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Abstract

It is shown that the Fourier-ballooning representation is appropriate for the study

of short wavelength drift-like perturbation in toroidal plasmas with a parallel velocity

shear (PVS). The radial structure of the mode driven by a PVS is investigated in a

torus. The Reynolds stress created by PVS turbulence and proposed as one of the

sources for a sheared poloidal plasma rotation is analyzed. It is demonstrated that a

finite ion temperature may strongly enhance the Reynolds stress creation ability from

PVS driven turbulence. The correlation of this observation with the requirement that

ion heating power be higher than a threshold value for the formation of an internal

transport barrier is discussed.
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I Introduction

Short-wavelength electrostatic drift-like instabilities have long been considered a possible

source of anomalous particle and energy transport in tokamak plasmas.1,2 On the other

hand, the turbulence resulting from the nonlinear development of such instabilities may cre-

ate Reynolds stress and plasma rotation (momentum transport) perpendicular to magnetic

field.3,4 And, the shear of such velocity is proven to be responsible for the improvement of

plasma confinement in tokamaks, experimentally and theoretically.5,6 It is important, there-

fore, to understand the radial structure of the linear modes, even though anomalous transport

and rotation are presumably nonlinear phenomena.

It is observed in recent tokamak experiments that a strongly peaked ion velocity paral-

lel to the magnetic field exists in the region where the plasma confinement improvement is

measured.7,8,9, Such velocity profile naturally possesses a larger parallel velocity shear (PVS).

It is theoretically shown that a PVS drives Kelvin-Helmholtz type instability and enhances

ion temperature gradient modes.10,11 On the other hand, however, due to the intrinsically

asymmetric feature of its eigenfunction about the rational surface, the PVS mode has been

proposed as one of the driving forces for turbulence which produces Reynolds stress and

related fluctuation suppressing poloidal velocity shear.12 Therefore, the effects of a PVS on

plasma transport and confinement improvement have been studied intensively and research

interests in it are growing. We believe that scientific insights into the role of PVS in tokamak

plasmas will significantly help to understand the physical mechanisms for anomalous trans-

port and enhanced confinement. The momentum-energy transport and particle diffusion

from turbulence driven by PVS are studied in Refs. 12 and 13, respectively. The role of a

PVS in plasmas with reversed or very weak magnetic shear is studied in Ref. 14. A sheared

slab magnetic configuration is used in these works.

The ballooning representations were developed and provided a powerful method for the
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investigating of drift type instabilities in a torus.15 Recently, it is found out that there exist

two kinds of mode.16−18 The first kind occurs only at special points isolated in radial direction

and is unlikely to be the source of a universal anomalous transport. The second kind can

occur at all radii and, therefore, is more general and better candidate for the source of the

anomaly in tokamak transport.

It is pointed out, more recently, by Taylor et al. that the conventional ballooning rep-

resentations15−19 are not valid in toroidal plasmas with a sheared velocity which is perpen-

dicular to the confinement magnetic field.

In the present work, it is shown with asymptotic expansion that the Fourier-ballooning

representation20 is appropriate for the investigation of drift-type instabilities in a toroidal

plasma with a sheared velocity parallel to the magnetic field. PVS driven modes in a torus

are concerned for the reasons mentioned above and for simplicity. The mode structure and

the modification in eigenvalues, introduced by the toroidal coupling, are studied in detail.

The Reynolds stress that is created by PVS driven turbulence and may be one important

source for a sheared poloidal rotation of plasma is analyzed.

The remainder of this work is organized as follows. In Sec. II, the physics model is

described, and the basic equations are given and linearized. The Fourier-ballooning repre-

sentation is applied and the ballooning equations of zeroth and first order in the expansion

parameter are obtained in Sec. III. These equations are solved analytically, and the eigen-

values and eigenfunctions of the modes are also provided. Sec. IV is devoted to the analysis

of the mode structure and Reynolds stress, and the conclusions of this work are summarized

in Sec. V.

