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Neutron spin quantum plasmas – Ferromagnetism as a relaxed state
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It is shown that a ferromagnetic “minimum energy relaxed state” is accessible to a neutron fluid. We
model the neutron fluid as a spin quantum plasma where the electromagnetic interaction is trough
the magnetic moment of the neutron. The neutron ferromagnetism results from the macroscopic spin
alignment that occurs due to a profound interplay between the classical and spin quantum vorticities
carried by the charge-less neutron fluid. The simplest manifestation of a neutron superfluidity comes
about by an exact cancellation of the quantum and classical vorticities to create a helicity free system.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Search for constrained minimum energy states, as a paradigm
for self-organization, has been a very creative enterprise in plasma
physics. A particular class of such states, where energy is mini-
mized subject to helicity constraints, are known as relaxed states,
and have been invoked to model plasma equilibria in a variety
of settings, laboratory as well as astrophysical [1–7]. Most of this
search was confined to classical, non-relativistic plasmas with the
exception of Ref. [7] that investigates a fully relativistic electron–
positron system.

This search, can be naturally extended to what are known as
spin quantum plasmas [8–11], a relatively new field in a state of
rapid development. Spin quantum plasmas are fluid systems con-
sisting of particles that obey the Schrödinger–Pauli equation, and
are being investigated to study the collective motions that a many-
body quantum system can execute. Instead of dwelling on the
binary interactions, a plasma description emphasizes the motion
of a test particle in a mean field generated by all other particles.

Since the Schrödinger–Pauli equation (describing the non-
relativistic dynamics of spin-half particles) may be used to model
even uncharged particles, the general formalism [8,9,11–13] could
just as well be applied to study the collective behavior of a neutron
fluid. Though uncharged, the neutron fluid does interact with the
electromagnetic field through its non-zero magnetic moment. In
this work we demonstrate that an electromagnetically active spin
quantum neutron fluid can self-organize into what may be viewed
as a “ferromagnetic minimum energy relaxed state” – a state that
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is endowed with a macroscopic spin field, a magnetization current,
and, consequently, a macroscopic magnetic field. The relaxed state
is derived through a constrained variational principle involving the
conserved dynamical energy, and the conserved total helicity of
the neutron fluid.

Derivation and analysis of relaxed states in a charged spin sys-
tem (an electron spin quantum plasma, for example) will be the
subject of an upcoming paper. It aught to be pointed out that fer-
romagnetic behavior may also be induced via instabilities [14]. The
relaxed states, investigated here, are, however, equilibrium ferro-
magnetic configurations.

2. Neutron plasma: spin quantum fluid model

To model the neutron fluid, we will invoke the recently devel-
oped vortical formalism of spin quantum plasmas [12,13]. This for-
malism, derived from the standard works on the subject [8,9,15],
is particularly suitable for unifying and revealing phenomena con-
nected with the deeper structure of plasma dynamics. The neutron
plasma, defined as a fluid composed of particles with neutron
mass, null charge but a finite intrinsic magnetic moment, is just
a special case of the general quantum plasma; its electrodynamics
is manifested through its spin-magnetic moment.

The dynamical equations describing a neutron fluid are ab-
stracted from the general spinning quantum plasma system [12,13]
by letting the electric charge e go to zero while retaining the mag-
netic moment μ (to appropriately reflect its observed value). The
relevant system consists of the continuity

∂n

∂t
+ ∇ · (nv) = 0, (1)

and the momentum balance equations
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(
∂

∂t
+ v · ∇

)
v = nμSi∇ B̂ i − ∇p + nh̄2

2m
∇

(∇2√n√
n

)

+ nh̄2

8m
∇(

∂ j Si∂
j S i), (2)

where n is the density, v is the fluid velocity, S is the spin vector,
m is the neutron mass, μ � −9.66 × 10−24 erg/G is the neutron
magnetic moment, h̄ is the reduced Planck constant and c is the
speed of light. The cursive letters (i, j = 1,2,3) label the vector
components. The effective magnetic field

B̂ = B + h̄2

4mnμ
∂i

(
n∂ iS

)
(3)

adds a spin stress part to the magnetic field B. The last three
terms on the right hand side of the momentum equation are, re-
spectively, the force produced by the classical fluid pressure p,
the Bohm potential and the effective spin pressure. These gradi-
ent forces will not play much of a role in the vortical dynamics
that we will develop in order to investigate self-organized ferro-
magnetism in a quantum neutron plasma. Lastly the macroscopic
spin vector evolves via(

