known from the physics

of the geotail-ionosphere system. Then simple one-dimensional parameter scans for the

variation of the ARV with respect to the value of L,Σ, C and βsw were carried out. The

results of the scans are shown in Fig. 5 and the four values were adjusted accordingly. An

encouraging fact was that modest changes in the parameter values derived from the physics

were required to be located at the minimum ARV in each of these single-parameter scans. A

systematic search for minima of ARV {µ} will give a lower ARV model for this interval. While

such minimization work is underway, we note that the spirit of the physics-based model is

to rely heavily on approximate calculations of the parameters of the model. By using global

magnetospheric models such as the Tsyganenko (1989) model detailed calculations for the

system parameters can be performed. Clearly, some parameter adjustments minimizing the

ARV are called for since the accuracy of the calculations for the {µ} parameters is limited.

Numerous software packages are available that can be used to find minima of ARV {µ}. The

values used in the present report are given in Table 1. Here we discuss a few features of the

system that follow from this parameter set. The global Alfvén period is Tgt = 2π(LC)1/2 =

1.2 hr and the ionosphere coupling Alfvén period is TA = 2π(L1C1)
1/2 = 11.5 min. For the
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mean geotail current of I = 20 MA the geotail magnetic energy WB = 8 × 1015 J while the

central plasma sheet thermal energy Up = 9× 1014 J. The ambient or base-line value of the

inductive coupling magnetic energy is Wgt,i = −MII1 = −1014 J. The ionosphere current

loop has the baseline value of I1 ∼ 4× 105 A and associated magnetic energy of Wi = 1012 J,

but large increases of the ionospheric energy Wi occur with peaks reaching 1− 3× 1014 J for

periods ≤ 1 hr during the substorms.

In the absence of the ionosphere conductance (ΣI = 0) and with the parallel thermal

flux losses taken to zero the system conserves energy with Etotal ∼ 1016 J. Opening the

system to the solar wind driving and the ionospheric dissipation from joule heating gives an

intermittent power transfer through the system which we now discuss.

Figure 6 shows the powers transferred through the system. First the driving input power

is Pin(t) = Iβsw E
sw
y Ly with a base level of 0.6 TW and spiky peaks reaching 3 to 5 TW

as shown by the solid line. The power Pp is that transferred to the central plasma sheet

pressure (lowest dashed curve) and Ppar is the power transferred to the parallel kinetic energy

K‖ (the intermediate short-long dashed curve). The ionospheric power transfer Pion(t) is a

few percent of the input power and did not show well on the scale of Fig. 6. Thus, the fraction

of the solar wind input power transferred to ionospheric joule dissipation Pion(t) = I1VI is

shown in Fig. 7. This signal is “spiky” in structure giving the qualitative picture of an

intermittent heating of the ionosphere. It was the study of this figure that lead the authors

to the conclusion that it is important to include the nonlinear response of the ionospheric

conductivity to the deposited power. The Robinson et al. (1988) conductance formula is used

for this purpose and resulted in a marked improvement in the quality of the AL prediction.

Analysis shows that model (15) leads to an amplification of the stochastic components of

the solar wind input for Vsw greater than a critical value of order 60–80 kV.
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3.2 Response Times of the NLD System

The multiple time scales of the underlying linear dynamics are determined analytically in the

Appendices. In Appendix A the high and low oscillation frequencies of the coupled magne-

totail and region 1 current loops are determined for the closed, dissipationless, Hamiltonian

limit of the system. In Appendix B the dissipative ionospheric response function is derived

and shown to reduce to the Weimer model used by Klimas et al. (1994) in the limit where the

feedback from the ionosphere to magnetosphere is neglected and the ionospheric dynamics

is linear. The operational regime of the NLD system for the Bargatze database, however, is

nonlinear and contains complicated combinations of the linear time scales and the nonlin-

ear loading-unloading cycling period reported in Horton and Doxas (1996) and reviewed in

Sec. III of Klimas et al. (1996) on the status of analogue models. To address the question of

how the NLD model represents the 20–30 min time delay observed in substorm data we have

applied impulsive inputs of Vsw = Vpδ(t− tp) to the ambient steady state where Vsw = 30 kV

with the reference system parameters used in Figs. 4–7. The response of the I1 current to

the impulse is h(τ) = ∆I1(t − tp)/Vp, the generalization of the linear response function to

this system, was obtained for a sequence of pulse strengths Vp = {60, 90, 120, ..., 200 kV}.

The results for Vp = 60 kV is shown in Fig. 8 and is typical of the Vp <∼ 120 kV result. For

higher values of Vp the recovery time is longer while the rise time τr ∼ C1/ΣI is shorter due

to the nonlinear increase of the ionospheric conductance.