II Physics Model and Basic Equations

The geometry is a large aspect ratio torus with circular concentric flux surfaces. The co-

ordinates are (r, θ, ζ), corresponding to the radial, poloidal and toroidal directions. The
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magnetic field is given by B = B(ζ + ε
q
θ), where ζ and θ are unit vectors in ζ and θ di-

rections, respectively, q is the safety factor, ε = r
R
¿ 1, r and R are the minor and major

radius of the flux surface, respectively. Fluid theory is employed to describe the ion motion,

and the electrons are adiabatic. An equilibrium PVS, dv0/dr = dv‖/dr, is considered. Elec-

trostatic fluctuations are described by the electrostatic potential φ. No equilibrium electric

field exists.

The basic equations to describe the evolution of the system are ion continuity equation

∂ni
∂t

+∇ · (nivi) = 0, (1)

ion equation of motion

mini

(
∂

∂t
+ vi ·∇

)
vi = eni

(
−∇φ+

1

c
vi ×B

)
−∇pi −∇ · Πi, (2)

and adiabatic ion pressure evolution

∂

∂t
pi + vi ·∇pi + Γpi∇ · vi = 0. (3)

Electron response is adiabatic

ne = n0 exp

(
eφ

Te

)
, (4)

and quasineutrality condition

ni = ne (5)

is required. Here Γ is the ratio of specific heats and the other symbols have their usual

meanings such as mi and e are mass and charge of an ion, respectively, c is the speed of

light, and so on.

The ion velocity vi is obtained by the usual drift ordering expansion to the lowest order,

v
(0)
i = v‖b̂ +

c

B
b̂×∇φ+

c

eBn
b̂×∇pi, (6)

which is obtained by putting the left hand side of Eq. (2) and Πi equal zero; and to the next
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order, the polarization drift

v
(1)
i = −mic

2

eB2

(
∂

∂t
+ v

(0)
i ·∇

)
∇⊥φ, (7)

where b̂ = B/B is the unit vector along the magnetic field.

The parallel component of Eq. (2),

mini

[
∂v‖
∂t

+ b̂ ·∇(vE + v‖b̂) ·∇(v‖b̂)

]
= −eni∇‖φ−∇‖pi, (8)

is concerned only in this work, where vE represents the second term on the right hand side

of Eq. (6).

It is straightforward to get equilibrium relations from Eqs. (1) and (8) by putting the

time derivatives equal zero. Thus, from Eq. (1) we obtain the first equilibrium relation

∇ · (niv‖b̂) +∇ ·
(
c

eB
b̂×∇pi

)
= 0, (9)

which reduces to

niv‖
B

= const.

along a magnetic field line in cold ion limit.

Equation (8) goes like

minib̂ ·
[
(v‖b̂) ·∇

(
v‖b̂

)]
= −∇‖pi. (10)

This means that

1

2
miniv

2
‖ + pi = const.

or

1

2
v2
‖ +

Ti
mi

lnni = const.

along a magnetic field in the case of

ni = const.

or

Ti = const.
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respectively.

Following standard linearization procedures and normalizing all the perturbations with

the corresponding equilibrium quantities, such as n̂ = ñ/n0, p̂ = p̃/p0, v̂‖ = ṽ‖/v0, we get

the linearized equations from Eqs. (1), (9), and (3),

∂n̂

∂t
+ v0b̂ ·∇(n̂+ v̂‖) +

c

B

[
b̂×∇φ ·∇ lnn0 − 2b̂×

(
∇φ+

p0

en0

∇p̂
)
· κ
]
− c

BΩ

d

dt
∇2
⊥φ = 0,

(11)

∂v̂‖
∂t

+ v0b̂ ·∇v̂‖ −
c

B

[
b̂×∇φ · (κ−∇ ln v0) = − e

mv0

b̂ · (∇φ+
p0

en0

∇p̂)
]
, (12)

∂p̂

∂t
+ v0b̂ ·∇p̂+

c

B

[
b̂×∇φ · ln p0 + Γ∇ · ṽ = 0

]
, (13)

where κ = b̂ ·∇b̂ is the curvature vector, Ω is the ion gyrofrequency, and the subscript “i”

is dropped for simplicity.

