Effect of a resistive vacuum vessel on dynamo mode rotation in reversed field pinches
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Locked (i.e., non-rotating) dynamo modes give rise to a serious edge loading problem during
the operation of high current reversed field pinches. Rotating dynamo modes generally have a far
more benign effect. A simple analytic model is developed in order to investigate the slowing down
effect of electromagnetic torques due to eddy currents excited in the vacuum vessel on the rotation
of dynamo modes in both the Madison Symmetric Torus (MST) [Fusion Technology 19, 131 (1991)]
and the Reversed Field Experiment (RFX) [Fusion Engineering and Design 25, 335 (1995)]. This
model strongly suggests that vacuum vessel eddy currents are the primary cause of the observed lack
of mode rotation in RFX. The eddy currents in MST are found to be too weak to cause a similar
problem. The crucial difference between RFX and MST is the presence of a thin, highly resistive
vacuum vessel in the former device. The MST vacuum vessel is thick and highly conducting. Various
locked mode alleviation methods for RFX are discussed.

I. INTRODUCTION

A reversed field pinch (or RFP) is a magnetic fusion device which is similar to a tokamak® in many ways. Like
a tokamak, the plasma is confined by a combination of a toroidal magnetic field, By, and a poloidal magnetic field,
By, in an axisymmetric toroidal configuration?. Unlike a tokamak, where By >> By, the toroidal and poloidal field-
strengths are comparable, and the RFP toroidal field is largely generated by currents flowing within the plasma.
The RFP concept derives its name from the fact that the toroidal magnetic field spontaneously reverses direction in
the outer regions of the plasma. This reversal is a consequence of relaxation to a minimum energy state driven by
intense magnetohydrodynamical (MHD) mode activity during the plasma start-up phase3. Intermittent, relatively
low-level, mode activity maintains the reversal, by dynamo action, throughout the duration of the plasma discharge.
As a magnetic fusion concept, the RFP has a number of possible advantages relative to the tokamak. The magnetic
field-strength at the coils is relatively low, allowing the possibility of a copper-coil, as opposed to a super-conducting-
coil, reactor. Furthermore, the plasma current can, in principle, be increased sufficiently to allow ohmic ignition, thus
negating the need for auxiliary heating systems.

A conventional RFP plasma is surrounded by a close-fitting, thick, conducting shell whose L/R time is much
longer than the duration of the discharge. Such a shell is necessary in order to stabilize external kink modes which
would otherwise rapidly destroy the plasma®. In the presence of the shell, the dominant MHD modes are m = 1
tearing modes resonant in the plasma core. These modes possess a range of toroidal mode numbers, characterized
by n ~ 2 Ro/a. Here, m,n are poloidal and toroidal mode numbers, respectively, whereas a and Ry are the minor
and major radii of the plasma, respectively. The core tearing modes are responsible for the dynamo action which
maintains the field reversal, and are, therefore, generally known as dynamo modes®.

The Madison Symmetric Torus (MST) ¢ and the Reversed Field Experiment (RFX) 7 are both large RFP experi-
ments of broadly similar size and achieved plasma parameters. Nevertheless, the observed dynamics of dynamo modes
in these two devices is strikingly different.

In MST, the dynamo modes generally rotate, forming a toroidally localized, phase-locked structure, known as a
“slinky mode” &, which extends over about one-fourth of the torus®. The dynamo modes continually execute a so-called
sawtooth cycle, in which their typical amplitude gradually increases from a small value, until a critical amplitude is
reached at which a rapid global magnetic reconnection event, known as a sawtooth crash, is triggered. After the crash,
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the mode amplitudes return to their initial values, and the process continues ad infinitum. Note that the dynamo
action which maintains the field reversal is only significant during the sawtooth crashes. The rotation of the dynamo
modes is briefly arrested at each sawtooth crash, but generally resumes afterwards. However, in a small fraction
of plasma discharges the dynamo modes fail to re-rotate after the crash, setting in train a series of events which
eventually leads to the premature termination of the discharge®. The percentage of discharges in which this occurs
is a sensitive function of the plasma parameters and the wall conditioning, but generally increases with increasing
plasma current.

In RFX, the dynamo modes form a toroidally localized “slinky mode” which locks to the shell during the plasma
start-up phase and remains locked, and, therefore, non-rotating, throughout the duration of the discharge!®. The
phase-locked dynamo modes do not significantly (i.e., by more than a factor 1.4) degrade the overall plasma con-
finement !!, but give rise to a toroidally localized, stationary “hot spot” on the plasma facing surface, presumably
because the radial transport due to the diffusion of chaotic magnetic field-lines peaks at the toroidal angle where the
amplitude of the “slinky mode” attains its maximum value. If the plasma current is made sufficiently large, this “hot
spot” can overheat the facing surface, leading to the influx of impurities into the plasma, and the eventual termi-
nation of the discharge. Indeed, the maximum achievable plasma current in RFX is limited primarily by this effect.
In recent experiments, the phase-locked dynamo modes in RFX were forced to rotate slowly in the laboratory frame
via an externally generated rotating magnetic perturbation 2. Of course, this also caused the “hot spot” to rotate,
thereby greatly reducing the risk of overheating the plasma facing surface. Although these experiments are still in a
preliminary stage, it is hoped that the maximum achievable plasma current in RFX can eventually be significantly
increased by rotating the “hot spot” in this manner.