From Fig. 8 we see that the maximum of the response occurs at the delay τD = t1(max I1)−

tp ' 21.6 min. Parameter variations of the model show that for the parameter range of in-

terest the delay time τD ≡ t(max I1) − tp varies only weakly. The strongest variation is

with the lobe inductance L and central sheet capacitance C and can be approximated by

τD = τ0(L/L0)
x(C/C0)

y where we find that x ' 0.7 and y ' 0.3.

The long period (>∼ 60 min) dynamics in times of southward IMF is associated with
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the bifurcation that occurs when the plasma sheet current exceeds Ic. Formulas for the

bifurcation condition, the limit cycle frequency and the numerical study of the (distribution

of) recurrence times are given in Horton and Doxas (1996) and compared by Klimas et al.

(1996) with the recurrence times reported in Klimas et al. (1994). Horton and Doxas (1996)

show that the recurrence time shortens as the strength of the solar wind drive increases.

Above a critical driver the response merges into the short 20 min response.

A recent re-examination by Smith and Horton (1997) of the Bargatze et al. (1985) time

series sorted by average AL levels into 34 intervals shows clearly the dependence of the

first delay time τD,1 and the increasing strength of the first response h(τD,1) ∼ a1 with the

strength of the substorm. The trends in the nonlinear response function for the present

model appear consistent with those of the linear Wiener filter derived for the Bargatze data.

Clearly, an important future project is to quantify the comparison of the AL sorted sequence

of linear prediction filters with the nonlinear analogue model presented here.

Of the two components of the region 1 current system (Iijima and Potemra, 1978) the

nightside currents and the dayside currents: the NDL model only includes the nightside

DP-1 or substorm wedge current system. The dayside current region 1 loop gives a faster

response on the time scale of minutes and generally an eastward ionospheric electroject

signature. For stronger substorms the dayside region 1 current signature on the ground-based

magnetometers is on the AU index. Thus, we argue that the 20 min response on the AL index

is a nightside feature of the magnetospheric-ionospheric system. A qualitative understanding

of how the NLD model gives a strong, fast night-side response follows from the importance of

the inductive electromotive force MdI/dt driving the I1 current. Consider from Eqs. (3)–(8)

the effect of a sudden increase ∆Vsw in the solar wind driving voltage as in Fig. 8. The direct

linear growth of I1 arises from MdI/dt with ∆I1 ∝ (M∆Vsw/LL1)t. Without the mutually

linked magnetic flux (M = 0) the region 1 would increase as ∆I1 ∝ (∆Vsw/CcpsLL1)(t
3/3).

In MHD simulations where the inner edge of the central plasma sheet moves inward
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and often there is the growth of a plasmoid, the flux linkage becomes even stronger. Thus,

the strong direct drive of the nightside region 1 (DP-1) current system is an important

feature of the magnetosphere-ionosphere model for the expansion phase. For the recovery

phase the model proceeds too slowly compared with the empirical filter models. Whether

further tuning of the parameters in the present model can shorten the recovery time is still

under investigation. There are two areas that require further consideration. The nonlinear

part of the conductivity may need a decay rate equation providing a faster return to the

presubstorm conductivity. This decay of the enhanced conductivity level will speed up the

recovery phase. The model may be expanded to include a stronger tailward ejection of

plasma as in a plasmoid ejection. The plasmoid ejection modeling is within the scope of the

theory developed in Horton and Doxas (1996). The model is energy conserving taking into

account the flow of energy into and out of the volume Ωcps defining the dominant plasma

energy containing part of the geomagnetic tail.

The DP-2 current system (Nishida, 1968) is a large space scale–long time scale (>∼ 1 hr)

current system approximately independent of the westward electrojet. The equivalent iono-

sphere current system is the sum of an eastward monopolar zonal flow and a dipole vortex.

The present model would need to be expanded to incorporate the dayside region 1 current

loop to address the AU index and the coupling to the DP-2 current system.

4 Conclusions

A nonlinear dynamics model of the coupling between the geotail and the ionosphere by

the region 1 current leads to a nonlinear prediction filter for geomagnetic activity. The

couplings and parameters of the dynamics in the d = 6 dimensional state space are derived

from the known geometrical structure of the nightside magnetosphere as has been brought

into sharp focus by the GEOTAIL and INTERBALL data reported at the 1996 Chapman

Conference. Taking into account the global MHD constraints and the local kinetic physics in
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the quasineutral layer leads to the specification of the 13-parameter model. The new model

is an extension of the earlier lower dimensional nonlinear dynamics models of Klimas et al.

(1992, 1994) and Horton and Doxas (1996).

Viewed as a prediction filter the NLD model is a hybrid between an ARMA filter and a

neutral network (NN). Writing the six ode’s in finite difference form with a substantial time

step shows the relation to the ARMA system while the nonlinear switch for the unloading of

the central plasma sheet pressure plays the role of the switch-on function in the NN system.

