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The formation and breakup of the “slinky mode” in an RFP is investigated using analytic
techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode
is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the
plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple
m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled
tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which
is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the
typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that
above which slinky formation occurs. Analytic expressions for the slinky formation and breakup
thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static
error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma
at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms
as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to
the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all
regimes of physical interest. The problems associated with a locked slinky mode can be alleviated
by canceling out the accidentally produced error-field responsible for locking the slinky mode, using
a deliberately created “control” error-field. Alternatively, the locking angle of the slinky mode can
be swept toroidally by rotating the control field.

I. INTRODUCTION

A reversed field pinch (or RFP) is a magnetic fusion device which is similar to a tokamak! in many ways. Like
the tokamak, the plasma is confined by a combination of a toroidal magnetic field, By, and a poloidal magnetic field,
By, in an axisymmetric toroidal configuration?®. Unlike the tokamak, where B, > By, the toroidal and poloidal
field-strengths are comparable, and the RFP toroidal field is largely generated by currents flowing within the plasma.
The RFP concept derives its name from the fact that the direction of the toroidal field is reversed (compared to the
direction of the externally generated toroidal field) in the outer regions of the plasma. This reversal is a consequence
of relaxation to a minimum energy state driven by intense magnetohydrodynamical (MHD) mode activity during the
plasma start-up phase 3. Constant low-level mode activity maintains the reversal, by dynamo action, throughout the
duration of the plasma discharge. The RFP (and a closely related configuration known as a Spheromak) is perhaps the
only known laboratory experiment which exhibits an MHD dynamo, an effect which is of considerable importance in
both astrophysics and geophysics, and is still poorly understood. As a magnetic fusion concept, the RFP has a number
of possible advantages relative to the tokamak. The magnetic field-strength at the coils is relatively low, allowing
the possibility of a copper-coil, as opposed to a super-conducting-coil, reactor—a very considerable simplification.
Furthermore, the plasma current can, in principle, be increased sufficiently to allow ohmic ignition, thus negating the
need for auxiliary heating systems—another major simplification.

Unlike a tokamak, which can be completely MHD stable, an RFP is characterized by a constant background level
of MHD activity, which is required to maintain the reversal of the toroidal magnetic field via dynamo action. The
dominant MHD instabilities are rotating m = 1 tearing modes with a range of toroidal modes numbers satisfying
ne, ~ O(1). Here, m is the poloidal mode number, €, = a/Rp, and a and Ry are the minor and major radii of the
plasma, respectively. These modes are generally resonant in the plasma core. It is often observed that the core tearing
modes in an RFP becomes locked in phase to form a toroidally localized, rotating magnetic perturbation known as
a “slinky mode”* ®. This mode degrades the plasma confinement, giving rise to a rotating, toroidally localized “hot
spot” on the plasma facing surface. Slinky modes sometimes lock to static error-fields, and, thereby, stop rotating in
the laboratory frame 7. Unfortunately, when this occurs the associated “hot spots” also stop rotating and rapidly
overheat the plasma facing surface, leading to the influx of impurities into the plasma, and the eventual termination



of the discharge. Indeed, the plasma current in many RFPs [in particular, the Reversed Field Experiment (RFX)?]
is limited as a direct consequence of the problems associated with locked slinky modes.

The aim of this paper is to investigate the formation and locking of the slinky mode analytically, using techniques
which have been employed, with considerable success, to investigate mode coupling and error-field related effects in
tokamaks 1. This is an alternative approach to using three-dimensional, nonlinear MHD simulations 1213, Broadly
speaking, the method of analysis is to solve the marginally-stable equations of ideal-MHD inside the plasma, and
asymptotically match the eigenmode solutions, thus obtained, to non-ideal layer, or island, solutions at the various
rational surfaces. This procedure yields a set of coupled equations for the amplitudes of the various MHD modes
under investigation. It is also necessary to evaluate the nonlinear electromagnetic torques generated inside the plasma
by MHD mode activity, as well as any viscous restoring torques produced by mode induced shifts in the plasma
rotation. All of this information goes into an angular equation of motion for the plasma. The phase velocities of
the various modes in the system are usually fairly simply related to the plasma rotation velocities at the associated
rational surfaces. The final result is a set of coupled, highly nonlinear, equations for the amplitudes and phases of the
MHD modes. These equations can be solved using standard nonlinear analysis techniques.

It should be emphasized that, although the basic techniques used to analyze mode locking phenomena in tokamaks
can also be used to analyze similar phenomena in RFPs, any equations derived via tokamak orderings cannot be
directly applied to RFPs. The orderings appropriate to RFPs are quite different to those appropriate to tokamaks.
Thus, the approach of Ref. 14, which analyzes mode locking phenomena in RFPs using equations derived via tokamak
orderings, is not legitimate.

In tokamaks, the dominant mode coupling mechanism is that due to toroidicity '°. However, this coupling mecha-
nism is far less important in RFPs, and is, in fact, neglected altogether in this paper. The dominant mode coupling
mechanism in RFPs is that due to the nonlinear interaction of different MHD modes inside the plasma'4 6. Un-
fortunately, this type of mode coupling is far more difficult to analyze than the toroidal coupling which takes place
inside tokamaks. In order to make any progress, it is necessary to severely limit the number of modes which are taken
into account during the analysis. Hence, in this paper, only the intrinsically unstable m = 1 tearing modes resonant
in the plasma core, and the intrinsically stable 0,1 mode resonant at the reversal surface (where By = 0), are taken
into account, since these modes are judged to play the most significant roles in slinky mode formation and locking
events.

There is another major difference between tokamaks and RFPs. Tokamaks generally possess intact, nested magnetic
flux-surfaces, except during major disruption events'. RFPs, on the other hand, only possess intact magnetic flux-
surfaces in the outer regions of the plasma, and even these flux-surfaces are broken up during so-called “sawtooth”
relaxation events!'6. The magnetic field in the core of an RFP is stochastic in nature, due to the effect of the
overlapping magnetic islands associated with the many unstable m = 1 core tearing modes. It follows that the
nonlinear evolution of these modes cannot be analyzed using standard single-helicity magnetic island theory (i.e.,
Rutherford island theory!7). In fact, the only assumption made in this paper regarding the nonlinear evolution of
the core tearing modes is that these modes saturate at some level. On the other hand, both the linear and nonlinear
evolution of the intrinsically stable 0,1 mode are analyzed using standard single-helicity theory. This approach is
justified because the 0,1 rational surface (i.e., the reversal surface) usually lies in that region of the plasma possessing
good magnetic flux-surfaces 6.

It is a standard MHD result® that 0,0 electromagnetic torques can only develop in those regions of the plasma
where the equations of marginally-stable ideal-MHD break down: i.e., in the layer or island regions centred on the
various rational surfaces in the plasma. In this paper, the radial widths of these regions are neglected, so that the 0,0
torque takes the form of a series of §-functions, centred on the various rational surfaces. In reality, given the extensive
island overlap which occurs in the plasma core, the radial distribution of the electromagnetic torque in the core is
likely to be far more continuous than this. However, this approximation is unlikely to be a source of significant error.

The plasma pressure is neglected in this paper for a number of reasons. Firstly, finite plasma pressure greatly com-
plicates the analysis of nonlinear mode coupling. Secondly, since the curvature of magnetic field-lines is “unfavorable”
in RFPs, finite plasma pressure destabilizes resistive interchange modes '8, which must then be taken into account in
the analysis. Finally, and most importantly, plasma pressure is not thought to play a significant role in the formation
and locking of slinky modes. Likewise, the finite resistivity of the flux conserving shell is not taken into account in
this paper because resistive shell effects are also not thought to play an important role in the formation and locking
of slinky modes 3.

This paper is organized as follows. Section II investigates the formation of the slinky mode via the nonlinear
coupling of multiple m = 1 core tearing modes. The locking of the slinky mode to a static error-field is examined in
Sect. ITI. Finally, the paper is summarized in Sect. IV. The analysis of the nonlinear coupling between MHD modes
of different helicities is described in detail in Appendix A. Likewise, the technical details of the analysis of error-field
effects are contained in Appendix B.



II. FORMATION OF THE SLINKY MODE
A. Introduction

Consider a large aspect-ratio !°, zero-82°, circular cross-section, RFP equilibrium. Suppose that Ry and a are the
major and minor radii of the plasma, respectively. The plasma is assumed to be surrounded by a concentric, perfectly
conducting shell of minor radius b. In this paper, all calculations are carried out in cylindrical geometry, using the
standard coordinates (r,0, ¢), where ¢ = z/Ry. The plasma equilibrium is described in more detail in Sect. A 1.

The m,n tearing mode is resonant inside the plasma at the m,n rational surface, minor radius rJ*", which satisfies
the resonance condition

Fmn (™) =0, (1)

where F™™(r) is given in Sect. A 3.
The radial magnetic perturbation associated with an m,n tearing mode is specified by the complex function
™" (r,0,¢,t) (see Sect. A 2), where

YN (r, 0, 6,1) = BT (E) G (r) e (m O, (2)

Here, ™" is a complex constant which parameterizes the amplitude and phase of the perturbation at the rational
surface, whereas 1&'”’”(7‘) is a real function which determines the variation of the perturbation amplitude across the
plasma. These quantities are defined in more detail in Sect. A 3. Note that ¥"" is effectively the reconnected magnetic
flux at the m,n rational surface.

It is helpful to write

m,n

T (L) = () el ()

where ¥ = [@™"| and ™" = arg(P™").

According to standard MHD theory, the magnetic perturbation associated with the m,n tearing mode co-rotates
with the plasma at the associated rational surface®. In this paper, the plasma is assumed to rotate only in the toroidal
direction, with angular velocity £2(r,t). Thus,

t
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Consider the non-linear coupling of the 1,n through 1,n + N — 1 tearing modes, which are generally resonant in
the plasma core, via the 0,1 mode, which is resonant at the reversal surface. The reversal surface (i.e., the surface at
which the equilibrium toroidal magnetic field reverses direction) is usually located close to the plasma boundary. The
1,n through 1,n + N — 1 tearing modes are assumed to be intrinsically unstable, with saturated amplitudes @1’”+j,
for j = 0 to N — 1. On the other hand, the 0,1 tearing mode is assumed to be intrinsically stable. Incidentally, N
(i.e., the number of unstable m = 1 tearing modes) is largely determined by the inverse aspect-ratio, €, = a/Ry, of
the device. Generally speaking, Ne, ~ O(1). The conventional large aspect-ratio RFP orderings are ¢, < 1 and
ne, ~ O(1).

B. Electromagnetic torques

Consider the nonlinear coupling of the 1,n + j; 1,n + j + 1; and 0,1 tearing modes, where j lies in the range 0 to
N — 2. According to Eqgs. (A94)-(A96), the nonlinear toroidal electromagnetic torques acting in the vicinity of the
respective rational surfaces are written:

STy’ = —(n + ) T, (5)
ST H T = (n+j +1) Tny;, (6)
0T = —Tn- (7)

Equations (A100) and (A103) yield
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Here, P denotes a Cauchy principal part, ' denotes d/dr, and the equilibrium functions By(r), Bg(r), o(r), F™"(r),
G™"™(r), and H™"(r) are defined in Sects. A1 and A 3.