∂

∂t
+ v · ∇

)
S = 2μ

h̄
(S × B̂). (4)

The spin field represents the normalized (S · S = 1), ensemble
averaged macroscopic spin of the neutron fluid, and couples to the
electromagnetic field through the magnetization M = μnS. For the
neutron fluid, the spin magnetization current is the only source for
the electromagnetic fields; the Maxwell equation takes the form

∇ × B = 4π∇ × M + 1

c

∂E

∂t
, (5)

where E is the electric field.
For an incompressible, barotropic, neutron fluid, the set of

Eqs. (1)–(4) can be manipulated to the equivalent evolution equa-
tions [12,15]

∂Ωc

∂t
= ∇ × (v × Ωc) + μ

m
∇ S j × ∇ B̂ j, (6)

∂Ω−
∂t

= ∇ × (v × Ω−) (7)

for the two vorticities Ωc = ∇ × v, and

Ω− = Ωc − h̄

2m
Ωq = ∇ ×

(
v − h̄

2m
Pq

)
= ∇ × P−. (8)

The former is the standard classical fluid vorticity, while the lat-
ter is a recently introduced (and explored) hybrid vorticity [12]
straddling classical and quantum physics. The quantum part of
the vorticity, Ωq = ∇ × Pq is derivable from the vector poten-
tial constructed from the spin components Pq = −S3∇η, where
η = arctan(S2/S1) (see Refs. [12,13,15] for details about quantum
vorticity).

Eq. (7) for Ω− is in the Helmholtz form and constitutes an ideal
vortex dynamics. When manipulated along with its uncurled coun-
terpart

∂P−
∂t

= v × Ω−, (9)

it yields the conserved helicity (dh−/dt = 0)

h− = 〈Ω− · P−〉, (10)

where 〈 〉 ≡ ∫
d3x. Extracting a helicity constant of motion was the

raison d’etre for constructing the hybrid vorticity Ω− [12]. In ad-
dition to the purely classical part Ωc · v, the conserved helicity
h− = 〈Ω− · P−〉 =
〈(

Ωc − h̄

m
Ωq

)
· v

〉
(11)

has a classical–quantum hybrid part h̄Ωq · v/m; note that the
purely quantum contribution to the helicity density (Ωq · Pq ≡ 0)
vanishes due to the Clebsch form of the potential Pq . In going
from (10) to (11), we have performed a partial integration and
dropped the surface term.

The neutron fluid also allows an energy invariant. Manipulating
the momentum equation (2) and the spin evolution equation (4),
we can readily extract the conserved quantity (dΣ/dt = 0),

Σ =
〈

mn

2
v2 − nμS · B + h̄2n

8m
∂ j Si∂

j S i + B2 + E2

8π

〉
, (12)

that is the sum of the kinetic energy, the spin–magnetic interaction
energy, the energy stored in the effective spin pressure, and the
energy associated with the electromagnetic field.

Since thermal part is missing, Σ is not the total energy of the
fluid. It is, however, the only part that is relevant for this study
since thermal energy, contributing purely potential force, does not
figure in the incompressible vortical dynamics. Throughout the rest
of the Letter, although we will use the word energy for Σ , it must
be understood that it signifies only the dynamically pertinent part
of the energy. For example Σ = 0 does not, by any means, imply
that the total energy of the fluid is zero.

3. Relaxed states

The helicity and the energy invariants provide the foundation
for explorations into a possible neutron ferromagnetic state. Fol-
lowing a strong plasma physics tradition, we seek a relaxed state
(classical–quantum in this case) by a constrained minimization of
the energy Σ ; the constraint being the conservation of the helic-
ity h− . Formally, the relaxed states are derived from the condition

δΣ − Λδh− = 0, (13)

where Λ is a Lagrange multiplier needed to impose the constant
helicity constraint.