In a NN the input signals are summed according to weights from the preceding layer. Here

the switch is triggered by the most recent value of the geotail current or current density and

uses the values of the pressure and the parallel kinetic energy to determine the response to

the system going critical. The model can be tailored to specific current disruption physics

such as the near-Earth neutral line from tearing modes or the cross-field current instabilities

(Lui et al., 1990). Once more experience with this dynamical system is obtained, the NLD

model may provide a method to discriminate between various microphysics mechanisms in

their degree of success in correlating with substorm databases.

An important advantage of the NLD model is that energy conservation guarantees a

bound on the division of the solar wind input power into the various major energy compo-

nents. Charge conservation is also satisfied by the Kirchhoff structure of the current systems.

The structure of the dynamical equations is derived from the variational form of the elec-

tromagnetic field Lagrangian density. Most microphysics calculations suffer from the lack of

an external macroscale driving-coupling dynamics, and this model provides such an external

driver correlated with the global state of the magnetosphere.

The performance of the system is tested by choosing a Bargatze et al. (1985) interval

of intermediate level. The interval 20 of intermediate level of activity was chosen for the

comparison. First the values of four key solar wind-geotail parameters were varied about the

values derived from the physics calculations. A standard error measure called the average
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relative variance (ARV) is shown to have minima close to the physics derived values. In

Fig. 3 and 4 we show the predictions of the NLD model from the vsw
x Bs input for the model

parameter given in Table 1. The other thirty-three intervals have been run through the NLD

model with the ARV’s ranging from 0.29 (interval 34) to relatively large values (<∼ 0.6) for

the first several intervals at low average geomagnetic activity. The low activity level intervals

also show the poorest ARV values in the modeling with the linear Weiner filters (Smith and

Horton, 1997). The low coherence of the structures at low activity levels appears to be a

problem for prediction filters in general.

In our view the model performs well. The closest competitive model is the neural net

forecasting work of Hernandez et al. (1993), which shows the results for interval 21 of the

Bargatze database. Two architectures were reported: (1) the state space reconstruction

which uses time lagged AL values as input and (2) the nonlinear prediction filter which uses

only the vsw
x Bs as input. As one expects the state space reconstruction gives the lowest ARV

= 0.25 compared to the ARMA model with ARV = 0.28 both using a lag time of 15 min. In

general, the AL is not available in real time, and the model we present here is equivalent to

the nonlinear prediction filter NN where the performance was considerably degraded (ARV

= 0.46) with respect to the performance of the system using the state space reconstruction

architecture. While there are reasons to suspect that the NN performance for the nonlinear

prediction filter could have been improved, we see that the basic physics model presented here

already has a lower ARV = 0.33 using only the vsw
x Bs input. The nonlinear dynamics model

has many fewer parameters (13 compared to over 100 weights for the NN) and presumably

will, when fully implemented, take into account the nonlinear variations, such as that in the

ionospheric conductance, that occur over a wide range of physical parameters.

A linear prediction filter given by Blanchard and McPherron (1993, 1995) will also be

compared with the NLD model. Presently, that Blanchard and McPherron model has been

applied to isolated substorms in another database. Currently, we are reproducing their
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findings on the isolated substorms. Smith and Horton (1997) have applied the 5-parameter

linear bi-modal model to the standard multiple substorm database of Bargatze et al. (1985)

finding results comparable with those derived here from basic principles.

Thus, while much research on nonlinear prediction filters remains to be done as stated in

the Klimas et al. (1996) review article, we conclude that a strong case can be made for low-

dimensional physics models as an alternative to signal processing prediction filters trained

with databases. There is clearly room for both methods of forecasting and by comparing the

strengths and weaknesses of the complementary methods we may faster arrive at a reliable

space weather forecasting system.
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Appendix A: Eigenmodes of the Magnetospheric-Ionospheric Sys-
tem

The mutual inductance provides an intrinsically interesting modification to the dynamics

that is seen by solving Eqs. (3) and (7) for İ and İ1. The solution requires the determinant

D = LLI −M2 ≡ LLI(1−m2) (A1)

where 0 ≤ m ≤ 1. The matrix inversion for the solution is then İ

İ1

 =
1

D

L1 M

M L

Vsw − V

V − VI

 . (A2)

From the inverse (A2) we see that the effect of the mutual inductance is to reduce the effective

values of the self-inductances. In particular, the diagonal components show that the effective

inertial for I and I1 are given by

Leff = D/L1 = L(1−m2)

Leff
1 = D/L = L1(1−m2).