The quantity ¥%! (i.e., the 0,1 reconnected flux driven at the reversal surface by the nonlinear interaction of the
1,n+j and 1,n + j + 1 tearing modes) can be determined from linear layer physics. This approach is valid as long
as the driven island width at the reversal surface is less than the linear layer width (see Sect. A6 and Ref. 11).
Equations (A32) and (A100) yield
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Here, the real quantity E®! (n.b., E®! < 0) is the tearing stability index for the 0,1 mode (see Sect. A 3), the complex
quantity A%! is the layer response function for the 0,1 mode (see Sect. A 5), and wy; is the real frequency of the
0,1 mode formed by the nonlinear interaction of the 1,n + j and 1,n + j + 1 modes, as seen in a frame of reference
co-rotating with the plasma at the reversal surface. It follows that

Wi = (n+5) Q) + 2001 = (n+ 5 +1) 2, (12)

In this paper, poloidal electromagnetic torques, and the modifications to the plasma poloidal rotation profile induced
by such torques, are neglected. In general, poloidal electromagnetic torques are smaller than the corresponding toroidal
torques by an inverse aspect-ratio, €, = a/Rg. On the other hand, the moment of inertia of the plasma is much smaller
for poloidal rotation than for toroidal rotation. The net result is that the modifications to tearing mode frequencies
induced by poloidal torques are of the same order of magnitude as those induced by toroidal torques. Thus, the
neglect of poloidal torques is only justified if the plasma is subject to significant poloidal flow damping?'. This is
certainly the case in tokamaks. However, since flow damping is a toroidal effect (i.e., it does not occur in a cylinder),
and toroidal effects tend to be far weaker in RFPs than in tokamaks, it is not obvious that flow damping is sufficiently
strong in RFPs to justify the neglect of the poloidal torques. If the assumption of strong poloidal flow damping in
RFPs (which greatly simplifies the analysis) turns out to be incorrect, the analysis presented in this paper can be
generalized in a relatively straightforward manner to include the effect of the poloidal torques (see Ref. 9).

C. Viscous torques

The toroidal electromagnetic torques which develop in the plasma as a consequence of nonlinear mode coupling
modify the plasma toroidal rotation profile. Such modifications are opposed by the action of (perpendicular) plasma
viscosity. In steady-state, the change induced in the toroidal angular velocity profile, Af2(r), satisfies

d dA
_ =) = 1
dr (ru dr ) 0, (13)

where p(r) is the (anomalous) coefficient of (perpendicular) plasma viscosity. The plasma toroidal rotation is assumed
to be “clamped” at the edge, so that



AQ(a) = 0. (14)

Finally, the toroidal viscous torque which develops in the vicinity of the m,n rational surface takes the form

dAQ] ny
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(15)
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Note that, like the electromagnetic torques, the steady-state viscous torques only develop in the vicinity of the rational
surfaces. The assumptions underlying the analysis in this section are described in more detail in Ref. 9.

D. Torque balance

In steady-state, the electromagnetic torques which develop in the vicinity of the various coupled rational surfaces
in the plasma must be balanced by viscous torques. Solving Eq. (13) subject to the boundary condition (14), making
use of Egs. (5)—(7) and Eq. (15), including the electromagnetic torques generated at the reversal surface by all of
the unstable m = 1 tearing modes, and balancing the electromagnetic and viscous torques at every coupled rational

Qnyj = o)

surface, yields
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for j = 0to N—1, where Ty, = Tpir/ (472 R p1.) and g = p(r.). Here, 2,4 = Q(r1"t*), Likewise, 1y = rbH*
and 7, = r%1. Also, 0 Jzk is the toroidal angular velocity of the plasma at radius rl’"+’“ in the unperturbed state.

Tn-i-k; (16)

Of course, AR(rlntk)y = 2, Q; J:k Note that the nonlinear electromagnetic torques do not modify the plasma
rotation at the reversal surface
Recall that

Wi = (N +J) Qg + 2 —(n+J+ 1) Qnyjn (17)
[where 2, = £2(r,) is the plasma angular velocity at the reversal surface] is the real frequency of the 0,1 mode formed
by the nonlinear coupling of the 1,n+ j and 1,n+ j + 1 tearing modes, as seen in a frame co-rotating with the plasma
at the reversal surface. Of course,

0 .\ (0 . 0
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is the value of wp4; in the unperturbed plasma. Equations (16)—(18) can be combined to give the following set of
coupled torque balance equations:
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forj=0to N — 2.

E. Two unstable m =1 tearing modes: N =2
1. Basic equations

Suppose that only the 1,n and 1,n + 1 tearing modes are intrinsically unstable: i.e., N = 2. Equations (16)—(19)
yield the torque balance equation
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2. Linear analysis

Equations (8), (9), and (11) can be rearranged to give
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Here, p. is the plasma mass density at the reversal surface, 77 and 7y are the hydromagnetic and viscous time-scales
evaluated at the reversal surface, respectively, and x,, P,, 1", and #>"*! are non-dimensional real constants.

According to Sect. A 5, in the so-called visco-resistive regime (i.e., the most appropriate linear response regime for
an ohmically heated device!!), the layer response function for the 0,1 mode takes the form



A% (w,) = —iw, T, (37)

where
ro=2104 0 TR (38)

is the L/R time of the resistive layer driven at the reversal surface by the nonlinear coupling of the 1,n and 1,n + 1
tearing modes. Here,

_ ko rl
M

is the resistive diffusion time-scale, evaluated at the reversal surface, and 7, is the plasma (parallel) resistivity at
radius 7.
Equations (20), (28), and (37) can be combined to give the normalized torque balance equation

TR (39)
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Equation (40) is very similar to the torque balance equation which governs the behaviour of a conventional induction
motor 22, Furthermore, Eq. (40) is exactly analogous to the torque balance equation which governs the locking of a
rotating tearing mode to an error-field %22, and also the equation which governs the locking of two toroidally coupled,
differentially rotating, tearing modes in a tokamak 10:24,

It is easily demonstrated that if ¢, > 1/4/27 then Eq. (40) possesses continuous solutions, whereas if ¢, < 1/v/27
then the solutions split into two separate branches. In an RFP (as in a tokamak ?) it is generally expected that ¢, < 1
[since the plasma rotation period is generally much less than the L/R time of a resistive layer—see Eq. (42)].

In the physically relevant limit (, < 1, the two branches of solutions to Eq. (40) are as follows. On the unlocked

branch, which is characterized by wy, ~ w,(LO), Eq. (40) reduces to

wi) X3
Wp = T 1 + - A—% s (44:)
whereas on the locked branch, which is characterized by w,, ~ (, w,(lo), Eq. (40) yields
(0) 2 4
_ Wn X X .

Note that the unlocked branch of solutions ceases to exist for

Xn 2> An. (46)

When the “amplitude” of the two coupled tearing modes (i.e., x, ) exceeds the critical value given above a bifurcation
from the unlocked to the locked branch of solutions takes place. Such a bifurcation is termed a locking bifurcation.
Note, also, that the locked branch of solutions ceases to exist for

xn < (8 Cn)l/2 Ap. (47)

When the mode amplitude falls below the critical value given above a bifurcation from the locked to the unlocked
branch of solutions takes place. Such a bifurcation is termed an unlocking bifurcation. The locking/unlocking phe-
nomenon exhibits considerable hysteresis, since the critical mode amplitude for locking [given in Eq. (46)] is much
greater than the critical amplitude for unlocking [given in Eq. (47)]. Thus, once the mode amplitude has become
sufficiently large to induce locking it must be reduced significantly before unlocking occurs. The bifurcation diagram
for the locked /unlocked branches of solutions is sketched in Fig. 1.



8. Nonlinear analysis

Equation (40) was derived using linear layer physics to calculate the 0,1 reconnected flux driven at the reversal
surface by the nonlinear interaction of the 1,n and 1,n + 1 tearing modes. As discussed in Ref. 11, this approach
is generally appropriate on the unlocked branch of solutions, where w,, is large, since driven magnetic reconnection
at the reversal surface is effectively suppressed by differential plasma rotation (parameterized by wy,). On the other
hand, there is no suppression of magnetic reconnection on the locked branch of solutions, where w,, is small, so the
system can be expected to enter the nonlinear regime once locking has taken place. Note that the locking threshold,
Eq. (46), is not modified by nonlinear effects, since this threshold only depends on the properties of the unlocked
branch of solutions. However, in general, the unlocking threshold, Eq. (47), is modified by nonlinear effects. The
nonlinear regime is characterized by the presence of a chain of driven magnetic islands at the reversal surface. The
plasma in the vicinity of the reversal surface cannot flow across the magnetic separatrix associated with this island
chain, so in the nonlinear regime there arises a no slip constraint, which demands that the driven island chain at the
reversal surface must co-rotate exactly with the plasma at this surface?!!. The no slip constraint gives

Wn=nly+ 2% —(n+1)02,41=0 (48)

on the locked branch of solutions.
On the locked branch of solutions, the 0, 1 reconnected flux driven at the reversal surface by the nonlinear interaction
of the 1,n and 1,n + 1 tearing modes is determined by the Rutherford island equation, (A37), which yields
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where I = 0.8227. Here, 4V 0.1 p, is the radial width of the island chain driven at the reversal surface, ¥%! =
yol/r2 FI
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and use has been made of Eq. (48). Of course, sgn(P,) = £1 as P, 20.
The torque balance equation, (20), reduces to
(0) e L, v 70,1
wy! =LpTh = — —5 xn ¥ sin Apy, (51)
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on the locked branch of solutions. It is easily demonstrated that all solutions characterized by |Ap,| > 7/2 are

dynamically unstable®.
In steady-state, Eqgs. (49) and (51) yield

UARIES _)g; - cos Ay, (52)
and
8¢ A2 = x2 sin2Ap,. (53)

Note that the locked branch of solutions ceases to exist for
Xn < (8 Cn)1/2 Ay, (54)

When the mode amplitude, x,, falls below this critical value an unlocking bifurcation takes place. In this simple
example, the unlocking threshold, (54), predicted by nonlinear theory is the same as the threshold, (47), predicted
by linear theory. In general, however, this is not the case, and the correct unlocking threshold is that predicted by
nonlinear theory.

Note, finally, that in the strongly locked limit, in which the mode amplitude lies well above the unlocking threshold,
Eq. (53) gives

App, = 0. (55)



4. Mode structure

In order to understand the significance of the constraint w, = 0, which characterizes the locked branch of solutions,
it is necessary to calculate the plasma angular velocities at the 1,n and 1,n + 1 rational surfaces after locking.
Equation (20)—(22) yield

n 2, = wo, (56)
(n+1) 21 =wo + (2, (57)
on the locked branch of solutions, where
M,
wo=mn (Qﬁbo) +T w%o)) . (58)

The above expressions suggest that locking is associated with a slight redistribution of the plasma toroidal angular
momentum interior to the reversal surface (since w%o) ~ QT(LO) ~ 97(1(21 and L, ~ n M,). In other words, the locking
process is not, in general, associated with a dramatic change in the core plasma rotation.

According to Egs. (2) and (3), the radial magnetic perturbation associated with the saturated 1,n and 1,n + 1

tearing modes resonant in the plasma core is characterized by

’(,[J(T’, 0’ ¢’ t) — @1,7; ,(Z}l,n(,r) ei [6—n ¢+g0(1)’"+n 2, t] + jl,n—i-l ,J}l,n—i—l (7‘) ei [0—(n+1) ¢+‘/’(13’n+1+(n+1) 2441 t]‘ (59)

Here, the contribution of the nonlinearly driven 0,1 mode is neglected, since ¥%! « ¥:m ¥+l On the locked
branch of solutions, the above expression reduces to

$(1,0,6,8) = {An(r) + Apya(r) e 19 @0} o1 O mobeghuon), (60)
where
An(r) = TL P (r), (61)
Anya(r) = sgn(P,) BHmHE GLH (), (62)
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and use has been made of Eqgs. (48) and (55)—(57). Here, it is assumed that the mode amplitude lies well above the

unlocking threshold. It follows that

(r,0,6,8)] = {A2+ A2, + 24, Apyr cosg}'” (64)

Note that the amplitude of the perturbed radial magnetic field possesses an n = 1 modulation which co-rotates with
the plasma at the reversal surface [see Eq. (63)]. Within this relatively slowly rotating n = 1 envelope, the field
exhibits high-n, high frequency oscillations (assuming, as seems reasonable, that the plasma core rotates far more
rapidly than the plasma at the reversal surface). Admittedly, the amplitude of the radial magnetic perturbation also
exhibits an n = 1 modulation on the unlocked branch of solutions. However, this modulation rotates at an angular
velocity which is, in general, not related to the angular velocity of the plasma at the reversal surface. Clearly, the only
difference between the locked and unlocked branches of solutions is that the n = 1 modulation is forced to co-rotate
with the plasma at the reversal surface on the former branch of solutions, but is free to rotate at any angular velocity
on the latter branch. However, as will soon become apparent, when there are more than two unstable m = 1 tearing
modes resonant in the plasma core the distinction between the unlocked and locked branches of solutions becomes far
more significant.