It is clear, from the above discussion, that the occurrence of severe edge loading problems in RFX, and the relative
absence of such problems in MST, is a consequence of the fact that dynamo modes are generally stationary in RFX but
usually rotate in MST. Note that other RFPs, in particular the TPE-RX device 13-4, exhibit edge loading problems,
associated with locked dynamo modes, which are similar to those observed on RFX. Two possible explanations have
been proposed for the lack of mode rotation in RFX. The first explanation focuses on the fact that the stabilizing shell
is (relatively speaking) further away from the plasma in RFX than in MST. This can be expected to destabilize the
dynamo modes in RFX, relative to those in MST, thereby increasing their saturated amplitude, and, hence, making
them more prone to lock to stray error-fields. However, this effect is thought to be too weak to account for the
observed difference in dynamo mode dynamics between MST and RFX 3. The second explanation focuses on the fact
that in MST the conducting shell is also the vacuum vessel, whereas in RFX a thin resistive vacuum vessel is located
between the shell and the edge of the plasma. In tokamaks, it is well-known that eddy currents induced in a resistive
vacuum vessel can effectively arrest mode rotation, provided that the mode amplitude becomes sufficiently large 6.
In this paper, we investigate whether similar eddy currents induced in the RFX vacuum vessel can account for the
absence of mode rotation in this device (and the presence of mode rotation in MST).

The model adopted in this paper is rather simplistic. Instead of considering a range of unstable m = 1 modes,
we concentrate on the dynamics of a single representative dynamo mode in the presence of a thin resistive vacuum
vessel surrounded by a thick conducting shell. Furthermore, we only consider zero-8, large aspect-ratio plasmas.
Nevertheless, we believe that our model is sufficiently realistic to allow us to determine whether vacuum vessel eddy
currents can account for the observed difference in dynamo mode dynamics between RFX and MST.

II. PRELIMINARY ANALYSIS
A. The plasma equilibrium

Consider a large aspect-ratio 17, zero-3 '8, RFP plasma equilibrium whose unperturbed magnetic flux-surfaces map
out (almost) concentric circles in the poloidal plane. Such an equilibrium is well approximated as a periodic cylinder.
Suppose that the minor radius of the plasma is a. Standard cylindrical polar coordinates (r,8,z) are adopted. The
system is assumed to be periodic in the z-direction, with periodicity length 27 Ry, where Ry is the simulated major
radius of the plasma. It is convenient to define a simulated toroidal angle ¢ = z/Ry.

The equilibrium magnetic field is written

B = [0, By(r), By(r)] - (1)
The model RFP equilibrium adopted in this paper is the well-known a—-@¢ model }°, according to which
VAB=0(r)B, (2)

where
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Here, ©y and « are positive constants.

It is conventional?® to parameterize RFP equilibria in terms of the pinch parameter,
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and the reversal parameter,
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where (- - -) denotes a volume average.

B. Outline of the problem

Suppose that the plasma is surrounded by a concentric, thin, resistive vacuum vessel of minor radius b. The
vacuum vessel is, in turn, surrounded by a concentric, perfectly conducting shell of minor radius ¢. The arrangement
of conducting shells surrounding the plasma is illustrated in Fig. 1. This paper investigates the effect of any helical
eddy currents excited in the vacuum vessel on the rotation of a typical core tearing mode: the m,n mode, say. All

other modes in the plasma are ignored, for the sake of simplicity.

plasma

perfectly conducting shell resistive vacuum vessel

FIG. 1. The arrangement of conducting shells surrounding the plasma.

C. The perturbed magnetic field

The magnetic perturbation associated with the m,n tearing mode can be written
b(’l") — bm,n(r) ei (mf—n d))’

where m and n are poloidal and toroidal mode numbers, respectively, and
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Here, ' denotes d/dr. Furthermore,
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In this paper it is assumed that m > 0.
The linearized magnetic flux function ™" (r) satisfies Newcomb’s equation 2°,

d dyp™ "™
) m,n _ gL M 0 11
dr [f dr ] g ’ (11)
where
r
fmn(r) = m2 +n2e’ (12)
mn () = 1 r (ne By + m By) do 2mnes  ro’ (13)
g 1 (m%+n2e2)(mBy—neBy) dr  (m2+n2e2)2  m?2+n2e2’
As is well-known, Eq. (11) is singular at the m/n rational surface, minor radius 7™, which satisfies
m By (r]»") —n Bg(ryo") = 0. (14)

In the vacuum region (o = 0) surrounding the plasma, the most general solution to Newcomb’s equation takes the
form

™" = Ay (ne) + Bkny(ne), (15)

where A, B are arbitrary constants, and
im(ne) = |ne| Lyt1(|ne|) + m Ly, (|ne|), (16)
km(ne) = —|ne| Kpmy1(|nel) + m K, (Inel). (17)

Here, I,,,, K,, represent standard modified Bessel functions. For the special case n = 0, the most general vacuum
solution is written

™0 = Aem + Be ™. (18)

D. Standard tearing eigenfunctions

Let

Py (r,d) (19)

represent the normalized m, n tearing eigenfunction calculated assuming the presence of a perfectly conducting shell
at minor radius d. In other words, ¢7"(r,d) is a real solution to Newcomb’s equation (11) which is well behaved as
r — 0, and satisfies

"ﬁgn’n(rgn’"ad) =1, (20)
P (d, d) = 0. (21)

It is easily demonstrated that 1&2”*"(7‘, d) is zero in the region r > d. In general, 1/3?’"(7“, d) possesses gradient
discontinuities at » = r7>" and r = d. The quantity

m,n

nm,mn Tst
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E™™(d) = [ o (22)

m,n
s—

can be identified as the standard m,n tearing stability index?!, calculated assuming the presence of a perfectly
conducting shell at minor radius d. A typical tearing eigenfunction, 97" (r, d), is sketched in Fig. 2.
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FIG. 2. A typical normalized m,n tearing eigenfunction, 7" (r,d), calculated assuming the presence of a perfectly con-
ducting shell at minor radius d.