Assuming incompressibility and employing large aspect ratio approximation, we get the

following unique equation from Eqs. (11)–(13),

∂3n̂

∂t3‖
+ v0b̂ ·∇

{ c
B

∂

∂t‖
b̂×∇φ · (κ−∇ ln v0)−

e

mv0

∂

∂t‖
b̂ ·∇φ+

p0

mv0n0

b̂ ·∇ c

B
b̂×∇φ ·∇ ln p0

}
+
c

B

∂2

∂t2‖
b̂×∇φ ·∇ lnn0−

c

B

∂2

∂t2‖
2b̂×

[
∇φ+

p0

en0

∇
(
c

B
b̂×∇φ ·∇ ln p0

)]
· κ− c

BΩc

d3

dt∂t2‖
∇2
⊥φ = 0, (14)

where

d

dt
=

∂

∂t‖
− p0c

eBn0

(1 + ηi)b̂×∇ lnn0,

∂

∂t‖
=

∂

∂t
+ v0b̂ ·∇,

and

ηi =
d lnTi
d lnn0

.

In a slab, b̂ = const., and κ = 0, thus, Eq. (14) reduces to{
1 +

ω∗ev
′
0Lnk‖

(ω − k‖v0)2
− ω∗e

(ω − k‖v0)
−
[
1 +

ω∗eK

(ω − k‖v0)

]( c2
sk

2
‖

(ω − k‖v0)2
+ ρ2

s∇2
⊥
)}
φ = 0, (15)

6



where K = (1 + ηi)Ti/Te, ρ
2
s = Te/mi, and −iω = ∂/∂t. This is a equation often applied

in literature.

In cold ion limit (Ti/Te ¿ 1), Eq. (14) turns out to be

∂2φ

∂t2‖
− c2

s(b̂ ·∇)2φ− v0c
2
s

Ω
b̂ ·∇

[
b̂×∇φ · (∇ ln v0 − κ)

]
+

∂

∂t‖

[c2
s

Ω
b̂×∇φ · (∇ lnn0 − 2κ)

]
− ρ2

s

∂2

∂t2‖
∇2
⊥φ = 0, (16)

which is the equation we are going to solve bellow.

Let

φ(r, θ, ζ, t) = φn(r, θ)e
−iωt+inζ = e−iωt+inζ−imθ

∑
l

φl(r)e
−ilθ, (17)

and

∂φ

∂t‖
= −iω +

v0

qR

(
inq +

∂

∂θ

)
,

then Eq. (16) becomes{
ω2

1ρ
2
s

[1
r

d

dr

(
r
d

dr

)
− 1

r2
(m+ l)2

]
−
[
ω2

1 −
( cs
qR

(nq −m− l)
)2]

+
c2
sv
′
0

ΩrqR
(nq −m− l)(m+ l) +

c2
sn
′
0

Ωrn0

(m+ l)ω1}φl(r)−

1

2

c2
s

ΩR

[ v0

qR
(nq −m− l) + 2ω1

][
−
( d
dr

+
m+ l + 1

r
)φl+1(r)+

( d
dr
− m+ l − 1

r

)
φl−1(r)

]
+

nr

2R2q

c2
s

ΩR

[ v0

qR
(nq −m− l) + 2ω1

]
(φl+1 + φl−1) = 0, (18)

where ω1 = ω − v0

qR
(nq −m− l) and the prime (“′”) represents derivative with respect to r.

Introducing x = nq(r)−m and manipulating Eq. (18), we get{
ω2
[ c2

s

R2ω2
sq

2

d2

dx2
− k2

θρ
2
s

]
−
[
ω2 − c2

s

R2q2
(x− l)2

]
+
c2
sv
′
0kθ(x− l)
ΩRq

+
c2
sn
′
0kθω

Ωn0

}
φl(x) +

c2
skθω

ΩR

[(
1 + ŝ

d

dx

)
φl+1 +

(
1− ŝ d

dx

)
φl−1

]
+

{−2ωv′0
Rqq′

x

n
(x− l)

[ c2
s

R2ω2
sq

2

d2

dx2
− k2

θρ
2
s − 1

]
− 2ω2k2

θρ
2
s

l

m
+

c2
sv
′
0kθ(x− l)
ΩRq

l

m

(
1 +

v′′0r0

v′0ŝ

)
− c2

sn
′
0kθ

Ωn0

[v′0x(x− l)
Rqq′n

− l

m
ω +

n′′0r0x

n′0ŝqn

]}
φl
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+
c2
sv
′
0

2ΩR2qq′
x

n
(x− l)

[(
ŝ
d

dx
+ 1

)
φl+1 −

(
ŝ
d

dx
− 1

)
φl−1

]
+

c2
sωkθ
ΩR

( l + 1

m
φl+1 +

l − 1

m
φl−1

)
= 0, (19)

where ωs = (cs/qR)/(ρsqŝ). The slow variations of n′0 and v′0 have been invoked here.