F. Many unstable m = 1 tearing modes: N > 2
1. Basic equations

Suppose that all of the 1,n + j tearing modes are intrinsically unstable, where j = 0, N — 1, and N > 2. Equa-
tions (16)—(19) yield the coupled torque balance equations



Jj—1 N—2

wﬁf’lj — Wntj = Z My Totk + Loy j Togj + Z Mt Tor, (65)
k=0 k=j+1
for j =0,N — 2, plus
N-2
0
Qn+] .Qﬁb_{)_] Z Nn+] Tn+k5 + Z Mn+k Tn+k7 (66)
k=0 k=j

for j =0,N — 1.

2. Linear analysis

On the unlocked branch of solutions, where linear analysis remains valid, the coupled torque balance equations
reduce to

1 j—1 X X2 . N2 X
Ontj Z ntk,ntj A2 (f)n+k + ATZH_J- (:Jn_i_] + k;J Kn+jntk A2+k ‘rjn—{—k ’ ( )
for J = O,N - 2. Here,

My, wﬁf)

Kn,nt = —Lnl _(0)7 (68)
Mnl wgb)

Apmr = I o (69)
nl

Equations (67) can only be solved analytically for the &,1; when N < 42%. However, the numerical solution of these
equations is fairly straightforward. A locking bifurcation is indicated by the sudden disappearance of the physical
root of Egs. (67) as the mode amplitudes, xn+j, are gradually increased. If the 1,n + ! and 1,n 4+ + 1 modes are
locked (where [ lies in the range 0, N — 2), but the remaining modes are unlocked, then Eqs. (67) are modified by
allowing @, ; — 0 whilst x2 1/@n4i remains finite. In this manner, it is possible to obtain the equations governing
the further locking of any combination of locked and unlocked m = 1 modes.

3. Nonlinear analysis

Consider the fully locked state, in which the 1,n to 1,n + N — 1 modes are all locked together. It follows that
Wntj = 0, (70)

for j =0, N — 2. In steady-state, the Rutherford island equation, (A37), gives

N-2 A
Zj:O Xn+j COS APnyj

GOl —
_FO.1 )

(71)

where x, and Ay, are defined in Eqgs. (31) and (50), respectively. The above expression can be combined with the
torque balance equations (65) to give

N-2
1 k . .
1= Z Xn+j €08 Apnyj Z Antk,n+j Xnijl sin App1 + Xij_ljg sin Appj
=0 C” kEntk C"‘H n+j
k .
+ Z Rntjnth 7 anl sin At | (72)
k=j+1 nk Sndtk

10



for j =0, N — 2. Equations (72) can only be solved analytically for the Ay, ; when N < 3. However, the numerical
solution of these equations is fairly straightforward. An unlocking bifurcation is indicated by the sudden disappearance
of the physical root of Eqgs. (72) as the mode amplitudes, xn+;, are gradually decreased. If the 1,n + [ mode unlocks
(where [ lies in the range 1, N — 2), but the other modes remain locked, then Egs. (72) are modified by neglecting
the equations corresponding to j =1 — 1 and j = [, and letting X,4i-1, Xn+: — 0 in the remaining equations. If the
1,n mode unlocks, but the other modes remain locked, then Egs. (72) are modified by neglecting the first equation,
and letting x, — 0 in the remaining equations. Finally, if the 1,n + N — 1 mode unlocks, but the other modes
remain locked, then Eqs. (72) are modified by neglecting the last equation, and letting xp4+n—2 — 0 in the remaining
equations. In this manner, it is possible to obtain the equations governing the further unlocking of any combination
of locked and unlocked m = 1 modes.

Note that in the strongly locked limit, in which the mode amplitudes lie well above the unlocking threshold, Egs. (72)
yield

for j =0,N — 2.

4. Mode structure

According to Egs. (65) and (66), in the fully locked state the angular velocities of the plasma at the various coupled
m = 1 rational surfaces are given by

(n+7) Pnyj = wo + j 124, (74)
for j =0, N — 1. Here,
N-2
Wo="n Qg)) + Z Mpy;j (Mﬁl)j,k wgii)-k ) (75)
J k=0
where
Mn+k for ] < k
My = Lnyj forj=k, (76)
Mn+j forj >k

for j, k in the range 0 to N — 2. Again, it is clear that locking is, in general, associated with a slight redistribution of

the plasma toroidal angular momentum interior to the reversal surface (since wT(LOJZ i~ QSJZ g and Ly ~n M)
The radial magnetic perturbation associated with the fully locked state is characterized by

N-1
Y(r,0,6,8) = D Ansge 90 fel(ImnoterTHeon), (77)
=0

where use has been made of Eqgs. (70), (73) and (74). Here, it is assumed that the mode amplitudes lie well above the
unlocking threshold. The A,, and ¢, are defined in Egs. (61) and (63), respectively. Furthermore,

j—1
Anyj(r) = lH sgn(Poy) | @1 YL (), (78)
k=0
for j =1, N — 1. It follows that
N_1 1/2
[0(r, 0,6, 6)] =< > Anyj Angr cos[(F—k)ou] 3 (79)
J,k=0

Note that the amplitude of the perturbed radial magnetic field possesses a toroidal modulation which co-rotates with
the plasma at the reversal surface [see Eq. (63)]. Within this relatively slowly rotating envelope, the field exhibits

11



high-n, high frequency oscillations (assuming, again, that the plasma core rotates far more rapidly than the plasma
at the reversal surface). The N coupled m = 1 modes add coherently, so that

N—-1
[l =D Anyjl, (80)
7=0

at a single toroidal angle, specified by ¢, = 0, which also co-rotates with the plasma at the reversal surface. In
general, if the modes are unlocked, or only partially locked, then they add incoherently throughout the plasma, so
that

] ~ (81)

Thus, the peak mode amplitude in the fully locked state is roughly v/N times that in the unlocked state.
The structure of the slowly rotating envelope which characterizes the fully locked state can be elucidated by making
the simplifying assumption that A,4; = A, for j =0, N — 1. In this case,

1 —cos Ny,
= A ‘/7_ 2
|¢(T>07¢7t)| n 1= cos o, (8)

As illustrated in Fig. 2, there is a single primary maximum, located at . = 0, at which |[¢)| = N A,,. There are N —1
minima, located at . = j2r/N, for j = 1, N — 1, at which |¢)| = 0. Finally, there are N — 2 secondary maxima,
located at ¢, ~ (2§ —1)w/N, for j = 2, N — 1, at which |¢| ~ A,,. The angular width of the primary maximum is
4r/N.

It is clear that in situations where there are many unstable m = 1 tearing modes, resonant in the plasma core, mode
locking gives rise to the formation of a toroidally localized, coherent, interference pattern in the perturbed magnetic
field, which co-rotates with the plasma at the reversal surface. The toroidal angular width of this interference pattern
is determined solely by the number of locked m = 1 modes. The interference pattern forms a relatively slowly
rotating envelope within which the magnetic field exhibits high-n, high frequency oscillations (assuming, as seems
reasonable, that the plasma core rotates far more rapidly than the plasma at the reversal surface). The nature of these
high frequency oscillations is determined by the core plasma rotation, as well as the toroidal mode numbers of the
constituent m = 1 tearing modes. Note, in particular, that the occurrence of a slowly rotating magnetic interference
pattern does not necessarily imply that the plasma core is slowly rotating.

The magnetic interference pattern described above is identified with the so-called “slinky mode,” which has been
observed both experimentally  ® and in numerical simulations 1213

G. Effect of enhanced core viscosity
1. Introduction

In the above analysis, it is tacitly assumed that the (anomalous) perpendicular viscosity in the plasma core is not
dramatically different to that in the vicinity of the reversal surface. In reality, the dominant contribution to the radial
momentum transport in an RFP comes from parallel transport along stochastic magnetic field-lines generated by
the overlapping m = 1 magnetic island chains in the plasma core25:2%. However, the magnetic field is not generally
expected to be stochastic in the outer regions of the plasma (except during so-called “sawtooth” relaxation events) 6.
Hence, it is probable that the viscosity in the plasma core is significantly enhanced, due to the presence of the saturated
m = 1 tearing modes, with respect to that at the reversal surface. In order to more fully understand the effect of such
an enhancement on the formation of the slinky mode, this section considers an eztreme case in which the viscosity in
the plasma core is taken to be infinite. To be more exact, u(r) is assumed to be infinite in the region r < r., where
peN—1 < Te < r«. Of course, the viscosity is assumed to be finite in the region r. < r < a. As before, the N unstable
m = 1 tearing modes have toroidal mode numbers in the range n ton + N — 1.

Since the viscosity in the plasma core is effectively infinite, it is only sensible to assume that in the unperturbed
state the plasma core rotates toroidally as a rigid body. It follows that

20}, = 2, (83)
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for j = 0, N — 1. Furthermore,

wig)_j =w®, (84)
for j =1, N — 2, where
w® =0, - N0, (85)
For the case of infinite core viscosity, Egs. (25)—(27) reduce to
Lptj=Mpyj =L, (86)
for j =0,N — 2, and
Nnyj = Le, (87)
for j =1, N — 1, where
ch/r*&@ (88)
re HOT
Thus, Egs. (28) and (66) imply that
Ontj = n, (89)

for j = 1, N —1: i.e., the plasma core continues to rotate toroidally as a rigid body in the presence of nonlinear
electromagnetic torques. Furthermore,

Wn4j = Wn, (90)
for j =0, N — 2, where
Wn = 2y — 2. (91)

2. Linear analysis

In the presence of a strongly enhanced core viscosity, the N — 1 torque balance equations (67) become identical. It
follows that the unlocked branch of solutions is governed by a single torque balance equation of the form

1 N=2
Wn (1 —n) = 2 Xi-i-j (92)
442 4
7=0
where @, is defined in Eq. (41), and
1 [w% )]2 T TH
A2 = - 2 /L
Cc 2 TV c (93)
The core plasma rotation velocity, (2,,, is related to w,, via
2, = 2y — wy. (94)

According to Eq. (92), the unlocked branch of solutions ceases to exist for

N-—-2

> x2y = AL (95)

=0

When the left-hand side of the above expression exceeds the right-hand side, a bifurcation takes place in which the
1,n through 1,n + N — 1 core tearing modes simultaneously lock together. Of course, w, = 0 in the locked state.
The great simplification of simultaneous, as opposed to piecemeal, locking occurs because the enhanced core viscosity
forces the m = 1 tearing modes resonant in the plasma core to rotate toroidally with the same phase velocity.

Note that the locking threshold, (95), only depends on the unenhanced plasma viscosity in the outer regions of the
plasma [through the parameter L.—see Eq. (88)].
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8. Nonlinear analysis

Consider the locked branch of solutions, on which w,, = 0. In the presence of strongly enhanced core viscosity, the
N — 1 torque balance equations (72) yield

A‘Pn-i-j = Apnp, (96)

for j =0, N — 2. Tt follows that the locked branch of solutions is governed by a single torque balance equation of the
form

2

N-2
8(n Ac2 = Z Xn+j sin 2A¢p, (97)
=0

where (, is defined in Eq. (42).
According to Eq. (97), the locked branch of solutions ceases to exist for

2

N-2
> Xnii | <8 Al (98)
=0

When the right-hand side of the above expression exceeds the left-hand side, a bifurcation takes place in which the
1,n through 1,n + N — 1 core tearing modes simultaneously unlock. As usual, there is strong hysteresis in the
locking /unlocking process, since the locking threshold, (95), is much less than the unlocking threshold, (98), when
both are expressed in terms of the typical amplitude of a saturated m = 1 tearing mode in the plasma core.

Note that the unlocking threshold, (98), also only depends on the unenhanced plasma viscosity in the outer regions
of the plasma [through the parameter L.—see Eq. (88)].