E. Modified tearing eigenfunctions

In the presence of a resistive vacuum vessel, minor radius b, and a perfectly conducting shell, minor radius ¢, the
most general m,n tearing eigenfunction is written

Y (r) = G, B) + B g (b ), (23)

where ¥ and ¥;"™" are complex parameters which determine the amplitude and phase of the m,n tearing pertur-

bation at the rational surface and vacuum vessel, respectively. Note that zﬁg”’"(r, b, ¢) is a real solution to Newcomb’s
equation which is well behaved as r — 0, and satisfies

b (rmm b, ¢) = 0, (24)
by (b,byc) = 1, (25)
)™ (e, b, ¢) = 0. (26)

b

It is easily demonstrated that zﬁg”’"(r, b, ¢) is only non-zero for r in the range r7"™ < r < ¢. In general, zﬁg”’"(r, b, c)
possesses gradient discontinuities at 7 = 7", r = b, and 7 = ¢. A typical interaction eigenfunction, ;""" (r,b,c),
which parameterizes the interaction between the m,n tearing mode and any eddy currents flowing in the resistive
vacuum vessel, minor radius b, in the presence of a perfectly conducting shell of minor radius ¢, is sketched in Fig. 3.
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FIG. 3. A typical normalized m, n interaction eigenfunction, A,’f’n(r, b,c¢). This eigenfunction parameterizes the interaction
between the m,n tearing mode and any eddy currents flowing in the resistive vacuum vessel, minor radius b, in the presence of

a perfectly conducting shell of minor radius c.

F. The modified tearing dispersion relation

The dispersion relation for the m,n tearing mode in the presence of the resistive vacuum vessel and perfectly
conducting shell takes the form

AT = BT U+ B e
Em,n Em,n
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is a complex parameter which determines the amplitude and phase of the m,n eddy currents flowing in the vicinity
of the m, n rational surface, whereas

d,¢m,n by
AT =
b [r . ]b_ (30)

is a complex parameter which determines the amplitude and phase of the m,n eddy currents flowing in the vacuum
vessel. Furthermore,

dp™ " (r, b, c)
Em,n — b e 1
sb (7’ dr ) . (3 )

and
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are both real parameters.
It is easily demonstrated from Newcomb’s equation (11) that
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where ¢, = b/Ry and €; = r7™/Ry. It is also easily demonstrated that
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In the vacuum region outside the plasma
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where €, = a/Ry. It follows from Egs. (32) and (33) that
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For the special case n = 0,
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It is clear, from the above analysis, that all of the real parameters appearing in the modified m, n tearing dispersion
relation (27)-(28) [i.e., E™™(b), E™"(c), E,", E_;’"] can be calculated from a knowledge of the standard tearing

eigenfunction ™" (r, d).

G. Shell physics

Suppose that the vacuum vessel is of radial thickness §, and conductivity o;. The time constant of the vessel is
defined

Th = f4o Op Op b. (39)

Adopting the thin-shell approximation, in which it is assumed that there is virtually no radial variation of the tearing
eigenfunction ™" (r) across the vessel, the dispersion relation of the vacuum vessel takes the form

AT =in Q, 7, B (40)

Here, it is assumed that the m,n tearing mode is saturated (i.e., its amplitude is fixed) and co-rotates with the plasma
at its associated rational surface. The plasma is assumed to rotate in the toroidal direction only, for the sake of
simplicity. Although the poloidal rotation in RFPs is generally non-negligible, it is usually smaller than the toroidal
rotation, so its neglect is unlikely to dramatically change any of the results obtained in this paper. In the above,

25 = 2(rs"") (41)

is the toroidal angular velocity of the plasma at the m,n rational surface, and 2(r) is the plasma toroidal angular
velocity profile. Note that the thin-shell approximation is valid provided

O b
2enn < —. (42)
b 5
Equations (27), (28), and (40) yield
[E™"(c) — E™"(b)]
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where
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The thin-shell approximation is valid provided that
)\m,n < )\Zn’"a (45)

where
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H. Electromagnetic torques

The toroidal electromagnetic slowing down torque acting in the vicinity of the m,n rational surface due to eddy
currents flowing in the vacuum vessel is given by 8

m,n 27]—2}'20 n m,n *
T = = o res AT (@) (47)
It follows from Eq. (43) that
) 2 gm,n 2 m,n
T = - s [0~ B (). 49)
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I. Viscous torques

The change in the plasma toroidal angular velocity induced by the electromagnetic slowing down torque is written

a dr m,n
A0(r) = A { [ e AR (49)

r<ryt
where pu(r) is the plasma (perpendicular) viscosity profile, and
AR, =0, — N0, (50)

Here, ng) is the value of (2, in the absence of eddy currents flowing in the vacuum vessel. In the above, it is assumed
that the edge plasma rotation is unaffected by the electromagnetic slowing down torque [i.e., Af2(a) = 0]. The
assumptions underlying the analysis in this section are described in more detail in Ref. 22. Note, in particular, that
it is possible to generalize the analysis to take account of the fact that tearing modes do not generally co-rotate with
the ion fluid in RFPs without significantly changing any of the results obtained in this paper.