Before continuing with the minimization process, we note that
in the absence of a charged current, the equilibrium Maxwell equa-
tion (5)

∇ × B = 4πμn∇ × S, (14)

relates the variations of the magnetic and the spin field, i.e. δB =
4πμnδS. This extra constraint allow us to calculate the variation
of energy (12) in a straightforward way

δΣ =
〈
mnv · δv −

(
nh̄2

4m
∇2S + 4πμ2n2S

)
· δS

〉
+

〈
E · δE

4π

〉
. (15)

The helicity variation δh− requires more care. We first express
the total variation of Eq. (11) in terms of δv and the variation in
the quantum potential δPq ,

δh− =
〈
2Ω− · δv − h̄

m
Ωc · δPq

〉
, (16)

and then transform δPq into the variation of the spin field
〈Ωc · δPq〉 = 〈−Ωc · ∇ηδS3 + ∇ S3 · Ωcδη〉 to, finally, arrive at

δh− =
〈
2Ω− · δv + h̄

m
Ωc · ∇ηδS3 − h̄

m
∇ S3 · Ωcδη

〉
. (17)

Now, the condition (13) for arbitrary variations yields the equa-
tions determining the equilibrium relaxed states. These are E = 0,
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2Λ
v = Ω−, (18)

nh̄

4
∇ · (S2∇ S1 − S1∇ S2) = −Λ∇ S3 · Ωc, (19)

nh̄

4

(
S3

S1∇2 S1 + S2∇2 S2

S2
1 + S2

2

− ∇2 S3

)
= Λ∇η · Ωc, (20)

where we have used the normalization of the spin to cast the vari-
ations of its components δS1 = −S2δη − S1 S3δS3/(S2

1 + S2
2) and

δS2 = S1δη − S2 S3δS3/(S2
1 + S2

2) in terms of the variation of the
two independent variables δS3 and δη.

There are two particularly noteworthy features for these relaxed
states of the neutron fluid. First, the magnetic field is purely spin
generated [Eq. (14)] as it should be since neutrons, being charge
neutral, carry no “electrical” current. Second, on the relaxed states,
the Lagrange multiplier is related to the energy and helicity as Λ =
Σ/h− .

It is straightforward to show that the relaxed state, contained
in Eqs. (18) to (20), is, indeed, an equilibrium state. The main step
in the demonstration is that Eqs. (19) and (20) can be combined
to yield

nh̄

4
∇ Si∇2 Si = ΛΩc × Ωq. (21)

4. Exact Relaxed State (ERS)

Our next and main objective is to explore the possibility of
“ferromagnetism” in the system of Eqs. (18) to (20), represent-
ing a minimum energy relaxed state accessible to a neutron spin
quantum plasma; the ferromagnetism will be a consequence of
a non-zero macroscopic spin field. It is hard not to notice that
Eqs. (18) to (20) constitute a rather complicated set of highly
nonlinear, constrained, partial differential equations. We have just
begun a program to investigate their general solubility. Fortu-
nately the system does allow a very simple but non-trivial two-
dimensional exact solution. The reader can verify, by direct substi-
tution, that

S1 = sin

(
x

Lx

)
cos

(
y

L y

)
,

S2 = sin

(
x

Lx

)
sin

(
y

L y

)
,

S3 = cos

(
x

Lx

)
, (22)

v

c
= − λc

2L y
cos

(
x

Lx

)
ê y, (23)

and

1

Λ
= 0, (24)

does, indeed, solve Eqs. (18)–(20), where λc = h̄/mc is the Comp-
ton length, and Lx and L y are the variation length scales along x
and y directions. The solution preserves the spin normalization
condition S · S = 1 that implies only two independent components
of the spin vector. The velocity (and the theory) will remain non-
relativistic as λc 	 L y .

The condition (24) implies that the total helicity of this solution
is zero. Notice that h− = 〈P− ·Ω−〉 = 0 is an integral condition and
should not, necessarily, require the helicity density to vanish. How-
ever for the velocity field (23), the helicity density Ω− does vanish
(on the solution v/c = λcPq/2). The exact cancellation of the spin
induced quantum part of the helicity by the classical part is what
sets the stage for this remarkably simple and elegant solution. We
will refer to this as ERS.

Despite its simplicity, the ERS is a totally non-trivial solution;
it represents structured, non-zero spin and velocity fields, and
consequently a non-trivial equilibrium magnetic field B = B1êx +
B2ê y + B3êz given by Eq. (14). The components are readily calcu-
lated to be

B1 = 4πμnLx

L2
x + L2

y

[
L y cos

(
x

Lx

)
+ Lx sin

(
x

Lx

)]
cos

(
y

L y

)
, (25)

B2 = 4πμnL y

L2
x + L2

y

[
L y sin

(
x

Lx

)
− Lx cos

(
x

Lx

)]
sin

(
y

L y

)
, (26)

B3 = 4πμn cos

(
x

Lx

)
. (27)

To avoid confusion, we should state here that if we had naively
solved Eq. (14) to obtain B = 4πμnS, we would be violating
∇ · B = 0. The magnetic field, displayed above, is the exact solu-
tion consistent with the divergence condition.