In the strongly locked limit, in which the left-hand side of Eq. (98) greatly exceeds the right-hand side, the torque
balance equation (97) yields

App ~ 0. (99)

4. Mode structure

On the locked branch of solutions, where w,, = 0, Eq. (94) gives
On =0 : (100)

i.e., after locking, the whole plasma core co-rotates with the plasma at the reversal surface. Clearly, in marked
contrast to the cases discussed previously, mode locking in the presence of enhanced core viscosity is associated with
a significant reduction in the toroidal angular momentum of the plasma interior to the reversal surface (assuming that
the plasma core is initially rotating much faster than the outer regions of the plasma).

The radial magnetic perturbation associated with the N saturated m = 1 tearing modes in the plasma core is
specified by

N-1 . _
1,/1(7‘,0,(]5, t) — Z An+j(7') e—i (j ¢—<P(1)’n+]_j 2, t) el(a—nqﬁ—i-n 2, t)’ (101)
§=0

where the A4 ;(r) are defined in Egs. (61) and (78), and use has been made of Eq. (89). Note that on the unlocked
branch of solutions the modes do not, in general, add coherently, despite that fact that they rotate with the same
phase velocity, because the stationary phases, go(l]’”ﬂ , are randomly distributed. On the locked branch of solutions,
the above expression simplifies to

N-1
Anij(r)e i99e § ol 0mnorep™en @), (102)

P(r,0,9,t) =

Jj=0
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where @, (¢,t) is defined in Eq. (63), and use has been made of Egs. (99) and (100). Here, it is assumed that the
1,n through 1,n + N — 1 tearing modes are strongly locked. By analogy with the discussion in Sect. I F, it is clear
that the correlation in the stationary phases of the m = 1 tearing modes associated with locking [see Eq. (99)] gives
rise to the development of a toroidally localized, coherent, interference pattern in the perturbed magnetic field, which
co-rotates with the plasma at the reversal surface. As before, the toroidal angular width of this pattern, which is
approximately 47 /N, is determined solely by the number of locked m = 1 modes. However, unlike the previous case,
there are no high frequency, high-n oscillations contained within the interference pattern, since the constituent m =1
modes all rotate toroidally with the same phase velocity as the pattern itself. Of course, this toroidally localized
interference pattern is again identified with the “slinky mode.” Note that, in the presence of enhanced core viscosity,
the observation of a slowly rotating slinky mode does necessarily imply that the plasma core is slowly rotating.

5. Discussion

The above analysis demonstrates that enhanced core viscosity significantly modifies the locking process by forcing
the saturated m = 1 tearing modes in the plasma core to always rotate with identical phase velocities. This, in
turn, forces the plasma core to co-rotate with the plasma at the reversal surface after locking has occurred. Thus, in
general, there is a significant reduction in the core toroidal rotation after locking. On the other hand, in the absence
of enhanced core viscosity, the locking bifurcation is only associated with a slight redistribution in the plasma toroidal
angular momentum interior to the reversal surface. In this case, there is no significant reduction in the core rotation
after locking. The core viscosity also affects the nature of the slinky mode. In the absence of enhanced core viscosity,
the slinky mode forms a toroidally localized, slowly rotating envelope within which high frequency, high-n oscillations,
controlled by the core plasma rotation, take place. However, there are no such oscillations in the presence of enhanced
core viscosity.

A careful examination of Eqs. (25)—(27), (74), and (75) demonstrates that the core viscosity can only be regarded
as being enhanced provided that

fn > 1 e, (103)

where pu,, is the typical core viscosity, p. is the typical viscosity at the reversal surface, and n is the typical toroidal
mode number of a saturated m = 1 tearing mode. Conversely, the core viscosity cannot be regarded as being enhanced
whenever

P K N . (104)

As an added complication, since the core viscosity is largely generated by magnetic stochasticity associated with
the saturated m = 1 tearing modes in the plasma core, the level of enhancement is almost certainly a strongly
increasing function of the amplitudes of these modes. Thus, the enhancement level may change systematically during
a “sawtooth” relaxation cycle. It may also differ significantly from machine to machine, and also between different
modes of operation on the same machine.

Incidentally, in the presence of enhanced core viscosity it is not necessary to invoke strong poloidal flow damping
to justify the neglect of the poloidal torques. Since these torques are only capable of modifying the plasma rotation
interior to the core (i.e., for r < rn,4n_1), they are naturally rendered ineffective by enhanced core viscosity.

III. LOCKING OF THE SLINKY MODE
A. Introduction

Consider the locking of the slinky mode to a static error-field, a process by which the mode rotation is arrested in
the laboratory frame. Since the rotation of the slinky mode is entirely determined by the plasma rotation velocity
at the reversal surface (see Sect. II), it is natural to concentrate on the effect of a 0,1 error-field, which is resonant
at this surface. There are two possibilities. Either the error-field arrests the rotation of the plasma at the reversal
surface before the formation of the slinky mode, so that the mode subsequently forms as a locked (i.e., non-rotating)
mode, or the slinky mode forms as a rotating mode which subsequently locks to the error-field. In the following, these
two possibilities are considered separately.
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B. Locking of the reversal surface to a static error-field
1. Basic equations

The dispersion relation for the 0,1 mode in the presence of a 0,1 error-field, but in the absence of a slinky mode,
takes the form [see Sect. B and Eq. (11)]

A (w,) PO = APS! = EOM g%t 4+ % (105)

Here, the complex quantity A%! is the layer response function for the 0,1 mode (see Sect. A 5), w, is the frequency
of the static error-field, as seen in a frame of reference which co-rotates with the plasma at the reversal surface, the
real quantity E®! (n.b., E%! < 0) is the tearing stability index for the 0,1 mode (see Sect. A 3), and the complex
quantity C%! specifies the amplitude and phase of the 0, 1 error-field at the reversal surface (see Sect. B). It follows
that

w, = 2, (106)

where (2, is the plasma toroidal angular velocity at the reversal surface.
The toroidal electromagnetic torque exerted at the reversal surface by the error-field is written [see Eq. (B6)]

2 Im{ Ot (@O-1)*
o0t = 2T Fo m{CO (@)} (107)
PPN T T A

Balancing this torque against the viscous restoring torque which develops at the reversal surface (calculated according
to the prescription of Sect. IT C), yields the torque balance equation

we — Y = L, Th(wy), (108)
where
a
L.= / po dr (109)
v BT

and T, = éTg’éM /(47? R py). Note that w!” is the value of w, in the unperturbed plasma. It follows that
w£0) — _(25‘0)’ (110)

where Qﬁo) is the value of the toroidal angular velocity of the plasma at the reversal surface in the unperturbed state.
The plasma angular velocity inside the reversal surface is simply given by

Qr <r) =020 <r) -0, (111)
Note that none of the nonlinear frequencies, wp4;, defined in Eq. (12), are affected by the modification to the plasma

toroidal rotation profile induced by a 0,1 error-field.

2. Linear analysis

It follows from Egs. (105) and (107) that

- 17y 201ve  Im[A%(w,)]
== V(oo , 112
T 213 (™) |A0L(w,) — EOL|2 (112)
where 7 and 7y are defined in Egs. (29) and (30), respectively, and
~0,1 _ [
cY = —rf e (113)

Here, F] is defined in Eq. (34).
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Using the explicit form (37) for the layer response function, the torque balance equation (108) can be written

1 (60,1)2 D

where use has been made of Eq. (112), and

N W

Wy = @7 (115)
_EO,l

“ e
1 [(.c),(f))]2 Te T

A2=_-—221 82 /1. (117)
2 TV

Here, 7, is defined in Eq. (38).

Equation (114) is, of course, the standard induction motor equation [see Eq. (40)]. In the physically relevant
limit (. < 1, there are two branches of solutions (see the discussion in Sect. IIE). On the unlocked branch, there
is substantial plasma rotation at the reversal surface, which effectively suppresses any error-field driven magnetic
reconnection, whereas on the locked branch the plasma rotation at the reversal surface is arrested, and a non-rotating,
error-field driven, magnetic island chain forms. The unlocked branch of solutions ceases to exist for

Cot > A,. (118)

A locking bifurcation (i.e., a bifurcation from the unlocked to the locked branches) takes place when the error-field
amplitude (i.e., C%!) exceeds the critical value given above. Likewise, the locked branch of solutions ceases to exist
for

CO < (8¢,)Y2 A,. (119)

An unlocking bifurcation (i.e., a bifurcation from the locked to the unlocked branches) takes place when the error-field
amplitude falls below the critical value given above. As always, there is considerable hysteresis in the locking process,
since the critical error-field amplitude for locking [given in Eq. (118)] is much greater than that for unlocking [given
in Eq. (119)].

8. Nonlinear analysis

On the locked branch of solutions, the no slip constraint (see the discussion in Sect. IIE) demands that
wy = 0. (120)

In other words, the plasma rotation at the reversal surface is completely arrested after locking.
According to Eq. (B27), C%! can be written

OOl — o1 ng},, (121)
where ¢%! is a real positive parameter, specified by Eq. (B28), and Wg;i, is a complex parameter which determines the

amplitude and phase of the 0,1 error-field leaking through the gaps in the conducting shell. Let
@O — GO ivl, (122)

70,1 — | 70,1 0,1 — 0,1
where Vguo = [0 |, and gy, = arg(Py; ).

On the locked branch of solutions, the 0,1 reconnected flux driven by the error-field at the reversal surface is
determined by the Rutherford island equation, (A37), which yields

4ITR

d(V ot Ayt ot
% = Re(w) =E% 4 Fox ¢ Agp., (123)
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where I = 0.8227, #%! = %! /r2 F! and 75 is defined in Eq. (39). Here,

A‘P* = @8’1 - ‘pg’alpa (124)

and use has been made of Egs. (3), (4), (106), and (120)—(122).
The torque balance equation, (108), reduces to

L, 0.1 5 .
w,(ﬂo) = — T—‘; COt @01 sin Agp,, (125)
2 14
on the locked branch of solutions.
In steady-state, Eqs. (123) and (125) yield
8¢ A2 = (C™1)? sin2A¢,. (126)

Note that the locked branch of solutions ceases to exist for
co' < 8 C*)1/2 Ay (127)

When the error-field amplitude, C°!, falls below this critical value an unlocking bifurcation takes place.

The unlocking threshold, (127), predicted by nonlinear theory is the same as the threshold, (119), predicted by
linear theory. However, as discussed in Sect. I E, this is somewhat fortuitous. In general, the correct unlocking
threshold is that predicted by nonlinear theory. On the other hand, the locking threshold, (118), predicted by linear
theory is generally correct.