Before introducing the Fourier-ballooning representation and further manipulating the

equation, it is worthwhile to note that all the terms with a factor x or l besides or instead

of (x − l) have order O( 1
n
) while the rest terms have order O(1). This is true only when

the sheared velocity is parallel to the magnetic field. In other words, there are terms with

a factor x or l having order O(1) when a sheared velocity perpendicular to the magnetic

field exists. This essential difference makes the ballooning representations appropriate for the

investigation of instabilities in plasmas with a PVS but failed in plasmas with a perpendicular

velocity shear. We will come back to this point in the next section.

III Ballooning Equations

With the Fourier-ballooning representation,17,18,20 the function φl(x) may be written as

φl(x) =
∮
dkdλφ(k, λ)eik(x−l)−ilλ. (20)

It is equivalent to the transformations

(x− l)→ i
∂

∂k
,

d

dx
→ ik,

l→ −i ∂
∂λ
, φl(r)→ φ(k, λ), (21)

x→ i
( ∂
∂k
− ∂

∂λ

)
, φl±1(r)→ e∓i(k+λ)φ(k, λ).

Substituting Eq. (20) into Eq. (19) gives[
L̂0 + L̂1

∂

∂λ
− Ω

]
φ(k, λ) = 0, (22)

where

L̂0 =
∂2

∂k2
+
iv̂′0qk̂θ
εn

∂

∂k
+
(qk̂θ
εn

)2
ω̂
[
ω̂(k̂θŝ)

2k2 + 2εnP (k, λ)
]
, (23)
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Ω(λ) = −
(qk̂θ
εn

)2
[ω̂2(k̂2

θ + 1)− ω̂], (24)

L̂1 =
1

n

[ k̂θv̂′0
εn

(
1 +

v̂′′0
v̂′0ŝ

) ∂
∂k

+
ik̂2
θ ω̂q

ε2n

(
1− n̂′′0

ŝq
− 2ω̂k̂2

θ − 2εn cos(k + λ)
)]
, (25)

P (k, λ) = cos(k + λ) + ŝk sin(k + λ),

v̂′0 =
v′0Ln
cs

, k̂θ = kθρs, εn =
Ln
R
,

ω̂ =
ω

ω∗e
, n̂′′0 =

n′′0Lnr0

n0

, v̂′′0 =
v′′0Lnr0

cs
.

The λ-parameterized eigenvalue Ω(λ) has been generalized to Ω which is independent of λ.

For large n, Eq. (22) may be solved with asymptotic scheme. The lowest order equation

is

[L̂0 − Ω(λ)]φ(k, λ) = 0, (26)

and the equation to the first order is[
Ω(λ)− Ω + L̂1

∂

∂λ

]
φ(k, λ) = 0. (27)

Introducing

φ(k, λ) = Ψ(λ)χ(k, λ) (28)

with the periodic condition

Ψ(λ+ 2π) = Ψ(λ), (29)

then Eq. (26) is the equation for χ(k.λ) and the Eq. (27) reduces to a equation for Ψ(λ),

[Ω(λ)− Ω]Ψ(λ) + L1
∂Ψ

∂λ
= 0, (30)

where

L1(λ) =

∫
dkχ(k, λ)L̂1

χ(k, λ)∫
dkχ(k, λ)χ(k, λ)

. (31)

A particularly important understanding is that

∂

∂λ
(L̂1

χ(k, λ))¿ L̂1
χ(k, λ)

∂Ψ

∂λ
,
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in order to scrutinize the plausible localized mode structure with ballooning theory.

