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Abstract. Here we describe the generalization of the
Lorenz model of Rayleigh{Benard convection to the �-
nite pressure plasma interchange dynamics. We include
the usual three ODE's of the Lorenz model and two new
modes describing the coupling of the plasma convection
to the shear Alfv�en waves in the system. Thus, we have
a d = 5 phase space with an attractor or chaotic attrac-
tor depending on the system parameters. The system
describes the creation of �eld line currents driven by
the onset of the convective interchange which we inter-
pret as the symmetry breaking in the ambient region 1
current system to form the initial phase of the substorm
current wedge.

1. Introduction

The ux of momentum from the solar wind incident
on the planetary magnetic dipole produces a stressed
magnetotail with a trapped high pressure plasma con-
�ned in the nightside plasma sheet. During periods of
enhanced solar wind dynamic pressure and enhanced
erosion of dayside magnetic ux from an oppositely
directed IMF magnetic �eld, the stress in the night-
side magnetosphere exceeds the threshold for the onset
of large scale (MHD-like) convection and magnetic re-
connection. From general arguments [Chang, 1992] it
is thought that the nonlinear dynamics of the highly
stressed magnetotail system can be described with a few
degrees of freedom. For example, the six dimensional
WINDMI model [Horton and Doxas, 1996, 1998a] pro-
vides a global solar wind driven{ionospheric damped
model capable of explaining the complex, correlated
changes in six energy components resolved between the
magnetotail and the ionosphere. The global correla-
tion of the magnetospheric and ionospheric events dur-
ing magnetic substorms gives strong evidence that this
complex dynamical system evolves with a large scale
coherence. Thus, we continue our development of low
dimensional models (LDM) by deriving here the obvi-
ous generalization of the 3-dimensional Lorenz model
[Lorenz, 1963] of a neutral uid to d = 5 magne-

tohydrodynamic model of convection in the reduced
MHD equations. The two additional degrees of free-
dom ( 1;  2) describe the magnetic uxes generated by
the frozen in magnetic ux constraint of E = �v �B

during the generation of the plasma convection. The
resulting low order dynamical model appears to share
most of the bifurcation structure leading from steady
convection to chaos of the Lorenz dynamics on the three
dimensional submanifold.

We describe the quasi{two{dimensional dynamics in
the x{y coordinates in the equatorial plane (z = 0)
in nightside magnetosphere. Stability analysis shows
that the transition region where the normalized plasma
pressure � = 2�0p=B

2
n � 1 is the �rst region to go

unstable. Locally the unstable dispersion relation is
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where �c = max(bb � rbb) = 1=Rc � B0
x=Bz = �0jy=Bz,

and L�1
p = dx`np(x; 0; 0). Here Ti is the CPS ion tem-

perature � 4 kev, kk � 1=Lk is the e�ective length of
the ballooning mode, and �m the mass density.

For the full dynamical equations we start with the
reduced MHD equations for the electrostatic potential
�(x; y; t), the parallel vector potential  (x; y; t) and the
plasma pressure p(x; y; t). The dynamical equations are
as follows. The divergence of the current yields:
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The resistive Ohm's law yields:
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and the dissipation from viscosity �, resistivity � and
thermal conductivity � is added to represent the trans-
fer of energy to unresolved scales in the collisionless sys-
tem. Equation (1) is the bz{component of the vorticity
produced by E�B convection in the equatorial plane
(z = 0) at which B = Bnbz and � = (b � rb) = bx=Rc.

When the growth of the magnetotail stretching from
the increase of jy=Bn becomes su�ciently large, the
interchange destabilizing term exceeds the Alfv�en wave
term for � > NLpRc=L

2

jj as given by Hurricane [1997]
and MHD convection sets in. The deep tail where the
plasma pressure � � B2

xo=B
2
n > 100 the compressibility

of the plasma stabilizes the local interchange motions.

We will show that the pressure gradient driven con-
vection creates a sheared By(x; t) �eld by convection v
of the perturbed ux  1. Thus, it is useful to start the
calculation with a small constant By �eld so that the
gradient along the magnetic �eld is

rk =
By
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where by = By=Bn is taken as small. The By �eld may
be a remnant from the IMF �eld that has soaked into
the magnetosphere. It can be an important \seed" �eld
in the process considered here.