In the strongly locked limit, in which the error-field amplitude lies well above the unlocking threshold, Eq. (126)
yields

Ap, ~ 0. (128)

C. Formation of a locked slinky mode
1. Basic equations

Consider the formation of a slinky mode when the reversal surface is strongly locked to a static error-field (i.e.,
when w, = Ap, = 0). The presence of an error-field driven, locked magnetic island chain at the reversal surface
precludes the use of linear response theory. However, the Rutherford island equation yields

dV/ o1 =2 ~ -
417R ol E%! 4 Z Xntj €08(wpyjt) + CO! o1, (129)
Jj=0
Furthermore, the nonlinear electromagnetic torques exerted inside the plasma can be written
~ 17 ~ .
Toti = 5 75 Xty U0 sin(@n; ), (130)
Ta
for j = 0, N — 2, where use has been made of Egs. (8) and (9).
2. Slinky mode formation
Let
20175y _ 30,1 | 50,1
o (t) = W(o) + W(l) (1), (131)
where
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0,1 ’
By = (132)
and
T < Ty - (133)
It follows from Eq. (129) that
70, 1 N-2
We mr ¥
TC ; Xn+j €08(Wn+j t), (134)
* j=0

where

— C"vo,l
0,1 _ A /

is the width of the error-field driven island chain at the reversal surface.
Equation (134) yields

N-2 .
70,1 2 Zj:o Xn+j Sln(wn+j t)

¥y~ 136
@ I (WC/T*) TR Wn+j ( )
Thus,
I 1 v 2 Yo Xntk Sin(@nixt) |
Tn+j 2 XTH-] W(O) + Ji (Wc/’l‘*) TR Wntk sm(wn_;,_j t) (137)

Note that the nonlinear electromagnetic torques Tn+j oscillate in time. In this paper, however, it is assumed that
the plasma is sufficiently viscous that it only responds to the steady components of these torques, which is equivalent
to the assumption that the plasma continues to rotate uniformly in the presence of the oscillating nonlinear torques
(i.e., the frequencies wp; remain constant in time). This approximation, which is discussed in more detail in Refs. 9

and 11, is justified provided that
Vol > 1, (138)

for j =0, N — 2, as is likely to be the case in all conventional RFP plasmas.
According to the above discussion, the nonlinear torque T3, ; can effectively be replaced by its time-averaged value:
i.e.,

171y Xn—i—j

Toii = (Tntj) = = — : 139
n+j ( TH‘J) 2 Té I(WC/T*) TR Wntj ( )
Now, from linear response theory, the nonlinear torques on the unlocked branch of solutions can be written
~ 1Ty Xaej
T, .=_-2 _2nt) 140
n+j 2 7_13 T Wnt g ’ ( )
where
s
= — TR- 141
. - TR (141)
Here, use has been made of Egs. (28), (37), and (38). Furthermore,
L 1/3
0, = 2.104 W (142)
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is the linear layer width at the reversal surface [see Eq. (A40)]. It is clear, from a comparison of Egs. (139) and (140),
that the only difference between linear and nonlinear response theory, at the reversal surface, is that the linear layer
width 4, is replaced by the modified island width I W in the latter case.

The above insight allows Eqs. (67), which govern the formation of the slinky mode, to be generalized in a fairly
straightforward manner to give

1 j—1 X X2 ) N-2 X2
1—ongj=— Akt g — Fntjntk —5—— |, (143)
n+j 4!]* kzo n n+j A2+k Onk A2+j Ontj ;1 n-+j,n Az—f-k Wntk
for j =0, N — 2. Here,
1 for 6. > I W¢
= . 144
g {IWC/J* for 6, < I We (144)

Note that, in general, the formation of the slinky mode is somewhat inhibited when the reversal surface is locked
to a static error-field (i.e., the mode amplitudes x,; must be made slightly larger in order to trigger slinky mode
formation).

For the special case of enhanced core viscosity, the slinky formation criterion (95) generalizes to

Z Xn2+j > 9« Ac2 (145)

8. Slinky mode breakup

Equations (72), which govern the breakup of the slinky mode, generalize in a fairly obvious manner when the
reversal surface is strongly locked to a static error-field to give

N-2
1 . .
1= Z Xntj €08 Ay + OOt Z Antk,ntj Xijl sin App4k + Xijljz sin Apnyj
=0 Cn+k n+k Cn-l—] n+j
+ Z Bndjnmdk = 45 sin A‘pn—i—k ; (146)
— Cn k An+k
=j+1
for j =0, N — 2.
For the special case of enhanced core viscosity, the above expression reduces to
N-2 3 N-2
4¢n Ac2 = z Xn+j | €os Apy + co! Z Xn+j | sin Apy. (147)
j=0 7=0
As is easily demonstrated, the criterion for the breakup of the slinky mode is written
2
Z Xn+j < 8 Cn A02 (148)

in the limit %! « Z 0 Xn+j, Which is the same as the breakup criterion found previously [see Eq. (98)]. However,
in the limit C%' >> E] o Xn+; the breakup criterion becomes

N—-2
D Xnii | <4 AL (149)

Jj=0

Note that, in general, the breakup of the slinky mode is somewhat inhibited when the reversal surface is locked to
a static error-field (i.e., the mode amplitudes xn4; must be made slightly smaller in order to trigger slinky mode
breakup).
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D. Locking of a slinky mode to a static error-field
1. Basic equations

Consider the interaction of a rotating slinky mode whose constituent m = 1 modes are strongly locked together
(i.e., wnyj = Apnt; = 0, for j = 0, N — 2) with a static 0,1 error-field which is not sufficiently strong to arrest
the plasma rotation at the reversal surface in the absence of a slinky mode. It follows that w,. # 0 (initially). The
presence of a nonlinearly driven, rotating magnetic island chain at the reversal surface precludes the use of linear
response theory. However, the Rutherford island equation yields

dV/ w01 = . -
4I71g b E% 4 Z Xn+j + C%' cos(w t) goL, (150)
=0
Furthermore, the toroidal electromagnetic torque exerted at the reversal surface is written
. 1 .
T, = —= 2V EOLF0! sin(w, t). (151)
2 14

The frequency w,, which parameterizes the plasma rotation at the reversal surface, is determined by the torque
balance equation, (108).

2. Mode locking

Let
TOL(t) = Ty + P (B), (152)
where
N-—-2
By = Lj%ff”, (153)
and
3 < Ty (154)

It follows from Eq. (150) that

2 ~ C% cos(wy t), (155)
where
N—2
=01 Z‘:o Xn+j
WX =4 W(O) Ty = 4 J—T T x (156)
is the width of the nonlinearly driven island chain at the reversal surface.
Equation (155) yields
- 2C%! sin(w, t)
gol~ 22 T 157
M = [ (W, /re) TR ws (157)
Thus,
- 17v ~01 | 201 201 sin(w, t) _
T.=—-—=C" ¥ « 1) 1
272 C © t TW /) T omis sin(wy t) (158)
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Note that the locking torque T’ oscillates in time. As before, it is assumed that the plasma is sufficiently viscous
that it only responds to the steady component of this torque. This approximation is justified provided that!!

Vol > 1, (159)

as is likely to be the case in all conventional RFP plasmas.
According to the above discussion, the locking torque T can effectively be replaced by its time-averaged value: i.e.,

1y  (CO1)2

Te > (T =—% — = 1
= (L) 2 72 IT(Wy/ry) TR ws (160)
Hence, the torque balance equation (108) reduces to

) L (00,1)2

O (1 —@4) = T2 (WL /o))" (161)

It is easily seen, from the above expression, that the unlocked branch of solutions ceases to exist for

C%t > \/TW, /6, A.. (162)

When the error-field amplitude (i.e., C%') exceeds the critical value given above a locking bifurcation (i.e., a bifur-
cation from the unlocked to the locked branch of solutions) takes place. Of course, on the locked branch of solutions
both the plasma rotation at the reversal surface and the rotation of the slinky mode are arrested.

Note that the locking criterion given in Eq. (162) is similar to that that found previously in Eq. (118), except that
the linear layer width J, is replaced by the modified island width I W, in the former case. The generalized locking
criterion, which accounts for the locking of the reversal surface by a 0,1 error-field both in the absence and in the
presence of a rotating slinky mode, is written

O™ 2 VoA, (163)
where
1 for 6, > IW,
= { IWy [0 for 6. <IW, ° (164)

Note that, in general, the locking of the reversal surface is somewhat inhibited in the presence of a rotating slinky
mode (i.e., the error-field amplitude C%! must be made slightly larger in order to trigger locking).

8. Mode unlocking

On the locked branch of solutions, where w, = 0, the Rutherford island equation reduces to

AVAAIE

dt

N-2
417R = E% + Z Xntj + C®' cos Ap, /@0’1. (165)
=0

Furthermore, the torque balance equation takes the form given in Eq. (125). In steady-state, these equations yield
N—2 3 }
4G A= | D Xntj + C¥' cos Ap. | C¥' sin Ag,. (166)
=0

As is easily demonstrated, the criterion for the unlocking of the slinky mode is written
(C¥)? <8¢, A (167)
in the limit Z;V;(f Xntj < C%', which is the same as the criterion found previously [see Eq. (127)]. However, in the
limit E;V:Bz Xntj > C%! the unlocking criterion becomes

N—-2
COM D xnas | <46 AL (168)

Jj=0

Note that, in general, the unlocking of the reversal surface is somewhat inhibited in the presence of a locked slinky
mode (i.e., the error-field amplitude C%! must be made slightly smaller in order to trigger unlocking).
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E. The toroidal locking angle

Consider a slinky mode whose constituent m = 1 modes are strongly locked together (i.e., wpi; = Appy; =0, for
j = 0,N — 2). Suppose that the mode is, in turn, strongly locked to a 0,1 error-field (i.e., w. = 2 = A, = 0).
Recall, from Sect. ITF, that the magnetic perturbation associated with a slinky mode is strongly peaked at the toroidal
angle

Plock = @ (169)

obtained from setting (. to zero—see Eq. (63). However, it follows from Eq. (124) that
Plock = Pap> (170)

since Ap, = 0 for a strongly locked mode, where ¢9;} is defined in Eq. (122).

The dominant error-field source in an RFP is usually a 1,0 field arising from the mismatch between the “vertical”
magnetic fields interior and exterior to the shell. Of course, the plasma experiences this field filtered through the gaps
in the shell. Suppose that the mismatched “vertical” field is of magnitude B,, and is directed towards poloidal angle
6,. In this paper, # = 0 corresponds to the inboard mid-plane. Thus, 6, = £7/2 corresponds to a true vertical field,
whereas 0, = 0, w corresponds to a horizontal field.

Suppose, for example, that the flux conserving shell contains two vacuum gaps: a poloidal gap, extending from
O =¢g— AP/2 t0 ¢ = ¢4+ A¢p/2, and a toroidal gap, extending from 6 = 0, — A/2 to § = §, + AB/2. The gaps are
both assumed to be thin: i.e., Ag, A§ K 7. It follows from Egs. (122), (170), and (B31) that

Plock = (10223,11) = ¢g + (69 - ev)a (171)

in this case. Thus, the slinky mode only locks to the poloidal gap (i.e., ¢ioak = ¢4) When the “vertical” error-field
points towards the toroidal gap (i.e., when 6, = 6,) . If there is a mismatch between the direction of the “vertical”
error-field and the poloidal location of the toroidal gap then there is a corresponding mismatch between the locking
angle of the slinky mode and the toroidal location of the poloidal gap.

F. Locked mode alleviation

Slinky modes are generally associated with a significant increase in the plasma radial heat transport. Naturally,
this confinement degradation tends to be strongly peaked at the toroidal localization angle of the perturbed magnetic
field. Thus, a slinky mode gives rise to a toroidally localized anomalous heat flux out of the plasma, whose toroidal
position co-rotates with the mode. This heat flux is not generally problematic, as long as the slinky mode remains
rotating, since the heat load is spread over a relatively large area of the plasma facing surface. However, if the mode
locks to an error-field, and, thereby, ceases to rotate, the heat load becomes concentrated on a relatively small area,
which, almost invariably, leads to overheating, the influx of impurities into the plasma, and the premature termination
of the discharge®.

There are two obvious methods by which the problems associated with a locked slinky mode can be alleviated. The
first method is to cancel out the error-field which is responsible for the locking, using a second, deliberately created,
static error-field, thereby allowing the slinky mode to unlock, and, hence, rotate (rapidly). The second method is to
(slowly) rotate the locking position of the slinky mode using a deliberately created, rotating error-field 2. These two
approaches are considered separately below.

The accidentally produced error-field which is responsible for locking the slinky mode is assumed to be a 1,0
“vertical” field of the type discussed in Sect. IIT E. Suppose that the second, deliberately produced error-field, which
is used to alleviate the locking problems, is a 0,1 perturbation. This is a natural choice, since it is the 0,1 component
of the error-field which is responsible for the locking problems in the first place. In vacuum, the radial component of
the second “control” field, at the shell radius b, is assumed to attain its maximum amplitude B, at toroidal angle ¢..
Of course, the plasma experiences both error-fields filtered through the gaps in the conducting shell. It follows from
Sect. B6 that

Wgoé%; =bf [Bvei¢lock + Bcei¢°] , (172)
where f is the area fraction of gaps in the conducting shell. According to Eq. (121), the normalized amplitude of the
0,1 error-field at the reversal surface can be written
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]1/ : (173)

GOt = 1§ [31)2 + B2 + 2B, B. cos(¢. — drock)

where B, = bB, /r2 F! and B. = bB./r2F!. Here, B, and B, are dimensionless quantities parameterizing the
magnitudes of the “vertical” mismatch field and the control field, respectively, whereas c%! is a real positive constant
defined in Eq. (B28). The amplitude of the 0,1 error-field is most effectively minimized when the control field is in
anti-phase with the original locking phase of the slinky mode: i.e., when

¢c = ¢lock + . (174)

In this case,
%' =& f|B, — B.|. (175)

Note that C%' — 0 as B, — B,. If C%! is made sufficiently small then the slinky mode will either unlock, and start
to rotate, or breakup altogether, depending on which threshold is reached first. The unlocking threshold is specified
in Egs. (167) and (168), whereas the breakup threshold is determined by Eq. (146).