The procedure outlined here is the same as it is when the PVS is absent.17 One of the

important features of the results is that Eq. (26) is an ordinary differential equation, or

an 1D eigenvalue problem, in other words, with λ as a parameter. So that, for large n, the

system may be solved asymptotically. It becomes more clear now that the Fourier-ballooning

representation is appropriate for the study of short wavelength drift-like perturbations in

toroidal plasmas with a PVS. However, as mentioned in the last section, the operator L̂0 in

Eq. (26) would involve derivatives with respect to λ and the Fourier-ballooning representation

would not apply if there were a sheared velocity perpendicular to the magnetic field.19

Equation (26) is fairly documented, and with the strong coupling approximation and the

assumption of εn ¿ 1, it is straightforward to get the eigenfunction,

χ(k, λ) = exp
[
σ(k + ∆k)2 − iq

2εn
k̂θv̂
′
0k
]
, (32)

where

σ = ik̂θ

(
q

εn

)
ω̂

2

[
(k̂θŝ)

2 +
ε

ω̂
(2ŝ− 1) cosλ

] 1
2

,

∆k =
εn(ŝ− 1) sinλ

ω̂(k̂θŝ)2 + ε(2ŝ− 1) cosλ
,

and eigenvalue

ω̂ = ω̂0 + ω̂1, (33)

where

ω̂0 =
1

2(1 + k̂2
θ)

1− iŝεn
q
± i

(1 + k̂2
θ)v̂
′2
0 −

(
1− iεnŝ

q

)2
 1

2

 ,
ω̂1 ' εnA cosλ,

A =
−1

(1 + k̂2
θ)
± 1√

(1 + k̂2
θ)v̂
′2
0 −

(
1− iεnŝ

q

)2

−εn(2ŝ− 1)

2qŝk̂2
θ

+
i(1− iŝεn)

q

1 + k̂2
θ

 .
The solution of Eq. (30) with the boundary condition (29) is

Ψ(λ) = exp


i2πN +

∫ π
−π

Ω(λ)dλ

L1(λ)∫ π
−π

dλ

L1(λ)

 ∫ λ dλ′

L1(λ′)
−
∫ λ Ω(λ′)dλ′

L1(λ′)

 , (34)
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with the corresponding global eigenvalue

Ω =
i2πN +

∫ π
−π

Ω(λ)dλ

L1(λ)∫ π
−π

dλ

L1(λ)

, (35)

where N is an integer.

The Eqs. (34) and (35) are general expressions for Ψ(λ) and Ω. In order to get specific

expressions for our problem, we must calculate L1 first.

Substituting Eq. (25) into Eq. (31) gives

L1(λ) =
ik̂θω̂q

nεn
[(1− n̂′′0

ŝq
− 2ω̂k̂2

θ)− 2εne
1

8σ cos(λ−∆k + ν)], (36)

where

ν =
v̂′0
2ω̂

[
(kθŝ)

2 +
εn(2ŝ− 1)

ω̂
cosλ

]− 1
2

.

Ω(λ) is given by Eq. (24) with ω̂ being a function of λ.

In this way, the specific expressions for the eigenfunction Ψ(λ) and the eigenvalue Ω may

be obtained. Thus, we do the εn << 1 expansion and get

L1(λ) =
ik̂2
θq

nεn
(a1 + b1 cosλ+ c1 sinλ), (37)

Ω(λ) = −
(
q

εnŝ

)2

(ŝk̂θ)
2(A1 +B1 cosλ), (38)

where

a1 = ω̂0 −
n̂′′0
ŝq
ω̂0 − 2ω̂0k̂

2
θ ,

b1 = εn(A− 2eσ1 cosλv),

c1 = −2εne
σ1 sinλv,

σ1 =
−iεnŝ

4q(ŝk̂θ)2ω̂0

,

λv =
v̂′0k̂θŝ

2ω̂0

,

A1 = (k̂2
θ + 1)ω̂2

0 − ω̂0,

B1 = εnA(2ω̂0 − 1).
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Substituting Eqs. (37) and (38) into Eqs. (34) and (35), we get

Ψ(λ) = exp
{
i2πN + i

(
qk̂θ
εn

)2

nεn
[ 2B1b1

b2
1 + c2

1

tan−1

(a1 − b1) tan λ
2

+ c1√
a2

1 − b2
1 − c2

1

− λ


− B1c1

b2
1 + c2

1

ln(a1 + b1 cosλ+ c1 sinλ)
]}
, (39)

and

Ω = Ω0 + Ω1 = −
(
qk̂θ
εn

)2 {
A1 +

[
B1b1

b2
1 + c2

1

√
a2

1 − b2
1 − c2

1 − a2
1)

]}
, (40)

for N = 0.