To further explore the characteristics of this solution, let us as-
sume that the two length scales are quite disparate with L y 	 Lx .
We could then consider Lx to be a measure of some appropriate
macroscopic length of the system (for instance the radius of a neu-
tron star if one were studying the origin of magnetic fields in such
objects). Under this choice, the components B1 and B2 will have,
in addition to the slow macroscopic x variation, a very fast y vari-
ation while the component B3 will vary only on the macroscopic
length scale Lx . The neutron fluid, thus, can sustain a global macro-
scopic magnetic field aligned along the direction of S3.

The maximum global macroscopic field B3 ∼ 4πμn could at-
tain values ∼ 1.2 × 1013 G in a neutron star with n = 1035 cm−3

(mass density ∼ 1.7 × 1011 g/cm−3). In the extreme case of a neu-
tron star plasma with n = 1037 cm−3 (corresponding to a mass
density ∼ 1.7 × 1013 g/cm−3), the maximum magnetic field could
reach ∼ 1015 G. These intensities are close to the critical Schwinger
limit, B S = m2

e c3/(eh̄) ≈ 4.4 × 1013 G (me and e are the electron
mass and charge respectively) where quantum electrodynamical
(QED) effects, like creation of electron–positron pairs, can take
place. In regions close to the core, the density of the neutron
star plasma is higher, and the magnetic field (27) is much larger
than the Schwinger magnetic field. To deal with systems with such
high magnetic fields, one must include electron–positron dynam-
ics into the model; a simplified model based on a pure neutron
fluid may not be sufficient. The results derived in the current work
are based on the assumptions that the percentage of electron pop-
ulation in a neutron fluid (for example in the neutron star outer
regions) could only introduce marginal QED effects for densities
of ∼ 1035 cm−3, that the treatment will remain non-relativistic as
long as L y � λc , and the expected average kinetic energy of the
neutron is much less than a GeV.

To correct both these shortcomings, the theory of neutron
star ferromagnetism should be extended through a fully quantum
relativistic treatment of the neutron matter [16,17], and through
including appropriate QED effects pertinent at such enormous
magnetic fields. We, however, believe, that despite these consid-
erations, the result for the equilibrium magnetic field (27) can be
quite robust (even at the leading order behavior in the relativistic
quantum regime).

5. Conclusions

We have just demonstrated the existence of ferromagnetism
in a neutron fluid; we found an equilibrium relaxed state, acces-
sible to a neutron fluid, that has a finite net spin field, which,
in turn, yields a finite net magnetic field. For the very simple
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exact solution (ERS), the dynamical conserved energy is finite
whereas the total conserved generalized helicity is zero. The most
interesting and important feature of the ERS is the non-zero spin
field and non-zero quantum vorticity – in fact the quantum vor-
ticity must be large enough to cancel the classical part. The spin
field (22) of the neutron fluid, via the associated magnetization
current (= ∇ × μnS), generates an equilibrium magnetic field even
when there are no charged particle currents.

Depending on the length scales of variations of the spin field,
the magnetic field can show a macroscopic alignment in one di-
rection [Eq. (27)]. This global ferromagnetism occurs when one
of the spin length scales is a macroscopic length of the system.
The origin of the spin–ferromagnetism displayed by the dynamic
neutron fluid comes about through a deep interaction between
classical and quantum features under specific conditions. In order
to make the total vorticity zero the classical and spin quantum
parts must balance. Since helicity is a measure of the topological
complexity of the “flow”, its vanishing is almost a precondition for
superfluid-like behavior of the neutron fluid. The neutron super-
fluid carries a net non-zero spin field along with its concomitant
magnetic field.

We believe that the Exact Relaxed State solution captures the
essence of neutron ferromagnetism, though one should look for
more general nonlinear solutions and general formalisms.

The theory presented in this Letter could certainly help in the
development of a theoretical framework for a new creation mech-
anisms for large magnetic fields in neutron stars [18–20]. This will
be the subject of a forthcoming paper.
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