The thick conducting shell which surrounds a conventional RFP generally makes it difficult to control the plasma
vertical and horizontal positions. Consequently, the 1,0 “vertical” mismatch field at the gaps in the shell tends to
be relatively large, and also fluctuates in time. Thus, it may not be practical to cancel out the 0,1 component of
this field, which also fluctuates in time. An alternative, and more practical, locked mode alleviation scheme is to use
a rotating 0,1 error-field to sweep the locking angle of the slinky mode, thereby reducing the heat load associated
with this mode on the plasma facing surface. This approach has already been successfully implemented on the RFX
device 1. Suppose that the control field rotates uniformly at some relatively low frequency w.: i.e.,

$e = wet. (176)

It follows from Egs. (122), (170), and (172) that the deviation of the slinky mode locking angle from its unperturbed
value satisfies

(B./By) sinw,t

tan A = .
Al SPlock 1+ (B./B,) cosw,t

(177)

For B, < B,, the locking angle oscillates about its unperturbed value. The amplitude of the oscillation is given by
(Apiock)max = sin™!(B./By). (178)

However, for B, > B, the locking angle executes complete toroidal rotations around the device with angular frequency
We.

IV. SUMMARY AND CONCLUSIONS

Section II of this paper examines the formation of the slinky mode via the nonlinear coupling of multiple m =1
tearing modes resonant in the plasma core. This coupling is mediated by the nonlinearly driven 0,1 mode, resonant
at the reversal surface. The slinky mode forms as a result of a locking bifurcation which is similar to the bifurcation
by which toroidally coupled tearing modes lock together in a tokamak 9. Likewise, the slinky mode breaks up as the
result of an unlocking bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak
unlock. There is considerable hysteresis in the formation and breakup processes, since the locking threshold [which is
obtained from Eq. (67)] is much smaller than the unlocking threshold [which is obtained from Eq. (72)], when both
are expressed in terms of the typical amplitude of an m = 1 tearing mode in the plasma core.

In general, the locking bifurcation by which a slinky mode forms is associated with a slight redistribution of the
plasma toroidal angular momentum in the plasma core. This redistribution modifies the rotation frequencies of the
core tearing modes such that they add coherently at one particular toroidal angle [see Sect. IIF 4]. This angle [which
is specified by p. = 0—see Eq. (63)] rotates toroidally with the angular velocity of the plasma at the reversal surface.
Thus, the slinky mode takes the form of a toroidally localized, coherent interference pattern in the magnetic field
which co-rotates with the plasma at the reversal surface. The toroidal angular width of this pattern is determined
solely by the number of locked m = 1 modes. The larger the number of modes, the narrow the width of the pattern. In
general, the slinky mode constitutes a relatively slowly rotating envelope within which magnetic field exhibits high-n,
high frequency oscillations (assuming, as seems reasonable, that the plasma core rotates far more rapidly than the
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plasma at the reversal surface). The nature of these high frequency oscillations is determined by the core plasma
rotation rate, as well as the toroidal mode numbers of the m = 1 modes which make up the slinky pattern. Note that,
in general, the occurrence of a slowly rotating slinky mode does not necessarily imply that the plasma core is slowly
rotating.

Section IIG examines the effect of an enhanced (perpendicular) plasma viscosity in the plasma core, relative to
that at the plasma edge, on the formation and breakup of the slinky mode. Such an enhancement is likely to develop
naturally in an RFP due to the stochasticity of the core magnetic field which is generated by overlapping m = 1 tearing
modes. An enhanced core viscosity significantly modifies the slinky formation process by forcing the saturated m =1
tearing modes in the plasma core to always rotate with identical phase velocities. This, in turn, requires the plasma
core to co-rotate with the plasma at the reversal surface after the formation of the slinky mode. It follows that, in
the presence of enhanced core viscosity, the formation of the slinky mode is associated with a significant reduction in
the core plasma rotation. Enhanced core viscosity greatly simplifies the locking and unlocking bifurcations by which
the slinky mode forms and breaks up, respectively, since it forces all of the m = 1 tearing modes in the plasma core
to lock and unlock simultaneously. In the absence of enhanced core viscosity, the slinky mode generally forms and
breaks up in a piecemeal manner. Consequently, in the presence of enhanced core viscosity, the slinky formation and
breakup thresholds take the particularly simple forms (95) and (98), respectively. An enhanced core viscosity also
modifies the structure of the slinky mode by suppressing the high-n, high frequency oscillations described previously.
The criterion which must be satisfied before the core plasma viscosity can be regarded as being enhanced is given in
Eq. (103).

Section IIT of this paper examines the interaction of a slinky mode with a static error-field. This interaction is
mediated by the 0,1 component of the field, which is resonant at the reversal surface. Either the error-field arrests
the rotation of the plasma at the reversal surface before the formation of the slinky mode (see Sect. III B), so that
the mode subsequently forms as a non-rotating mode (see Sect. III C), or the slinky mode forms as a rotating mode
and subsequently locks to the error-field (see Sect. IIID). In all cases, the locking and unlocking bifurcations are
similar to those by which a tearing mode locks to and unlocks from an error-field in a tokamak !'. As always, there
is considerable hysteresis in the locking/unlocking process, since the locking thresholds [given in Eq. (163)] are much
smaller than the corresponding unlocking thresholds [given in Egs. (167) and (168)]. Furthermore, as described in
Sect. III C, the criteria for the formation and breakup of the slinky mode are slightly modified when the reversal
surface is locked to an error-field.

The dominant error-field source in an RFP is usually a 1,0 field arising from the mismatch between the “vertical”
magnetic fields interior and exterior to the conducting shell. Of course, the plasma experiences this field filtered
through the gaps in the shell. In Sect. III E, it is demonstrated that if the shell contains a single poloidal gap and a
single toroidal gap then the slinky mode only locks to the poloidal gap when the “vertical” error-field points towards
the toroidal gap. If there is a mismatch between the direction of the “vertical” error-field and the poloidal location of
the toroidal gap then there is a corresponding mismatch between the locking angle of the slinky mode and the toroidal
location of the poloidal gap. This calculation can generalized to take account of more complicated gap arrangements
in a fairly straightforward manner.

Finally, Sect. IITF discusses two methods for alleviating the problems associated with a locked slinky mode. The
first, and most obvious, method is to cancel out the accidentally produced error-field responsible for locking the slinky
mode using a deliberately generated “control” error-field. It is assumed that the control field is a 0,1 perturbation
(in the absence of the plasma and the conducting shell). It is found that the amplitude of the locking field is most
effectively minimized when the control field is in anti-phase with the locking phase of the slinky mode. If the amplitude
of the control field is adjusted such that the locking field is made sufficiently small then a bifurcation is triggered
by which the slinky mode either unlocks, and starts to rotate, or breaks up altogether. The unlocking threshold
is specified in Egs. (167) and (168), whereas the breakup threshold is determined by Eq. (146). The second, and
more practical, method is to sweep the locking angle of the slinky mode toroidally using a rotating control field. It
is demonstrated that if the amplitude of the control field is too low then the locking angle merely oscillates about
its unperturbed value. However, above a certain critical value of this amplitude the locking angle executes complete
toroidal rotations around the device at the angular oscillation frequency of the control field.

In the future, it is hoped to use the analysis presented in this paper to investigate slinky mode formation and
locking in the Madison Symmetric Torus (MST)” and RFX?, in order to explain the significantly different results
obtained on these two devices, and also to examine various possible locked mode alleviation methods. It is also hoped
to generalize the analysis to take finite plasma pressure and the finite resistivity of the shell into account.
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APPENDIX A: NONLINEAR COUPLING

1. The plasma equilibrium

Consider a large aspect-ratio 1%, zero-32°, RFP plasma equilibrium whose unperturbed magnetic flux-surfaces map
out (almost) concentric circles in the poloidal plane. Such an equilibrium is well approximated as a periodic cylinder.
Suppose that the minor radius of the plasma is a. Standard cylindrical polar coordinates (r,8, z) are adopted. The
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system is assumed to be periodic in the z-direction, with periodicity length 27 Ry, where Ry is the simulated major
radius of the plasma. It is convenient to define a simulated toroidal angle ¢ = z/Ry.
The equilibrium magnetic field is written

B = [0, By(r), By(r)] - (A1)
The associated equilibrium plasma current takes the form
Ho J = [07 _B{;ba (TBH)I/T] ) (AZ)

where ' denotes d/dr. In an RFP |By/By| ~ 0(1) 2.

The model RFP equilibrium used in this paper is the well-known oy model 28

, according to which
V AB=o0(r)B, (A3)

where

- (22)0-G)) o

Here, both @ and @ are positive constants. Note that ¢ = constant (i.e., & — 0o) corresponds to a Taylor state®2°.

In theory, an RFP equilibrium should relax to a Taylor state. In practice, relaxation occurs everywhere in the plasma
apart from close to the edge, where the plasma is sufficiently cold and resistive that the strong equilibrium currents
associated with a Taylor state cannot be maintained. Hence, « is finite. In general, @ is such that there is a reversal
surface, where By goes through zero, situated close to the plasma boundary.

2. The linear eigenmode equation

The linearized, marginally stable, ideal-MHD force balance equation takes the form
G-V)B+ (J-V)b— (b-V)J — (B-V)j =0, (A5)

where b and 7 are the perturbed magnetic field and plasma current, respectively.
A general perturbed quantity can be written

alr,t) = 3 am(r,t)e (M09, (A6)

m,n
where m,n are integers. It is convenient to define

Y™ (r,t) = —ir bV (r, t). (A7)
It follows that

m(¢m,n)l neo.¢m,n

bm,n - _ A8
0 m2 +n2e2  m2 + n2e?’ (A8)
mn _ ME@™M) moy™n
b = - =, A9
[ m2 + n2e2 m2 + n2e2 ( )
and
iro' bmn
"t =™+ ——T _ B. A10
Hod g + mBg — Nne B¢ ( )
Here,
r
= —. All
o) =1 (ALD)

In a large aspect-ratio RFP, e < 1 and m ~ ne ~ O(1) *°.

Equation (A5) reduces to the well-known eigenmode equation 3!
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d dwm,n
el m,n — gmn ,mn A12
dr [‘f dr ] 9y 0 ( )
where
m,n _ r
f (T‘) - m2 + n2e2’ (A13)
gmin(r)zl*_ r (ne Bg + m By) da+ 2mneo ro? (A14)

r ' (m?+n2e)(mBy —neBy) dr = (m?+n2e2)?  m?+n2e

In the limit  — 0, a regular solution to Eq. (A12) satisfies 9™" ~ rl™| for m # 0, and ¢™™ ~ r2 for the special
case m = 0.

Suppose that the plasma is surrounded by a vacuum gap, extending over the region a < r < b, which is bounded
by a perfectly conducting shell situated at r = b. It follows that o(r) = 0 for a < r < b, and

P (b) = 0. (A15)

3. Resonant modes

Let
F™™(r) = m By — ne By, (A16)
G™"(r) = ne Bg + m By, (A17)
H™"(r) = m? + n?é. (A18)
A resonant mode satisfies
Fmon(rmn) = 0 (A19)

for 0 < ri»™ < a. The flux-surface r = rJ»™ is known as the m,n mode rational surface.
Note that the eigenmode equation (A12) becomes singular at the m,n rational surface. The most general solution
in the immediate vicinity of this surface takes the form

P (@) =C " L+ A g (2| — 1) + -]+ Cg"" [z + -], (A20)
where
r—rn
— s A21
z T_gn,n ) ( )
Gm,n 7‘2 O_I
mn _ A22
)\ |: r (Fm,n)l :|r;"’" ( )

Here, C7"" and Cg"" are known as the coefficients of the large and small solutions, respectively.