The term in the square bracket on the right hand side of Eq. (40), Ω1, is the correction for

the global eigenvalue, that is introduced by and proportional to the toroidal coupling effect

εn. This is in contrast with the first kind of ballooning instability for which such correction is

zero.15 Therefore, we identify the modes studied here as a second kind ballooning instability

which occurs at all radii and is more plausible candidate responsible for the anomaly of

transport in magnetically confined plasmas.

Usually, further expansions are made,17,18 then we write∫ λ dλ′

L1(λ′)
= − inεn

k̂2
θqa1

[
λ− εn

a1

(A sinλ− 2eσ1) sin(λ− λv)
]
,

and

Ω(λ) = Ω + ∆Ω cosλ, (41)

with

Ω = −
(

q

εnk̂θ

)2

A1,

∆Ω = −
(

q

εnk̂θ

)2

εnA
[
2ω̂0(k̂

2
θ − 1)− 1

]
,

and ∫ λ Ω(λ′)dλ′

L1(λ′)
=

inq

ω̂0εn(1− 2a1)

{
A1λ+ εn

[
A(2ω̂0 − 1)+

A1A

a1

]
sinλ− A1εn

a1

eσ1 sin(λ− λv)
}
. (42)
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Substituting Eq. (41) into Eq. (35) gives

Ω = Ω. (43)

It is the average value of Ω(λ) over λ for N = 0. Comparison of Eq. (40) with Eq. (43)

reveals that the correction part Ω1 in the former is missed in the latter. In other words, the

first order correction to the eigenvalue is missed with the expansion usually employed.

The eigenfunction under the usual expansion turns out to be (for N = 0)

Ψ(λ) = exp

{
− inq

ω̂2
0(1− 2ω̂0k̂2

θ)
[g1 sinλ− g2 sin(λ− λv)]

}
, (44)

where

g1 =
[
4A1(1− ω̂0k̂

2
θ) + ω̂0(1 + 2ω̂0k̂

2
θ)
]
A,

g2 = 4A1e
σ1 .

The characteristics of this function are discussed in detail for λv = 0 in Ref.17. The parameter

λv represents the PVS effects and changes the mode localization in λ-space.

IV Mode Structure and Reynolds Stress

According to Eq. (17), the spatial part of the perturbed electrostatic potential may be written

as

Φn(r, θ, ζ) = einζ−imθ
∑
l

e−ilθφl(r). (45)

Substituting Eqs. (20), (28), (32) and (39) into Eq. (45) would give a general expression for

Φn(r, θ, ζ). We leave such an expression for late numerical analysis and use Eq. (44) instead

of Eq. (39) for Ψ(λ) at present. By rewriting

χ(k, λ) = χ
0 exp[σ(k − k0)

2], (46)

with

k0 = −∆k +
iq

4σεn
k̂θv̂
′
0, (47)
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we get

Φn(r, θ, ζ) = einζ−imθ
∑
l

∮
dλdkeil(θ+k+λ)+ikxΨ(λ)χ(k, λ)

' einζ−imθ
∮
dλeixθΨ0 exp

{
−inq
a2

1

[α1xλ+ g1 sinλ− g2 sin(λ− λv)]
}
χ(−θ − λ, λ),

where

α1 =
a2

1

nq
.

With the standard saddle point approximation, the integration over λ may be carried out

and we have the mode structure,

Φn(r, θ, ζ) ' einζ−imθΨ0e
−ixθ×

χ(−θ − λ0, λ0) exp

{
−inq
a2

1

[α1xλ0 + g1 sinλ0 − g2 sin(λ0 − λv)]
}
,

where λ0(x) is determined by the stationary point condition

α1x+ g1 sinλ0 − g2 sin(λ0 − λv) = 0. (48)

We remember that χ(k, λ) is originally the zeroth order eigenfunction in k−space, i.e. in

Fourier space. With an inverse Fourier transform, finally, the mode structure in the real

space turns out to be

Φn(r, θ, ζ) ' einζ−imθ{
∑
l

exp[il(θ + λ0)]e
{ (x−l)2

4σ
+ik0(x−l)}×

exp{− 1

α1

[g1 sinλ0 − g2 sin(λ0 − λv)]}. (49)

We note in Eq. (49) that the terms in the first brace are the summation over different

harmonics including the side-band harmonics, and the last exponential, varying on a longer

scale length, gives an envelope of the mode structure. The amplitude of each harmonic is

determined by the first exponential in the first brace.