The viscous restoring torque acting in the vicinity of the rational surface is written

o dAQT™H"
STy = 47° Ry [WROQ o ] N (51)
It follows from Egs. (49) and (50) that
TR = 4 0<0> / — . 2
0T s = 4m RO I (52)



J. Torque balance

Torque balance in the vicinity of the rational surface requires that

ST my + ST = 0. (53)
It follows from Egs. (48) and (52) that
pmsn 2 AR
s _ ym,n m,n 4
(ABO> T3 ommyz o — AT (54)

where

n O 7 [ (c) — E™(b)]

)‘?(;)n = Errg,n E;n,n ’ (55)
By is a typical equilibrium magnetic field-strength,
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bm n _— S 56
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is the perturbed radial magnetic field-strength at the m,n rational surface,
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is a typical hydromagnetic time-scale,
2
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is a typical viscous diffusion time-scale, py is the central plasma mass density, and
Ao o ma m?+n%e Ey" By, / p(0) dr)'* (59)
Ty n2e2 [E™7(c) — E™™(b)]? mn p(r)

III. ASYMPTOTIC REGIMES FOR SLOWING DOWN VIA VESSEL EDDY CURRENTS
A. Introduction

Three separate asymptotic regimes for the slowing down of dynamo mode rotation via eddy currents induced in a
resistive vacuum vessel can be identified from the preceding analysis. These regimes, which correspond to different
orderings for the intrinsic mode rotation parameter /\Eg)” [see Eq. (55)], are discussed in the following.

B. The ultra-thin-shell regime

The ultra-thin-shell regime corresponds to the ordering
)\(0) <1 (60)

in which either the intrinsic plasma rotation is very low or the vacuum vessel is extremely thin. In this regime, there
is virtually no shielding of the tearing perturbation by the vacuum vessel: i.e., the perturbation amplitude remains
significant in the region b < r < ¢. In this case, the torque balance equation (54) reduces to

A 1

2 ~ - , 1
1+ (bs""/ABy)? (61)




where

=0 (62)

is the normalized dynamo mode rotation velocity. It can be seen that the mode rotation decreases smoothly and
monotonically as the mode amplitude b7™ is increased. The rotation is significantly reduced (compared to its value
in the absence of vacuum vessel eddy currents) whenever

7" > A Bo. (63)

C. The thin-shell regime

The thin-shell regime corresponds to the ordering
1L /\Eg)” L AV, (64)

In this regime, there is strong shielding of the tearing perturbation by the vacuum vessel: i.e., the perturbation
amplitude is insignificant in the region b < r < ¢. Nevertheless, the basic thin-shell approximation ordering n 2, 7, <
b/dp still holds. In this case, the torque balance equation (54) reduces to

11
- - _ m,n 2
~ 5+ 2\/1 (bs"" /A" Bo)?, (65)

where

2
mn TIZ} T (n .(25(,0))2 m? + n2e? (0) dr Y
A= )\(0) A= 2 92 ™, A, . (66)
TV ne; E Ebs pmm u(r)

Note that when 7™ exceeds the critical value A’ By the mode bifurcates to a slowly rotating state characterized by
7, ~ O(1). This bifurcation is irreversible, in the sense that b7™ must be reduced substantially before the reverse
bifurcation takes place. Thus, the mode rotation is effectively arrested whenever

b > A' By. (67)
Note that bifurcations only occur for?2

Xoy" > 3V/3 = 5.196. (68)

D. The thick-shell regime

The thick-shell regime corresponds to the ordering

AT AT (69)

In this regime, there is very strong shielding of the tearing perturbation by the vacuum vessel: i.e., the perturbation
amplitude is zero in the region b < r < c¢. The dispersion relation of the shell, Eq. (40), is replaced by 3

b /2
AT = (1nQ Th ) 248 (70)

It follows that

AP ~ —in/4
N Y Y Y DEE
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Hence,
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Note that when b™" exceeds the critical value A" By the mode bifurcates to a slowly rotating state characterized by
;1 ~ O(1). This bifurcation is irreversible, in the sense that b7™ must be reduced substantially before the reverse
bifurcation takes place. Thus, the mode rotation is effectively arrested whenever

b > A" By. (75)

V. ESTIMATE OF CRITICAL PLASMA PARAMETERS
A. Introduction

In order to proceed further, it is necessary to estimate a number of critical plasma parameters which cannot be
directly measured on MST or RFX.

B. Estimate of the mode rotation velocity

In the preceding analysis, the parameter .ng) represents the toroidal angular phase-velocity of a typical dynamo
mode in the absence of vacuum vessel eddy currents. Of course, this quantity can be measured directly in MST, where
it is found that 24

uf) = Ry Q¥ ~ 10kms™". (76)

Unfortunately, it is impossible to measure ng) on RFX, since dynamo modes are never observed to rotate in this
device. It is, therefore, necessary to estimate what the typical toroidal angular phase-velocity of dynamo modes would
be on RFX in the absence of slowing down torques due to vacuum vessel eddy currents.

Theoretically, ug)) is expected to be the sum of the toroidal E A B and electron diamagnetic velocities evaluated in

the plasma core2?®. However, an RFP is characterized by a stochastic magnetic core generated by overlapping dynamo
modes. The stochastic core gives rise to the development of an ambipolar electric field which reduces outward radial
electron transport along magnetic field-lines to the level of the corresponding ion transport. The E A B velocity

associated with this electric field scales like an electron diamagnetic velocity 26. It follows that ug)) should also scale
as an electron diamagnetic velocity, giving

m Te 0 (eV)

20 ~
n {2, 6 o2 By

(77)

Here, T is the central electron temperature. The factor 6 is necessary in order to ensure that the above formula
yields ug)) ~ 10kms~" for typical MST parameters.
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C. Estimate of the plasma viscosity