In a zero-8 plasma it is possible to demonstrate that the coefficient of the large solution must be continuous across
a mode rational surface, whereas the coefficient of the small solution may be discontinuous '#-24. Thus, the m,n mode
can be characterized by two complex parameters:

gmn = o, (A23)
AT = (] (A24)

The m, n eigenfunction can be written
PN, 8) = PN () (), (A25)

where ¢™" is a real solution of Eq. (A12) which is regular at r = 0, satisfies the boundary condition (A15), and is
continuous at the rational surface. In addition,
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,(pm,n(rm,n) — 1 (A26)

Incidentally, the boundary condition (A15) is equivalent to

l#d«/} ; ] _ o, (A27)
pmon dr .

where

m? + n?e2 I, (ne,) K. (nep) — K (ne,) I, (nep)
neq, I, (ne,) Kl (ney) — K (neg) I (nep)

m,n __

(A28)

Here, €, = a/Ro, €, = b/Ro, and I,,, K,,, are modified Bessel functions. Note that I}, () = dI,,(z)/dz, etc.

In general, 1&’”*" possesses a gradient discontinuity at the rational surface. This discontinuity is conveniently
parameterized by

m,n

T L
g — [ il ] | (A29)

dr

m,n
85—

Note that E™" is a real number.

As is well-known, in a zero-3 plasma the m,n mode is resistively unstable whenever E™™ > 0, and is stable
otherwise 32. This type of instability is known as a tearing mode, since in its nonlinear phase it “tears” and reconnects
the equilibrium magnetic field 7. Likewise, E™" is known as the tearing stability index for the m,n mode, and
™" (r,t) is the associated tearing eigenfunction.

4. Non-resonant modes

A non-resonant mode (i.e., a mode possessing no rational surface inside the plasma) cannot be resistively unstable,
but may be ideally unstable. For such a mode, it is possible to define an ideal stability inder,

r dy™"
Ypmr o dr |7

EMm = g™ — [ (A30)

assuming that ¢¥™™ is regular at r = 0. It is easily demonstrated that the m,n mode is ideally unstable if E"" > 0,
and is stable otherwise 3!.
In this paper, it is assumed that all non-resonant modes are ideally stable. This is always the case provided that

the flux conserving shell is situated sufficiently close to the edge of the plasma 33.

5. Linear layer theory

Ideal-MHD breaks down in the immediate vicinity of the m,n mode rational surface. In this region, non-ideal
effects such as plasma inertia, resistivity, and viscosity become important. Suppose that

wm,n(t) — @m,n ol (M —w™™ t)’ (A31)

where @m*", ™" and w™™ are real constants. Of course, w™™ is the real frequency of the m,n mode. Asymptotic
matching between the thin layer, centred on the rational surface, where ideal-MHD breaks down, and the remainder
of the plasma, where ideal-MHD is valid, yields

AP — Am,n(wm,n) gmn (A32)

Here, the complex parameter A™™ is termed the layer response function.
In the so-called wvisco-resistive regime, the layer response function takes the form

m,n(, m,mny __ m,n (T}{n,”)l/S (Tlrin,n)S/G
AT (W™ ™) = 2104w (/e

e i7/2, (A33)
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where

o _ [ mop 1 (A34)
™H — (Fm,n)l 2 mon ’

m,n Ho r?
TR = n ) (A35)

re™
pr
o ( ’ ) B (A36)
Ts '

are the hydromagnetic, resistive, and viscous time-scales, respectively, evaluated at the m,n rational surface. Here,
p(r), n(r), and u(r) are the plasma mass density, (parallel) resistivity, and (perpendicular) viscosity, respectively. The
criteria for the validity of the visco-resistive regime are set out in detail in Ref. 11.

6. Nonlinear island theory

The nonlinear concomitant of the linear response regime discussed above is the well-known Rutherford regime!7.

A straightforward generalization of Rutherford’s analysis (which makes ordering assumptions which are appropriate
to tokamaks, but not to RFPs) yields the following island width evolution equation:

d (Wm.mn AgTn
I m;n &YV — A
() <o 2, o)
where I = 0.8227. Here,
/2
L
Wmn =4 ( (A38)
|(Fmm)! | o

is the maximum radial width of the island chain at the m,n rational surface. Let
(M =ml—nd+ ™" — ™"t (A39)

For dF™"(r™™)/dr > 0, the X-points of the island chain are situated at ("™ = (2k — 1) 7, and the O-points are at
¢"™™ = 2k m, where k is an integer. For dF™"(r™")/dr < 0, the O-points are situated at (™" = (2k — 1) 7, with the
X-points at (™™ = 2k . Note that (F™™)" > 0 for conventional RFP equilibria (assuming that n > 0).

The Rutherford regime takes over from the visco-resistive regime whenever the island width, W™ exceeds the
linear layer width,

m,n\1/3
") . (A40)

smn
(7‘7/"'7")1/6 (7-}7%”’”)1/6 s

The criteria for the validity of the Rutherford regime are set out in detail in Ref. 11.

7. The nonlinear eigenmode equation
The complete, marginally stable, ideal-MHD force balance equation takes the form

(-V)B + (J-V)b — (b-V)J — (B-V)j = M—‘:, (A41)

where
A = o (b-V)j — po (j-V)b. (A42)

Equation (A7) remains valid. However, Eqs. (A8)-(A10) generalize to
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Likewise, Eq. (A12) generalizes to
d e dypmm o Umn B yman
dr[f dr]gd)_m_ne’
where
mn — r? A;n’n nerd g GMn Amn nerd Amn !
=1 Fm,n Hm.n (Fm,n)2 Hm.n Fmn |
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8. The nonlinear coupling coefficients

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

(A49)

(A50)

Consider the nonlinear coupling of three tearing modes with mode numbers mq,n1; ma, no; and ms, ng, where

m3 = my + ma,

ng =Ny + Na.
It can be demonstrated, after considerable algebra, that

~ “ 2
A = _(Sme’n2)* Pmsins o' ¢m2’n2 ¢m3,n3 (le,nl)
r

472 Fma,n2 ['ms,ng’
! Aml 1 Am3 n3 mao,n2\2
Amz,nz — _(y',m1,n1)* Wm3’"3 g ,(p ’ ,(p ’ (F ’ )
r 472 Fmi,n1 'ms,ng’
1 mi,na lma,ne ms,n3\2
AMsN3 — _mi,na gme,ne o' Pment gme (Fms:ms)
r 472 Fmi,n1 f'ma,ne

Likewise,

Qﬁmz,Tm (z/j,ms,ns)l nie GMs:m3 ¢m3’"3 (@@mz,nz)l nqe GM2n2

o'
Ag’n FLLS - i (qﬂrm,nz)* Pms.msa Z

r Hms,ns sz,TLQ r ng,ng Fm;;,ns
nieo ,(;mz,nz ,&ma,na Fma;n2 mains 1 o' By Fam ¢m2,n2 @ms,ns
+ r Hmz2,n2 f'ms,ng Hms,n3 f'ma,n2 _; p Fmz,n2 ['ms,ns

@ml,nl (,&ma,ns)l no€ Gmasn3 &ms,ns (,,ﬁml,nl)l no€ Gmi,m
r ng,ns le,n1 r Hml,nl Fmg,na

!
AM2:2 _ { (gM1,n1)* Mms,ns g
] 1( ) 4 {
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(A51)
(A52)

(A53)
(A54)

(A55)

} ,  (A56)
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Incidentally, since V-A = 0, it follows that

d(r Am)

7 +imA§”’"—ineA$’":O.
"

It is easily verified that the expressions (A53)—(A61) respect this constraint.

9. Electromagnetic torques

i

The flux-surface averaged poloidal and toroidal electromagnetic torques acting on the plasma are written

po dr

m,n

2R d y M, N\ * *
Toem(r) = UL —{Zrz (b7 (by"")* + (b70™)

Typm(r) = —— %{Zr[bw (bg )" + (0")

Mo

m,n

respectively. These expressions reduce to

2Ro d o
Torm(r) = = OJ{ZWV },

Ho —_—
7T2R0 d m.n
Tyem(r) = - o 5{2%’ }’
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where

WM (r) =i [m frn (e (s — 10 ";Tf;i’f")] tec, (A67)
W) =i [ g oy ey T SE LW (469

It follows from Eq. (A48) that
ey iy [T e

Consider the nonlinear interaction of the m1,n1; ma, n2; and ms, n3 tearing modes, where the various mode numbers
are related according to Egs. (A51)—(A52). It can be demonstrated, after considerable algebra, that

(Wymy = 2 I (@ ey s (—m1 )+ |12 Bt ] ) ’ (A7)

(W) = £ T (@ gy grmans) (-mz ) + |22 B“’}p:ﬁ:q’bm ] ) ) (A72)

e T Lt R
Likewise,

T P e Tt e

(W) = & T {(mems ey o) (—nz )+ | BT ] ) = (A75)

Ws) = St ((@mms gy g <n ey - [P B m]) - (a76)

Here,

Gmi,m

Hmi,n1 f'ma,n2 ['ms,n3

Gma,n2

t(T) -4 {,,_ (,&mhnl)l zﬁmz,nz ,(ﬁma,na + ,(ﬁml g (,&mz,nz)l &ms,na

Hmez,n2 f'mi,n1 f'ms,n3

Gms.n3 Fmi,n

~ ~ ~ ~ ~ ~
mi,N1 ,/,M2,N2 ( m3,n3)l mi,n1 ,/,M2,N2 ,/,M3,N3
r To
+¢ w ¢ Hms,n3 f['mi,n1 f'ma,n2 + ¢ ¢ w Hmi,n1 f'ma,n2 ['ms,ns

Fma2,n2 Fms.ns 2By By —ro (B2 + B2
+ + ) o 5, s : (ATT7)
Hma2.n2 ['mi,n1 ['ms,ns Hms,n3 f'mi,n1 ['ma,na F'mi,n1 f'ma,na ['ms,n3
Let
Wc9 — W;'nlanl + Wamz,nz + Wam3,n3, (A78)
Wy = Wnm 4 Wmene 4 irens, (AT79)

Recall, from Egs. (A65)—(A66), that
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Toem(r) = (Wy)', (A80)

Mo

2
Tomn(r) = — 2 (W,). (As1)

Ho
However, it follows from Eqs. (A71)-(A76) that

(W) =0 (A82)
(Wd))l =0, (A83)

where use has been made of Eqs. (A51)—(A52). Hence, zero flux-surface averaged electromagnetic torque is exerted
throughout the bulk of the plasma as a consequence of the nonlinear coupling of tearing modes. This is the expected
result, since it is well-known that zero flux-surface averaged electromagnetic torque can be exerted in any region of
the plasma governed by the equations of marginally stable ideal-MHD °.

10. Localized electromagnetic torques

The above demonstration that nonlinear mode coupling gives rise to no electromagnetic torques is valid in all regions
of the plasma governed by the equations of marginally stable ideal-MHD. However, these equations break down in
the immediate vicinity of the rational surfaces associated with the three coupled tearing modes, so it is still possible
that localized electromagnetic torques can develop at these surfaces. This is indeed the case. The fact that (¢¥™")" is
discontinuous across the m,n rational surface, whereas the 9™ and (™ ") (where m',n' # m,n) are continuous,
implies that Wy™" and W™ are also discontinuous across this surface—see Eqgs. (A67) and (A68). Thus, Eqs. (A65)
and (A66) yield

Torm( Z STy e 8 (r — rmm), (A84)
Typrm( Z STy 6(r — ri™™), (A85)
where
STy = AW, (A86)
STy uny = — AWM. (A8T)

Here, AW™"™ = W, " (ri3™) — W™ (r;2"), etc., and it is understood that the delta-functions represent the thin
non- 1deal MHD regions centred on each of the rational surfaces.