It has been pointed out12 that the Reynolds stress created by turbulence strongly depends

on the asymmetry of the mode structure. Here, the asymmetry comes most probably from

14



the k0 term. In order to make an estimate, let us get an explicit expression for i2σk0 from

Eqs. (33) and (47),

i2σk0 '
q

ŝ
(ŝ− 1) sinλ0

(
1 +

εn(2ŝ− 1)

k̂θŝω̂0

cosλ0

) 1
2 +

qk̂θv̂
′
0

2εn
. (50)

The dependence of λ0 on x is rather weak and the main imaginary part in Eq. (50) comes

from ω̂0 and is of order εn(¿ 1). The role of this part in symmetry breaking of the 2D mode

structure is emphasized in Ref. 17. The second term in Eq. (50) is of order 1. It is real and

introduces a pure shift without deforming the mode structure in x-space in plasmas with

cold ions (Ti/Te ¿ 1).

On the other hand, the last term in Eq. (50) has to be changed to

∆ =
qk̂θv̂

′
0ω̂

2εn(ω̂ +K)
,

with a significant imaginary part, when finite ion temperature effects are taken into account.12

In this case, the symmetry breaking deformation of the mode structure, that is introduced

by the imaginary part of ∆, is significantly enhanced by a PVS, and a considerable Reynolds

stress may be created by the turbulence The imaginary part of ∆ and therefore the defor-

mation of the mode structure is proportional to the growth rate of the mode (and therefore

to ηi) and the ratio Ti/Te. All these three quantities are strongly related to the ion heating

power and the higher the latter, the higher the former. This result is rather important from

the point of view that there is a threshold of ion heating power for the formation of an

internal transport barrier (ITB) in experiments.21

Numerical calculations are performed to study the features of the mode structure and

Reynolds stress in detail. From Eqs. (20), (28), (32), and (39), the 2D structure of the mode

may be written as

φn(x, θ) = eimθ
L∑

l=−L
e−ilθ

∮
dλe−ilλΨ(λ)χ(x− l, λ), (51)
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where

χ(x− l, λ) =
1√
−2σ

exp
[(x− l)2

4σ
− i∆k(x− l)

]
, (52)

and

∆k =
εn(ŝ− 1) sinλ

ω̂(k̂θŝ)2 + εn(2ŝ− 1) cosλ
− iqk̂θv̂

′
0

4σεn
. (53)

The mode structure in x-space at θ = 0 is shown in Fig. 1. The other parameters are

εn = 0.01, ŝ = 1.4, k̂θ = 0.01, q = 1.5, v̂′0 = 1.1, n̂′′0 = 0.05, N = 0, n = 10. The real

part (Fig. 1(a)) of the function is much higher than its imaginary part (Fig. 1(b)). The

structure is composed of one dominant and a few side-band harmonics. The maximum of

the dominant harmonic is shifted from the rational surface due to the toroidal coupling and

PVS effects. The asymmetry of the mode structure is purely due to the toroidal coupling

and is very limited in this case.

In order to show the role of finite ion temperature in the asymmetry creation of the mode

structure, that is discussed analytically above, the mode structure is shown again in Fig.2

when the deformation factor ∆k in Eq. (52) is replaced by

∆k =
εn(ŝ− 1) sinλ

ω̂(k̂θŝ)2 + εn(2ŝ− 1) cosλ
− iqk̂θv̂

′
0

4σεn

ω̂

(ω̂ +K)
. (54)

ηi = 2 and Ti = Te are used and the other parameters are the same as that in Fig. 1. We

note that this is an approximate consideration only since the ballooning equations and their

solutions must be changed when the finite Ti effect is taken into account (see Appendix).

Even so, it is enough to demonstrate the importance of a finite Ti. In comparison with

Fig. 1(a) it is clear that the asymmetry in the mode structure is high now. In addition,

there is a deformation in the dominant harmonic and the relative amplitudes of the side-

band ones are higher than they are in Fig. 1(a) .