Plasma viscosity is not usually directly measured in RFPs. It is, therefore, necessary to estimate the plasma
viscosity in terms of quantities which are measured.
Suppose that the plasma viscosity profile takes the form

{oo r<Tre

He re<r<a’ (78)

p(r) =

In other words, there is zero momentum confinement in the stochastic core, r < r., and the viscosity is approximately
constant in the outer regions of the plasma. Suppose, further, that the intrinsic plasma rotation at the edge is
negligibly small [i.e., 2(°) (a) ~ 0], and that all of the toroidal momentum input to the plasma takes place inside the
core. In this case, it is easily demonstrated that

1 r<re

In(r/a)/In(rc/a) re<r<a’ (79)

Q®@:99{

In other words, the plasma rotation is uniform in the stochastic core, and highly sheared in the outer regions of the
plasma.
The viscous diffusion time-scale (58) is conveniently redefined

_ Po a’

e (80)

A%
Suppose that the plasma density profile is approximately uniform. It follows that the momentum confinement time
7y (defined as the ratio of the net plasma toroidal angular momentum to the toroidal angular momentum injection
rate) is related to Ty via

a® dnN© (a)/dr

Ty = —W TM - (81)
Hence,
41
= —. 82
VST ey (52
It this paper, it is assumed that

™ ~ TE, (83)

where 7 is the energy confinement time (which is measured in both MST and RFX). This is a plausible assumption,
since whenever 73 has been measured in toroidal fusion devices it has been found to be very similar in magnitude to
75 2728 Tt follows that

Tv/:"%%—)HTE (84)
in Eqgs. (59), (66), and (74), where
”:fﬁgﬁﬂ‘ )

V. SLOWING DOWN CALCULATIONS
A. The Madison Symmetric Torus

In MST, the plasma is surrounded by a single 5cm thick aluminium (alloy 6061-T6) shell which simultaneously
plays the role of the vacuum vessel and the stabilizing shell. Since there is no perfectly conducting shell surrounding

12



this finite resistivity shell, the parameter ¢ takes the value co (i.e., the perfectly conducting shell of the preceding
analysis is located infinitely far away from the plasma). The typical shell and plasma parameters for MST ¢ are listed
in Tab. I. It follows that

MpNeg G
g = YEOR R0 & s g 10T, (86)
By
T.o(eV) _
0) _ e0 _ 4 1
nng)—6a27-30—40x10 rads , (87)
Tb = Mo Op 6b b=0.82s. (88)

The typical equilibrium parameters for MST are ¢, = 0.34, a = 3.0, Og = 1.71, FF = —0.2, and © = 1.59. Here, we
have adopted a somewhat low value of « in order to compensate for the absence of pressure in our model (the final
result turns out to be fairly insensitive to this parameter). The characteristic dynamo mode for this equilibrium is
the m = 1,n = 6 mode. It is easily demonstrated that rl® = 0.381a, so that ne; = 0.78. Furthermore, Newcomb’s
equation can be solved to give

E™%(b) = 1.038, (89)
EY5(c) = 17.59, (90)
E;;° = 5.826, (91)
EL® =1.614. (92)
Finally, the radius of the stochastic plasma core is taken to be r, = 0.7 a, yielding
4 In(a/r.)

=——35 =28.

P T refay 0P (93)
The parameters )\%(’f)j and \1'® take the values
00 g6 — F1.6

A = mlE () O _ 5.7 % 101, (94)

Ey° B’
and
b [EMS(c) — EV5(b)]

ALS = — =18.3 (95)
c 1,6 11,6 ’
(sb Esb Ebs

respectively. It can be seen that

1,6
A% < g (96)
in MST. Thus, the thick-shell regime, discussed in Sect. III D, is applicable. It follows that the eddy currents which
slow down the rotation of the 1,6 mode do not penetrate the aluminium shell, but are, instead, radially localized
within a skin-depth of its inner boundary.

According to Eq. (73), the relationship between the mode amplitude parameter bl and the normalized mode

rotation parameter (2, in MST is

1,6 \ 2
@0;/2<1—ns>=( by ) , (o7)

2 A" By

where
1/2

- | 4V2 Th QO (1 b/8)/2 m? 4 el 1 =28x 1072, (98)

2.2 1,6 11,6
V27K TE noe; E;" E,.

The parameter b7"" can be related to the nominal m,n magnetic island width W;™>" via
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Wm,n ',r.m,n bm,n 1/2
S — 4 S S
| | 99
where
S a [d(m By — ne By)
(Frny = o b (100)

TS

It is easily demonstrated that (F}®)" = 1.44 for the equilibrium in question. Thus, W)%/a = 2.05 (bL:5/By)/2.
Furthermore, in the thick-shell regime the amplitudes of the perturbed poloidal and toroidal magnetic fields just
inside the aluminium shell (which is where the Mirnov coils are located in MST) are related to b™™ via

m

bznb’" = 71712 n n26b2 1772’" b;n,n’ (101)
Ne€p m.n
W= g e T (102)

Hence, by = 1.0951° and by, = 2.28b1°.