In the equilibrium state p = p0(x) = p0(1 + x=Lp),
�r2 = E0 and v = 0. We now consider the pro-
jection of the full dynamics of Eqs. (1){(3) onto the
low{order description of the �elds. The �elds are cho-
sen to describe the linear instability and the dominant
nonlinear interactions on the large scales and the scale
of 2kx as in the classical Lorenz model.

Our procedure follows the Lorenz reduction of the
Rayleigh{Benard convection problem and includes the
electromagnetic dynamics important for the plasma
substorm.

1.1. Low order representation of �elds

The low order representation in the midnight sector
relevant for the onset of current diversion and convec-
tion is given by

� = �1(t) sin(kxx) sin(kyy) (6)

 =  1(t) sin(kxx) cos(kyy) +  2(t) sin(2kxx) (7)

p = p1(t) sin(kxx) cos(kyy) + p2(t) sin(2kxx): (8)

The �1; p1; p2 amplitudes are the x; y; z variables of the
Lorenz model. The magnetic disturbances are given by
the ux amplitudes  1 and  2. The (linear) Alfv�en
wave coupled to the convection is given by  1 and the
self-generated sheared By{�eld by  2.

Now we show some of the nonlinear calculations:

v � r 1 = �1 1kxky[� cos �x sin �y sin �x sin �y � (9)

sin �x cos �y cos �x cos �y] =
1

2
kxky�1 1 sin(2�x)

where �x = kxx and �y = kyy. The same calculation
applies to the convection of the pressure uctuation:

v � rp1 = �
1

2
kxky�1p1 sin(2�x): (10)

Now the convection of the  2 and p2 terms give

v � r 2 = �2kxky�1 2 sin �x cos �y cos(2�x) (11)

= kxky�1 2 cos �y [sin �x � sin 3�x]

and likewise for v � rp2.

Finally, we evaluate the term

bz � r �r(r2 )

= bz � r 1 �rr2 2 + bz � r 2 �rr2 1

=  1 2
�
k2y � 3k2x

�
sin �y [sin �x � sin 3�x] (12)

Thus, Eqns. (11) and (12) produce new terms
sin �y sin 3�x outside of the representation in Eqs. (6){
(8). The problems associated with truncation not in-
cluding these terms are discussed in Thi�eault and Hor-

ton [1997] for the Rayleigh{Benard problem. We return
to this issue later.

Substituting these �elds and nonlinear terms in
Eqs. (1){(3) and equating the linearly independent
variations yields the following �ve ordinary di�erential
equations:
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2. Energies and Energy Conservation

The full �eld equations have the following energy
components. The kinetic energy K(t) in the E�B

convection is

K(t) =
1

2
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The magnetic energy WBR1(t) associated with the �eld
aligned currents is given by

WBR1 =
1

2�0

Z
(r )2dxdy: (19)

It is important to note that the magnetic energy
WBR1 in Eq. (19) is that associated with the �eld
aligned currents jjj and the corresponding parallel vec-
tor potential r2 = �ojjj. The much larger mag-
netic energy associated with the geomagnetic tail lobe
�elds, which is the principal energy reservoir in the
global WINDMI model (Horton et al., 1998b), is de-
rived fom a dawn{to{dusk vector potential Ay(x; z)
with r2Ay = ��ojy.

The potential energy U(t) that drives the convection
is from the expansion of the ux tubes �lled with high
pressure plasma. The local measure of this potential
energy is

U =

Z
x

Rc
p
dxdy

LxLy
(20)

where 1=Rc = � is the curvature of the magnetic �eld
lines. The rate of change of U is given by using Eq. (3)

and the condition

Z
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da �vp = 0, which annihilates the

compression term, so that

dU

dt
= �(q + q0) (21)

where q0 = ��0
dp
dx ! 0. In the LDM we solve below

there are special cases where U(t ! 1) ! 0 releasing
all the stored thermal energy. In general, there are only
incomplete, episodic releases of the thermal energy U .

The conservation of energy between U(t) and K(t)
is the same as in the Rayleigh{Benard{Taylor problem.
The analysis is somewhat complicated, but is developed
in detail in Thi�eault and Horton [1997]. Thus, we look
here at the transfer between WB and K in more detail.

From Eqs. (1){(2) it is straightforward to show that
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where q is the thermal ux given by q = hvxpi.