The Reynolds stress from the turbulence given with Eq. (51) is

R ∼ 〈1
r

∂Φn

∂θ

∂Φn

∂r
〉
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= 〈[
(∑

l

(m+ l)
∮
dλe−ilθ−ilλΨ(λ)χ(x− l, λ)

)
]× (55)

[
(∑

l

1(m+ l1)
∮
dλe−ilθ−il1λ(x− l1 − i2σ∆kΨ(λ)χ(x− l1, λ)

)
]〉.

The numerical results are given in Fig. 3 as functions of magnetic shear for the same pa-

rameters as that in Figs. 1 and 2. The up line is for Fig. 2 and the down line is for Fig. 1.

It is clear that the turbulence created Reynolds stress is much higher in plasmas with finite

Ti ' Te than it is when Ti ¿ Te. This result is in good agreement with above analytic

analysis.

V Conclusions

In this work, it is shown with asymptotic expansion that the Fourier-ballooning represen-

tation is appropriate for the study of short wavelength drift-like perturbations in toroidal

plasmas with a PVS. The mode driven by a PVS, that belongs to the second kind of drift-type

instabilities in a torus and therefore is more general, is investigated. The radial structure of

the modes is studied in detail. The Reynolds stress created by PVS turbulence and proposed

as one of the sources for a sheared poloidal plasma rotation is analyzed. It is demonstrated

that the Reynolds stress creation ability from PVS driven turbulence is proportional to the

growth rate of the mode (and therefore to ηi) and the ratio Ti/Te. All these three quantities

are strongly related to the ion heating power and the higher the latter, the higher the former.

The correlation of this observation with the requirement that ion heating power be higher

than certain threshold values for formation of internal transport barriers is emphasized.
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Appendix: Finite Ion temperature Effects

The equations for the plasmas with finite ion temperature (Ti/Te 6= 0) are given in this Ap-

pendix. Starting from Eq. (14) and following exactly the procedures outlined after Eq. (16),

we get the counterpart of Eq. (22) in plasmas with finite Ti as[
L̂0 + L̂1

∂

∂λ
− Ω

]
φ(k, λ) = 0,

where

L̂0 =
∂2

∂k2
+

iv̂′0qk̂θω̂

εn(ω̂ +K)

∂

pak
+

(
qk̂θ
εn

)2

ω̂
[
ω̂(k̂θŝ)

2 + 2εnP (k, λ)
]
,

Ω(λ) = −
(
qk̂θ

εn

)2

(k̂θŝ)
2

[
ω̂2(ω̂ − 1)

(ω̂ +K)
+ ω̂2k̂2

θ

]
,

L̂1 =
1

n

{−iKk̂θ
ω̂q

∂2

∂k2
+
k̂θv̂
′
0

εn

(
1 +

v̂′′0
v̂′0ŝ

)
∂

∂k
+
ik̂3
θ ω̂q

ε2n

(
1− n̂′′0

ŝq
− 2k̂2

θ(ω̂ +K)−

2εn cos(k + λ)
)

+
iKk̂θ
q

(
q

εnŝ

)2 [
k̂4
θ ŝ

2ω̂(ŝ2k2 + 1)−

2(k̂θŝ)
2εn (P (k, λ) + cos(k + λ))− 2ω̂k̂2

θ

]}
.

It is apparent that, to the lowest order, a finite Ti introduces two changes: one in L̂0 and

the other in Ω(λ). The change in the former is essential for the mode structure modification

introduced by v̂′0. This is discussed in detail in Ref. 12 and will not be repeated here.

The inclusion of a finite Ti makes L̂1 more complicated than it is for Ti = 0. However, the

effects introduced by such complication are expected to be quantitative but not qualitative.
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Figure Captions

1. The real (a) and imaginary (b) part of the mode structure in r direction. The param-

eters are ŝ = 1.4, εn = 0.01, q = 1.5, k̂θ = 0.01, v̂′‖ = 1.1, n = 10, θ = 0. n̂′′0 =

0.05, N = 0, K = 0

2. The same as Fig. 1 except that K = 3.

3. Reynolds stress R versus magnetic shear ŝ for K = 0 (down) and K = 3 (up). The

other parameters are the same as that in Fig. 1.
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