B. The Reversed Field Experiment

In RFX, the plasma is surrounded by a high resistivity, inconel (alloy 625) vacuum vessel which is, in turn,
surrounded by a 6.5cm thick aluminium (alloy 6061-T6) shell. In the following, we ignore the resistivity of the
aluminium shell compared to that of the vacuum vessel. In other words, the aluminium shell is treated as a perfect
conductor. The typical shell and plasma parameters for RFX 7 are listed in Tab. IT. The chosen values for the effective
thickness and the effective resistivity of the vacuum vessel are justified in Appendix A. It follows that

mpn a
= VTR0 &y 651077, (103)
By
Teo(eV) _
0) _ e0 _ 4 1
nﬁg)_ﬁﬁ_fzﬁxlo rads™, (104)
T = o 0pdpb = 3.3 x 10 °s. (105)

The typical equilibrium parameters for RFX are ¢, = 0.23, a = 3.5, @9 = 1.65, F' = —0.2, and ©® = 1.56. Here,
we have again adopted a somewhat low value of & in order to compensate for the absence of pressure in our model.
The characteristic dynamo mode for this equilibrium is the m = 1,n = 9 mode. It is easily demonstrated that
r19 = 0.384 a, so that ne; = 0.79. Furthermore, Newcomb’s equation can be solved to give

E™(b) = 0.433, (106)
EY9(c) = 1.258, (107)
E;) = 5.467, (108)
EL? =1.513. (109)

Finally, the radius of the stochastic plasma core is again taken to be r. = 0.7 a, yielding k = 2.8.

The parameters /\%(’f)) and A% take the values
(0) 1,9 1,9
1o _ nis n[E7(c) - B (b)]
Ay = — FLT RIS = 8.36, (110)
and
El,Q _ E1,9

o = BIETE O] _ 140, (111)

1,9 1,9
61) Esb Ebs

respectively. Note that
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AP > A > 1, (112)

so the thin-shell regime, discussed in Sect. III, is applicable.
According to Eq. (54), the relationship between the mode amplitude parameter b!° and the normalized mode

rotation parameter {2, in RFX is

(1— ) [+ (83607 [ b019\? (113)
0, ~\4By) "’
where
1/2
0 22 2 22 ELO 19
A= |2 TH ™ +nes sb_"bs =1.0x1073. (114)
P I R R O

It is easily demonstrated that (F)' = 1.73 for the equilibrium in question. Thus, W1°/a = 1.88 (b!°/By)'/2,
where use has been made of Eq. (99). Furthermore, since the thin-shell approximation is valid, the amplitudes of the

perturbed poloidal and toroidal magnetic fields just inside the aluminium shell (which is where the Mirnov coils are
located in RFX) are related to 7" via

m,n _ m E7" ,
b = m2 +n2e2 [1+ (/\:ﬂsan)2]1/2 b5, (115)
bm,n _ ne. Eg’;’"

e T 2 + n2? [1+()\m,n)2]1/2 by, (116)

where

byn(a, ) (m? + n?e?)

ET" = . 11
cs km(nee) im(neq) — km(neg) im (ne.) (117)
Now, EL® = 6.625 for the equilibrium in question, so
bl’g _ 0.975 b;’g (]_]_8)
o 1+ (836 02,)2]1/2
1,9 2.15 bi’g (119)

2C 1+ (836 2,)2]1/2
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FIG. 4. The toroidal angular phase-velocity 25 of the characteristic dynamo mode (normalized to the corresponding velocity

ng) in the absence of vacuum vessel eddy currents) as a function of the associated saturated island width W, (normalized with
respect to the minor radius of the plasma a) calculated for MST (long-dashed line) and RFX (short-dashed line).
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FIG. 5. The toroidal angular phase-velocity £2s of the characteristic dynamo mode (normalized to the corresponding velocity
QS(O) in the absence of vacuum vessel eddy currents) as a function of the associated perturbed poloidal magnetic field by seen at
the Mirnov coils [normalized with respect to the edge equilibrium magnetic field By(a)] calculated for MST (long-dashed line)
and RFX (short-dashed line).

C. Results

Figure 4 shows the toroidal angular phase-velocity (2, of the characteristic dynamo mode plotted as a function of
the associated saturated island width W, at the rational surface for both MST and RFX. Note that the characteristic
mode is the 1,6 mode for the case of MST and the 1,9 mode for the case of RFX.

For the case of MST, it can be seen that as the saturated island width is gradually increased the phase-velocity
of the characteristic mode is gradually reduced via the action of eddy currents excited in the vacuum vessel. Note,
however, that if the phase-velocity falls below a certain critical value, corresponding to one third of its value in the
absence of eddy currents, then a bifurcation to a branch of solutions on which the mode is effectively non-rotating
is triggered. The bifurcation point is indicated by a triangle in Fig. 4. Likewise, the bifurcation path (from the
rotating to the non-rotating branch of solutions) is shown as a dotted line. The bifurcation is irreversible: i.e., once
the mode has made the transition to the non-rotating branch of solutions the saturated island width must be reduced
substantially before the reverse transition takes place.

For the case of RFX, it can be seen that as the saturated island width is gradually increased the phase-velocity
of the characteristic mode is gradually reduced via the action of eddy currents excited in the vacuum vessel. Note,
however, that this reduction in phase-velocity takes place far more rapidly, and at significantly lower values of the
saturated island width, than in MST. This is largely due to the fact that the RFX vacuum vessel is much more resistive
than the MST vessel. As before, if the phase-velocity falls below a certain critical value, corresponding to 0.47 of its
value in the absence of eddy currents, then a bifurcation to a slowly rotating branch of solutions is triggered. The
bifurcation points are indicated by triangles in Fig. 4. Likewise, the bifurcation path (from the rapidly to the slowly
rotating branch of solutions) is shown as a dotted line. The bifurcation is irreversible, in the sense discussed above.

Now, the typical saturated island width of a dynamo mode in an RFP plasma is approximately 20% of the minor
radius (see, for instance, Figs. 4 and 1 in Refs. 24 and 29, respectively). Note, from Fig. 4, that if W, /a ~ 0.2 then our
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model predicts that dynamo mode rotation in MST is virtually unaffected by vacuum vessel eddy currents, whereas
any mode rotation in RFX is essentially eliminated by such currents. This observation leads us to conjecture that the
observed lack of mode rotation in RFX, compared to MST, is a direct consequence of the eddy currents induced in
the RFX vacuum vessel.