The two energy transfer terms T1 and T2 give the
power transfer from
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where Ees

k is the electrostatic parallel electric �eld and
Econv

k is the parallel inductive electric �eld from con-
vection of the magnetic ux,  . The MHD constraint
requiring that the total parallel electric �eld vanish re-
lates to the power transfer since
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yields, after multiplying by jk =
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where electrostatic parallel �eld due to By 6= Bn 6= 0
gives
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and the convection of the  {ux gives

T2 =

Z
v � r jzdxdy =

kxkyk
2

?

B
 1 2�1: (28)

Thus, T1 and T2 are two components of the power
ow between the region 1 currents and the E�B ki-
netic energy in the plasma ow driven by the pressure
gradient{interchange. In the limit of by = 0 the MHD
constraint is Ek = @t + v � r = 0 so that  is con-
vected by v = bz �r�=Bn. The MHD statement thatZ
Ekjkd

3x = 0 becomes dWB=dt+

Z
S �da = T2 where

T2 is driven by �1 and S is the Poynting ux.

Thus, in the absence of forcing and damping the low
order description conserves the total energy

d

dt
(K +WB + U) = 0: (29)

For the low order representation in Eqs. (6){(8) these
energies reduce to
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Thus, we conclude that the low dimensional model
(LDM) contains the essential physics of the full pde
systems with regard to energy transfer.



3. Trigger Mechanism

Consider the dynamics of a pressure uctuation �p
from the convection in the equatorial plane where p =
p0(x) + �p(x; y; t). The dynamics is given by
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There are two important cases: (i) fast motions in
which the plasma is compressed so that �p0r � v 6= 0
and � enters the stability equation and (ii) slow motions
that are to a high degree incompressible rkvk �= �r? �
v? and thus the motion is independent of �. The stabil-
ity limit obtained by Hurricane, that is � > N L2

k=LpRc

is independent of �, and thus applies to slow motions
where kinetic e�ects are important. Since he enforces
the constraint of incompressible displacement � on the
trial functions to obtain the lowest possible value of the
MHD �W .

Now we show that for fast motions the parallel vk
cannot cancel the cross{�eld compression and there is
a stabilizing threshold proportional to the adiabatic gas
constant �. We have also determined from collisionless
kinetic theory the e�ective value of �kin. This fact fol-
lows from solving the linearized parallel ow equation
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and estimating rkvk=r? � v? using �p=p � �n=n �
r � v?=i!. The analysis gives
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showing that for !2 � k2kv
2

Ti
the parallel compression is

too small to balance the cross{�eld compression. Thus,
for fast modes (and especially small kk or ute modes)
the compression

r � v = �2� � v = �
2vx
Rc

(35)

is not eliminated by the parallel mass ows. Only near
marginal stability where !2 � k2kv

2
i do the incompress-

ible criteria apply.

We can �nd an important thermodynamic relation
by multiplying Eq. (33) by �p and averaging over the
region of the �
 of the disturbance. The averaging
annihilates the convection v � r�p of the pressure and
yields
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where q is the heat ux

q = hvx�pi = �
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The heat ux q is down the pressure gradient so
that q = ��(dp0=dx) and the pressure uctuations

�p2

�
grow. The pressure uctuation power spectrum
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Z
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which the arbitrarily small �0 eventually absorbs the
power transmitted through the P (k) spectrum. In cer-
tain cases, with continuous driving of the system, the
system reaches a steady state with the entropy produc-
tion by turbulence
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balanced by microscopic absorption of the shortest scale
�p{uctuations. Equation (38) applies when there is a
turbulent steady state.

4. Physics of Local Substorm Current Wedge

Trigger

A localized ion pressure uctuation in the region of
� = 2�0p0=B

2
z
<
� 1=� creates a vortex ow of current

as shown in Fig. 1. In a uniform �eld the ow has
r � �j? = 0 but due to the gradient of Bz the ow is
slower on the Earthward side of the vortex and faster on
the tailward side. The result is a charge accumulation
proportional to
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The polarization of the plasma takes place with a re-
turn current jp = (�0=B

2
n)(dE?=dt) such that r � jp =

+(�0=B
2
n)k
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?(d�1=dt) = �(�=Bn)@y�p1 producing the
exponential growth when the energy released from
@p0=@x exceeds that required to compress the plasma.
Beyond x = �10RE the compressional displacements
on the fast interchange time scale �int = (LpRc)

1=2=vi
are suppressed. Only the slower modes that have the
complicated parallel structure with compensating par-
allel compression may be residually unstable.