It follows from Eqs. (A67) and (A68) that W™ — 0 and W™ — 0 as r — 0, assuming that the ™" are regular
at r = 0. Likewise, the boundary condition (A15) yields Wy™" = Wi"" = 0 at r = b. Thus, Eq. (A71) can be

integrated to give

1 . r ro' B ,(ﬁml,nli.mz,nzz&ms,ns
Wm1,n1( ) = 3 Im { (@17 gmena)* gmeins) <_m1/0 t(r') dr' + ¢Fm2,n2 Tram , (A88)
for 0 <r < r»", and
o 1 . b ro' B @Zml’ml&m%nz’lj’m&ns
Wi (r) = 5 Im { (@ gmene)® grmens ) (m1 / Hr ) '+ s ) (A89)
for rj»"™ < r < b. Clearly,
1 b
AWM = 5 Im { (@™ gme:n2)* gms:ns} ml/ t(r) dr. (A90)
0

After performing many calculations, similar to the above, the following expressions for the poloidal and toroidal
electromagnetic torques acting at the three nonlinearly coupled rational surfaces are obtained:
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(STgnEh(/?l — 7"'2 50 Im{(y-,mhrn sz,nz)* Wm&ns} ml/ t('l‘) dr, (Agl)
0 0
me,nz __ w’ R M1,M1 JyM2,N2\* (M3, ¢
Ty = 20 Im {(@mo 7 gm=n2)* @msns} my [ t(r) dr, (A92)
0 0
2 R a
TG = ~ T T (B ™) 7o), g |ty (A93)
0 0
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mi,n1 7w’ Ry M1,N1 JyMa,N2\* JyM3,N ¢
6T¢E1’VI = — 2 Im{(W 1,01 gme, 2) gms, 3}n1 t(r)dr, (A94)
0 0
2 a
ST = - fo I (@ @70 0 g [ o) (A95)
0 0
2 Ro @
éTdT)nEsl,\;Ils = 2N Im {(¢m1,n1 wmmng)* wms,na} n3/ t(T) dr. (A96)
0 0

Here, use has been made of Eqgs. (A86) and (A87). Note that the upper limits of integration in all of the integrals
involving #(r) can be changed from b to a, because the function ¢(r) is zero in the vacuum region outside the plasma
(since o' = 0 in this region). Note, also, that [;'t(r)dr is finite, despite the fact that (r) is singular at the three
nonlinearly coupled rational surfaces, provided that this integral is evaluated by taking its Cauchy principal part with
respect to these singularities.

According to Egs. (A91)—(A96),

0T ot + 0T ™ + 0T, =0, (A9T)

JT;'E]’\T + JT;”];I’\T + 5T;”§ﬂ3 =0, (A98)
where use has been made of Egs. (A51)—(A52). In other words, the sum of all the localized nonlinear electromagnetic
torques acting inside the plasma, is zero, as is required by the conservation of angular momentum.

Equations (A91)-(A96) generalize in a fairly straightforward manner to the case where there are more than three
nonlinearly coupled tearing modes in the plasma.

11. The nonlinear tearing mode dispersion relation

Consider the nonlinear coupling of the mq, n1; ma, ne2; and ms, n3 tearing modes, where the various mode numbers
are related according to Eqgs. (A51)—(A52). The nonlinearly modified dispersion relations for the three modes take
the form,

AgmLn — pmum gmsn | pman (A99)
APM2N2 — 2Nz gmene Bm2’n2, (AIOO)
AP™SN3 — Fmans gmans | Bms.ng (A101)

where B™1-™  B™2."2 ete are the nonlinear corrections.
As is easily demonstrated ?, the localized poloidal and toroidal electromagnetic torques acting in the vicinity of the
m,n mode rational surface can be written

27(2 RO m
ST = — e Im{ AP (@) *) A102
6 EM Lo Hm’"(T‘s 5 ) { ( ) } ( )
m,n 2 772 R n m,n m,n\*
ST en = 0 Im{AF™™ (F™")*} | (A103)

po  H™m(rg™™)

respectively. A comparison between Egs. (A99)-(A103) and Eqgs. (A91)-(A96) yields
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Hmuna (pma,n a
B — _(man2 )* ma.ns #/ t(r) dr, (A104)
0
Hm2,n2 (pma,n2 a
B™2m2 — _(me1,n1)* Pms.ns #/ t(f,-) dr, (A105)
0
m3,n. mi1,n ma2,Nn Hm37"3(7-;n3an3) N
B™sM3 — _™m1,n pmae,ne — t(r) dr. (A106)
0

The above expressions can be generalized in a fairly straightforward manner to the case where there are more than
three nonlinearly coupled tearing modes in the plasma.

APPENDIX B: ERROR-FIELDS
1. The tearing mode dispersion relation

In the presence of a static m,n error-field the most general solution to Eq. (A12) is written
wm,n(r7 t) — Wm,n(t) ,(ﬁm,n(r) + omen ,(Zm,n(r), (Bl)

where C"™" is a complex parameter which specifies the amplitude and phase of the error-field at the rational surface,
and ¢™" is a real function which specifies the ideal response of the plasma to the error-field. To be more exact,
™" (r) has the following properties:

™" =0 for r < rmn, (B2)

r dz;m’" _
I s

s+

Incidentally, the above definition completely specifies )™ (r). Note that 1™ (b) # 0, since the error-field is assumed
to leak through narrow gaps in the flux conserving shell.

Neglecting the nonlinear coupling of tearing modes, the error-field modified dispersion relation for the m,n tearing
mode is written

Awm,n — Em,n !pm,n + Cm,n‘ (B4)

It follows from Eqs. (A102)—(A103) that the poloidal and toroidal components of the electromagnetic torque exerted
on the plasma in the immediate vicinity of the m,n rational surface by the m,n error-field are given by

STy = == Ty IRAC™" (7)), (85)
27T2R0 n

1o Hm,n(r;"v")

T3 %m = Im{C™" (&"™")*}, (B6)

respectively.

2. The vacuum region

In the vacuum region outside the plasma,

™™ (r,t
() = Y, (B7)
m,n m (wm,n)l
b0 = e e (B
RN 2 )
b¢ (T7 t) = m2 + n262 ’ (Bg)
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where

d r dwm,n ¢m,n
— 5 - =0. B10
dr |m? +n2e?  dr T (B10)
The most general solution to the above equation is
™" (r) = a™" ne I, (ne) + ™" ne K|, (ne). (B11)

Here, the a™"™ and b™" are arbitrary complex constants. For the special case n = 0, the above expression reduces to

WO () = gm0 glml .m0 = lm| (B12)

3. Characterization of the error-field

Suppose that, in the absence of plasma and the flux conserving shell, the error-field is characterized by the magnetic
stream-function tex (7, 8, ¢). In the presence of the shell, but still in the absence of plasma, the m,n error-field interior
to the shell is characterized by

Y™ (r) = g P (r), (B13)
where
- ne Il (ne)
mn _ B14
gap nep I;n (TLE[,) ’ ( )
and

oo df do
grmn — o i(mf—ng) 27 . B1
gap /Laps¢ xt(b707¢) € 21 2 ( 5)

The integral in the above expression is taken over the angular extent of the vacuum gaps in the shell. Here, the shell
is naively modeled as a filter which does not modify b, in the gaps, but requires b, = 0 elsewhere. Note that in the
special case n = 0,

s = (%)lm‘ - (B16)

In the presence of plasma, the m,n magnetic field in the vacuum region a < r < b is characterized by

P (r) = U (r) 4 T (), (B17)
where
¢$ézma (r) = ne [K] (nep) I, (ne) — I (nep) K|, (ne)] (B18)

" neg [K!,(ney) I (ney) — I! (nep) K! (ne,)]”

Here, u'/;’ll;:ma is a complex constant which parameterizes the amplitude and phase of the m,n plasma eigenfunction

at r = a. Any leakage of the plasma eigenfunction through the gaps is neglected: this is only likely to be a good
approximation if the gaps are relatively narrow. For the special case n = 0,

rm,n . (T/b)lm‘ — (r/b)_|m|
¢plasma(r) = (a/b)|m\ — (a/b)—|m\ . (B19)
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4. Electromagnetic torques

According to Egs. (A65) and (A66), the total poloidal and toroidal electromagnetic torques acting on the plasma
due to the m,n error-field are

m,n 271’2R m,n m,n m,n\*

0T = —— = mIm {F™" (™) (™) Yo (B20)
m,n 27TR m,n m,n ™, *

ST = = nIm {7 ) 67 Yaras (B21)

respectively. Of course, these torques are exerted at the m,n rational surface.
It follows from Eq. (B17) that

Im {wm . (gmn )*}

gap plasma

LN (ML, (T, * — . B22
@ @) acr o (neqnep) (KL, (nep) I, (ne,) — Il (nep) K (neg)] (B22)
For the special case n = 0,
,0 m,0 *
{fm70 (wm,o), (wm,o) } Im {wgn;}') (wplasma) } (B23)
a<r<b ~ (jm]/2) [(b/a) ™ = (b/a) =™
5. Calculation of the error-field coupling constants
Equations (B1) and (B17) can be reconciled provided that
wglla:ma — I:q;m,n wgn;pn g;pn( m,n )] ,(pm n( ) (B24)
It follows that
T { @ (@1 )"} = T {0 (@™7)* } ™ (a). (B25)
Thus, from Egs. (B20) and (B22), the poloidal electromagnetic torque acting on the plasma takes the form
2 2 Im {@gm.n &mn man a
6T9"E;I:— 7I'R0m ,{ gapl }¢, () - . (B26)
Ho (nea TLGb)[Km (neb) Im (nea) - Im (néb) Km (nea)]
Finally, a comparison of the above expression with Eq. (B5) yields
omn — gman ngnv (B27)

where the real parameter ¢™" is written

mn H™n () ™" (q)
© = (neqanep)[KL, (ney) Il (ne,) — I, (nepy) KL, (ne,)]” (B28)

For the special case n = 0,

mo _ __2|m[¢™%a) (B29)

(b/a)/™ — (b/a)=T]
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6. Example error-fields

The dominant error-field source in an RFP is usually the 1,0 field arising from the mismatch between the “vertical”
magnetic fields interior and exterior to the shell. Let

Yext (1,0, ¢) = B, rel (9—9v)7 (B30)

which describes a uniform poloidal magnetic field, of magnitude B,, directed towards 6 = 6,. Incidentally, in this
paper 6 = 0 corresponds to the inboard mid-plane of the device.

Suppose that the flux conserving shell contains two vacuum gaps: a poloidal gap, extending from ¢ = ¢, — Ap/2
to ¢ = ¢y + A¢/2, and a toroidal gap, extending from 6 = 6, — A0/2 to 8, + Af/2. It follows from Egs. (B15) and
(B30) that for a 1,0 error-field,

@ = B, b fsinc [(m — 1) A8/2] sinc[n Ag/2] e =1 fatbun ool (B31)
Here, sincx = sinz/z, and f = A Ap/4w? is the area fraction of gaps.

The 0,1 error-field is of particular significance in RFPs, since it resonates with the reversal surface, which controls
the rotation of the slinky mode. Let

_ elo(€) —i(s-00)
d}ext (7'; 07 ¢) - Bc b € I(IJ (Gb) € ) (B32)

which describes a 0,1 field for which b,.(b, 8, ¢) attains its maximum amplitude, b, = B, at ¢ = ¢.. It follows that

m,n _ 3 : —i[mbyg—(n—1)pg—o.
Pgap' = Beb fsinc[m Af/2] sinc[(n — 1) Ag/2] e [ (n=1) ¢g—¢el (B33)
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FIGURE CAPTIONS

Fig. 1 The bifurcation diagram for the formation and breakup of the slinky mode. All quantities are defined in
Sect. ITE 2.

Fig. 2 The amplitude of the perturbed radial magnetic field plotted as a function of toroidal angle for a typical slinky

mode made up of 10 nonlinearly coupled m = 1 core tearing modes of equal amplitude. All quantities are
defined in Sect. IIF 4.
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