Figure 5 shows the toroidal angular phase-velocity (2, of the characteristic dynamo mode plotted as a function of
the associated perturbed poloidal magnetic field by calculated at the radius of the Mirnov coils for both MST and
RFX. It can be seen that rotation is predicted to collapse in MST when the ratio bg/By(a) exceeds about 3%. Since
By(a) ~ 1300gauss (see Tab. I), it follows that the critical value of by needed to arrest the mode rotation in MST is
about 40 gauss. This is a larger value than is generally observed in MST, except perhaps at sawtooth crashes. Thus,
eddy current torques are almost certainly insignificant in MST during the sawtooth ramp phase, but may play a role
in the sudden slowing down of mode rotation at sawtooth crashes®. The mode rotation is predicted to collapse in
RFX when the ratio by/By(a) exceeds about 0.1%. Since By(a) ~ 2600 gauss (see Tab. II), it follows that the critical
value of by needed to arrest the mode rotation in RFX is about 3 gauss. This is significantly smaller value than is
generally observed in RFX '®, which lends further credence to our conjecture that vacuum vessel eddy currents are
the primary cause of the lack of dynamo mode rotation in this device.

Finally, Fig. 6 shows the toroidal angular phase-velocity (2, of the characteristic dynamo mode plotted as a function
of the associated perturbed toroidal magnetic field b4 calculated at the radius of the Mirnov coils for both MST and
RFX. Note that by ~ 2bg in both devices.
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FIG. 6. The toroidal angular phase-velocity £2s of the characteristic dynamo mode (normalized to the corresponding velocity
2% in the absence of vacuum vessel eddy currents) as a function of the associated perturbed toroidal magnetic field bs seen at
the Mirnov coils [normalized with respect to the edge equilibrium magnetic field By(a)] calculated for MST (long-dashed line)
and RFX (short-dashed line).

VI. SUMMARY AND DISCUSSION

Locked (i.e., non-rotating) dynamo modes give rise to a serious edge loading problem during the operation of high
current reversed field pinches. Rotating dynamo modes generally have a far more benign effect. Dynamo modes are
usually observed to rotate in MST, whereas in RFX these modes remain locked throughout the duration of the plasma
discharge. The locked dynamo modes in RFX are a cause for concern because they limit the maximum achievable
plasma current.

An analytic model has been developed in order to investigate the slowing down effect of electromagnetic torques
due to vacuum vessel eddy currents on the rotation of dynamo modes in both MST and RFX. Despite the model’s
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simplicity, the results of our investigation are sufficiently clear-cut to enable us to conclude, with some degree of
certainty, that vacuum vessel eddy currents are the primary cause of the observed lack of dynamo mode rotation in
RFX. The corresponding eddy currents in MST are found to be too weak to cause a similar problem. The crucial
difference between RFX and MST is the presence of a thin, highly resistive vacuum vessel in the former device. The
MST vacuum vessel is thick and highly conducting.

In the above, we have demonstrated, fairly conclusively, that vacuum vessel eddy currents are largely responsible
for the severe locked mode problems encountered in RFX. Note, however, that such problems are likely to be generic
to any large RFP equipped with a thin vacuum vessel. In the following, armed with this knowledge, we briefly
examine four possible methods for alleviating locked mode problems in such RFPs. These methods are: (i), reducing
the plasma current; (i), decreasing the resistance of the vacuum vessel; (i), decreasing the radial extent of the
interspace between the vacuum vessel and the stabilizing shell; and (4v), spinning the plasma using neutral beams.

Let us examine the scaling of the critical radial magnetic field at the rational surface b7"" (normalized with respect
to the scale equilibrium field magnetic By), above which the rotation of the characteristic dynamo mode is significantly
reduced, with the toroidal plasma current Iy. It is assumed, for the sake of simplicity, that the plasma density and
the various equilibrium plasma profiles remain constant as Iy is varied. According to the well-known Connor-Taylor

(constant beta) scaling law3°, T, g o Iy and 75 o I, ¢3 /2 1t follows that By o Iy, 7 o< I ¢_1, and n ng) is independent

of I,. Furthermore, the intrinsic mode rotation parameter )\Egin is also independent of Iy. RFX lies in the thin-shell

regime discussed in Sect. ITI. It is easily demonstrated that b7""/By o I ¢_7/ * in this limit. Other more empirical
scaling laws (e.g., Tg o I) yield similar results. Thus, we predict a very strong inverse scaling of the critical mode
amplitude required to cause locking of dynamo modes with increasing plasma current. It should certainly be possible
to alleviate locked mode problems by operating at reduced plasma current. Conversely, locked mode problems can be
expected to worsen dramatically as the plasma current is increased.