A simple estimate of the dimensionless plasma pres-
sure required for fast compressible interchange modes
follows Eq. (36) where r? � v? = �2vx=Rc is used
to compute the cross{�eld compression. In the tail re-
gion the magnetic curvature �max = B0

x=Bn equilibrium
pressure balance allow us to reduce
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Figure 1. Geometry of the unstable growth of the localized
pressure uctuation �p due to the interchange instability.
The magnetic �eld is dragged with the convection due to
the frozen in condition, which in turn generates the symme-
try breaking of the region 1 currents to form the substorm
current wedge.

as a necessary condition for instability from inter-
change.

For the su�cient condition we must consider the
Alfv�en wave stabilization. The point is that the charge
accumulated from the k2y �(@p0=@x){drive is partially
drained o� by parallel currents �0jz = r2

? with
rkjz = �r � �jint. This is the physics of both the
linear and nonlinear terms in rkr

2

? =�0 that give the
T1 and T2 energy transfers. The stability condition is
obtained with (kyB)

2 ! k2kB
2 from Eqs. (13), (14) and

(16) as
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which require � > LpRc=L
2

k where Lk is roughly the
length of the magnetic �eld line to the ionosphere.
Thus, the instability producing the onset of the seed of
the substorm current wedge can only occur in a narrow
range of plasma � that is satis�ed near X ' �10RE.
In this region the onset will �rst appear in a small
�y sector corresponding to a �1 hr of MLT. However,
the growth of the SCW current shown in the nonlin-
ear model will cause an expansion of that same current
loop.

The expansion in MLT of the current loop show in in
Fig. 1 increases the mutual inductance of this loop with
the crosstail current loop which gives a rapid nonlinear
increase in the inductive electric �eld driving the SCW
current loop. This produces the rapid increase in pre-
cipitating electrons and the formation of the northward
bulge in the auroral ionosphere.

5. Conclusions

Motivated by the observation [Baker and Pulkkinen,
1991; Pulkkinen et al., 1991] that substorm dynamics is
a correlated series of events in the nightside magneto-
sphere that appear to initiate from electrodynamic ac-
tivity atX = �10RE to �15RE in the near to midnight

MLT sector during periods of highly stretched magneto-
tail �eld lines (large jy=Bn), we argue that low dimen-
sional models derived from projections of the partial
di�erential equations (1){(3) on to suitable basis func-
tions capture the essential physical processes of sym-
metry breaking, the unloading of the plasma pressure
and the generation of the substorm current wedge.

Here we focus our attention on the local interchange
instability as a candidate for the onset of the substorm
dynamics at the end of the growth phase when the cur-
rent sheet is well stressed. The global cycling of the
geotail is best described by our earlier WINDMI model.
Here we focus on the smaller time scales of minutes as-
sociated with the expansion phase.

We have derived a new d = 5 dimensional model
that generalizes the dL = 3 Lorenz model by taking
into account the inductive electric �eld E = �v � B

driven by the onset of convection from the interchange
of ux tubes in maximum growth region. The convec-
tion is driven by the product of the �eld line curvature
� = B0

x=Bn ' �ojy=Bn since @Bx=@z � @Bz=@x and
the Earthward pressure gradient dp=dx = jyBn. The
convection generates E and the �eld aligned currents
jjj with the symmetry required to drive the substorm
current wedge. In periods of order minutes the system
goes into the nonlinear dynamics limited by the unload-
ing of the local pressure gradient and the generation of
Alfv�en waves. Here we derive the model and trace the
transfer of energy through the mode coupling terms in
the truncated model. We do not attempt to explore
the bifurcation sequences of the system leaving this for
future studies. We note that the nonlinearities in the
ow Eqns. (13) - (17) are volume conserving (due to
their origin from the convection v � r and line bending
�B �r) so that there is a uniform volume contraction in
the d = 5 phase space. Thus, in the strongly unstable
system we may expect to �nd a 4+� chaotic attractor in
analogy with the 2:06 dimensional Lorenz attractor. In
the dissipation limit we have briey examined the large
amplitude pump depletion oscillations of the model and
veri�ed that these nonlinear oscillations lie on a d = 4
energy surface in the phase space.
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