(A3)

We have analyzed the linear eigenmodes of the 2-degree-of-freedom system (I, I1, V, V1) and

find that in the dissipationless limit the frequencies ω are given by

ω4 − Bω2 +D = 0 (A4)

with

ω2
± =

B ±
√
B2 − 4D
2

(A5)

giving the high frequency oscillation

ω2
+
∼=
(

1

C
+

1

C1

)
1

L1(1−m2)
(A6)

involving the mutual inductance of the geotail and ionospheric circuits and the global low

frequency oscillations

ω2
− =

1

L(C1 + C)
(A7)
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in which VI ' V (t) À ωAMI. In the low frequency component the cross-tail voltage V

appears directly in the ionosphere while in the high frequency oscillations, characterized

principally by the parameters of the plasma carrying the region 1 currents, the ionosphere

voltage VI(t) lags the dawn-dusk geotail potential V in phase and is considerably small in

value.
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Appendix B: Connection to the Weimer Model

In the Weimer model as used by Klimas et al. (1994) the reaction of the ionosphere back

onto the magnetotail is neglected. The reduced ionospheric equations are then

IAL = I1 = CI
dVI
dt

+ ΣIVI (B1)

LICI V̈I + LIΣV̇I + VI = V +M
dI

dt
. (B2)

For a unit impulse input V0δ(t) from the magnetotail this passive ionosphere response Vs(p)

is given by (
p2 +

ΣI

CI
p+ ω2

I

)
VI(p) = ω2

IV0 (B3)

where p is the Laplace transform variable. Here ωI = (LICI)−1/2. Solving Eq. (B3) for the

output voltage gives the response function

VI(t) = V0

∫ ω2
Ie
pt

(p− p1)(p− p2)

dp

2πi
=

ω2
IV0

(p2 − p1)

(
ep2t − ep1t

)
. (B4)

For real p1 and p2, we have

−1/p1 = rise time

−1/p2 = decay time.

In general p1 and p2 are given by

p1,2 = − ΣI

2CI
∓
[(

ΣI

2CI

)2

− ω2
I

]1/2

(B5)

and ωI = (LI CI)−1/2. Equation (B4) is the linear response function of the Weimer model

used by Klimas et al. (1994). In Klimas et al. (1994) the choice was made of rise time

τ1 = 2 min and decay time τ2 = 30 min.
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Table 1. Reference Parameters for Nonlinear Dynamics Model

βsw = 0.25 u0 = 6.0× 10−11J−1/2s−1

L = 40 H Ic = 3.5× 107 A

Ccps = 1.2× 104 F ∆I = 106 A

Σ = 40 mho M = 1.1 H

Ωcps = 1.6× 1024 m3 L1 = 12 H

τ‖ = 103 s C1 = 103 F

vsw
min = 30 kV ΣI = 4 mho
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FIGURE CAPTIONS

FIG. 1. Representation of the topology of the two current systems I1(t) and I(t) used in the

nonlinear dynamical model. The current systems are distributed and the lines for

the current loops are purely schematic for the distributed plasma currents.

FIG. 2. Representation of the three voltages Vsw(t), V (t) and VI(t) used in the NLD model.

The Faraday loop integral around the I1-current path determines the VI(t) − V (t)

voltage difference in terms of the self-induction L1 and the mutual inductance M

from the Bz(I1) and Bx(I) magnetic fields as shown.

FIG. 3. Prediction of the NLD model using the Bargatze interval 20 for the input and

the target AL time series. From the top, the six panels show (a) the Vsw input

voltage, (b) the geotail V (t) and ionospheric VI(t) voltages which are equal in the

steady state, (c) the current I(t) in the magnetotail, (d) the central plasma sheet

pressure P (t), (e) the total parallel kinetic energy K‖(t) in the mass flows and (f) the

region 1 current I1 that closes as a westward electrojet in the ionosphere producing

the predicted AL index.

FIG. 4. Comparison of the predicted (solid line) from the Bargatze database. Frame (a)

shows the entire 39 hr interval with an ARV of 0.33 and frames (b) and (c) shows

the details of the predicted and target data for the two isolated substorms in the

subintervals (b) [5, 12 hr] with ARV = 0.22 and (b) [32, 39 hr] with ARV = 0.24.

FIG. 5. One-dimensional parameter scans for the average relative variance (ARV). Variations

with (a) the lobe inductance L, (b) the central plasma sheet conductance Σ, (c) the

central plasma sheet capacitance C, and (d) the solar wind coupling efficiency βsw.
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FIG. 6. The power transfers that occur during interval 20 shown in Fig. 4. In decreasing

magnitude is the total power input Pin (solid line), the power to the parallel ion mass

flows (short dashed line) and the power to the plasma thermal energy (long-short

dashed curve).

FIG. 7. The power dissipated in the ionosphere Pion as a fraction of the total input power.

FIG. 8. The nonlinear response I1(t) from the model to an impulsive input Vsw(t) = 60 kVδ(t−

tp) shown by the vertical dashed lines at tp ' 49–53 min. The delay time τD ' 22 min

to the maximum response in the westward electrojet current is a persistent feature

of the model.