Let us examine the scaling of b»" /By with the toroidal resistivity Ry of the vacuum vessel. It is assumed, for the
sake of simplicity, that all of the plasma parameters remain constant as Ry is varied. It is also assumed that the
poloidal resistivity Ry of the vessel scales like Rg. According to the analysis in Sect. III, at fixed plasma parameters
the eddy current slowing down torque acting on the characteristic dynamo mode attains its maximum value when
Ry is such that the intrinsic plasma rotation parameter A(;" [defined in Eq. (55)] is of order unity. Since Ajgi" ~ 8
in RFX [see Eq. (110)], it is clear that the actual resistance of the RFX vacuum vessel is somewhat less than the
value which mazimizes the slowing down torque acting on dynamo modes. Thus, in principle, the severe locked mode
problems in RFX could be alleviated by either making the vacuum vessel slightly more conducting or far more (i.e.,
by at least a factor 10) resistive. In practice, it is difficult to see how the RFX vacuum vessel could be made far
more resistive: it is already fabricated out of very thin sheets of an extremely high resistivity material (é.e., inconel).
On the other hand, the vessel could easily be made more conducting, either by increasing its thickness or fabricating
it out of a less resistive material. In the thin-shell regime, it is easily demonstrated that b7 /By o R;l/ ? Tbl/ ,
Note the relatively weak scaling of b7 /B with 7. This suggests that increasing the time-constant 7, of the vacuum
vessel is not a particularly effective way of alleviating locked mode problems.

Let us examine the scaling of b7 /By with the radial distance d = ¢ — b between the thick stabilizing shell and the
thin vacuum vessel. It is assumed, for the sake of simplicity, that all of the plasma parameters remain constant as d
is varied. The spacing d between the two shells affects 7" /By primarily through the term E™"(c) — E™™(b), which
appears in Egs. (55) and (59). Let us assume, as seems reasonable, that E™"(c) — E™"(b) o d as d — 0. RFX lies
in the thin-shell regime discussed in Sect. III. Unfortunately, there is no dependence of b7" /By on d in this regime
(since the vacuum vessel fairly efficiently shields the tearing perturbation from the influence of the stabilizing shell
in both the thin-shell and thick-shell regimes). This suggests that reducing the radial spacing between the vacuum
vessel and the stabilizing shell is not an effective way of alleviating locked mode problems (unless the vacuum vessel
is sufficiently thin and resistive to lie in the ultra-thin-shell regime).

Let us, finally, examine the scaling of bJ*™/By with the intrinsic (é.e., that in the absence of vacuum vessel eddy

currents) toroidal angular phase-velocity ng) of the characteristic dynamo mode. It is assumed, for the sake of
simplicity, that we can increase ng) via tangential neutral beam injection without substantially modifying any other
plasma parameters. In the thin-shell regime, it is easily demonstrated that b7"" /By ng). The relatively strong

scaling of b7™ /By with increasing ng) suggests that spinning the plasma via tangential neutral beam injection is a
fairly effective way alleviating the locked mode problems. A crude estimate of the neutral beam power required to

double 29 in RFX is

_ MU¢V
- KTE

Py (120)
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! is the intrinsic plasma toroidal velocity, V is the velocity of

where M ~ 3 x 10~ kg is the plasma mass, ug ~ 5kms™
-1

the injected particles, k = 2.8, and 7g ~ 10~ 25 is the energy confinement time of the plasma. Now, V ~ 3 x 108ms
for 50k eV hydrogen beams, giving Py ~ 1.7 MW. We conclude that at least 2 MW of neutral beam power would be
required to significantly alleviate the locked mode problems in RFX.
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APPENDIX A: THE RFX VACUUM VESSEL

The RFX vacuum vessel” is fabricated out of inconel (alloy 625), and consists of a two-shell sandwich structure,
with a 2mm thick inner shell and a 1 mm thick outer shell connected together by a 0.5 mm thick corrugated sheet. In
addition, there are 144 poloidal stiffening rings connecting the inner and outer shells. The spacing between the two
shells is 3 cm. The calculated poloidal and toroidal resistances of the vessel are Ry = 41x1075Q and Ry = 1.1x1073Q,
respectively 7.

According to Gimblett 22, the time constant of a shell whose resistivities differ in the poloidal and toroidal directions
is given by

m? + n’e;

- b Al
m2 Ry +n? Ry (A1)

T = po Ro

For the case of the RFX vacuum vessel (with m = 1 and n = 9), we obtain 7, = 3.33 ms.

In this paper, we define the effective thickness of the RFX vacuum vessel to be &, = 3.5mm, which is the total
thickness of the inconel which makes up the vessel over most of its area. It follows that the effective resistivity of the
vessel is given by

1 pobdy
o, T

=64.7 x 107° Om. (A2)

Note that the effective resistivity is less than the actual resistivity of inconel (128 x 10~8 Qm) in order to take account
of the low resistance paths afforded by the poloidal stiffening rings.
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Parameter Units Symbol Value
Major radius m Ro 1.5
Plasma minor radius m a 0.51
Toroidal plasma current kA Iy 340
Equilibrium magnetic field-strength T By = Bg(a) = po Ip/2ma 0.13
Central electron temperature eV Teo 230
Central electron number density m3 Te 0 1% 10%°
Energy confinement time ms TE 1
Vacuum vessel minor radius m b 0.52
Vacuum vessel thickness cm 0 5
Vacuum vessel resistivity Qm 1/oy 4.0 x 1078
TABLE I. Typical MST parameters
Parameter Units Symbol Value
Major radius m Ry 2.0
Plasma minor radius m a 0.457
Toroidal plasma current kA Iy 600
Equilibrium magnetic field-strength T By = Bg(a) = po Ip/2ma 0.26
Central electron temperature eV Teo 230
Central electron number density m™3 Te 0 2 x 10*°
Energy confinement time ms TE 1
Vacuum vessel minor radius m b 0.490
Vacuum vessel (effective) thickness mm 3 3.5
Vacuum vessel (effective) resistivity Qm 1/oy 64.7 x 1078
Stabilizing shell minor radius m c 0.535
Stabilizing shell thickness cm dec 6.5
Stabilizing shell resistivity Qm 1/o. 4.4 %1078

TABLE II. Typical RFX parameters
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