
IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 55 (2013) 025003 (9pp) doi:10.1088/0741-3335/55/2/025003

Gap eigenmode of radially localized
helicon waves in a periodic structure
L Chang1, B N Breizman2 and M J Hole1

1 Plasma Research Laboratory, Research School of Physics and Engineering, Australian National
University, Canberra, ACT 0200, Australia
2 Institute for Fusion Studies, The University of Texas, Austin, Texas 78712, USA

E-mail: chang.lei@anu.edu.au, matthew.hole@anu.edu.au and breizman@mail.utexas.edu

Received 18 October 2012, in final form 20 November 2012
Published 21 December 2012
Online at stacks.iop.org/PPCF/55/025003

Abstract
An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model
a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A
radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is
considered. We demonstrate that the computed gap frequency and gap width agree well with a
theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the
system’s periodicity. The axial wavelength of the gap eigenmode is close to twice the system’s
periodicity, which is consistent with Bragg’s law. Such an eigenmode could be excited by
energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions
in tokamaks. Experimental identification of this mode is conceivable on the large plasma
device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875).

(Some figures may appear in colour only in the online journal)

1. Introduction

It is a generic phenomenon that spectral gaps are formed
when waves propagate in periodic media, and eigenmodes
can exist with frequencies inside the spectral gaps if a
defect is introduced to break the system’s perfect translational
symmetry, and create an effective potential well to localize
these waves [1–6]. Fusion plasmas have a few periodicities
that can produce spectral gaps: geodesic curvature of field
lines [7], elongation [8, 9] or triangularity of flux surfaces
[10], helicity [11] and periodic mirroring in stellerators [12].
Weakly damped eigenmodes which are readily destabilized by
energetic ions often reside in these gaps, and they may degrade
fast ion confinement [13, 14]. The most extensively studied
gap eigenmode is the toroidicity-induced Alfvén eigenmode
(TAE) [15]; however, there are also numerous other modes
with similar features [16–19].

Zhang et al [20] observed a spectral gap in the shear
Alfvén wave continuum in experiments on large plasma
device (LAPD) with a multiple magnetic mirror array, and
obtained consistent results through two-dimensional numerical
modelling using the finite difference code, ElectroMagnetic
Solver (EMS) [21]. Although eigenmodes inside this gap

were not formed, a possible experimental implementation was
proposed to detect them. The idea is to use the endplate of
the machine as a ‘defect’ that breaks the axial periodicity or
to vary current in one of the independently powered magnetic
coils.

In this study, we will use EMS to examine a gap eigenmode
in a linear system with slightly broken axial periodicity. We
will consider the radially localized helicon (RLH) mode,
whose radial structure has been described in [22]. We will
show that the computed gap frequency and gap width agree
well with a theoretical analysis, and that there is a discrete
eigenmode inside the gap. Such an eigenmode could be excited
by energetic electrons, similarly to the excitation of toroidal
Alfvén eigenmodes (TAE) by energetic ions in tokamaks, and
possibly observed on a linear device, e.g. LAPD.

2. Theoretical analysis

2.1. Basic equations

The spatial structure of RLH wave field and the corresponding
dispersion relation can be found from (17) in [22] that applies
to a whistler-type linear wave in a cold plasma cylinder and
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has the form
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where E = Ez − (kzr/m)Eϕ with Ez and Eϕ the axial and
azimuthal components of the wave electric field, respectively,
m is the azimuthal mode number, kz is the axial wave
number and c is the speed of light. Functions g and η

represent components of the dielectric tensor (see (42)) that
are approximated as g = ω2

p/ωωc and η = −ω2
p/ω

2, where
ωp is the electron plasma frequency and ωc is the electron
cyclotron frequency.

In this section, we will limit our consideration to the case
of sufficiently dense plasma in which ω2

p � c2m/a2, where
a is the plasma radius. The resulting eigenfrequency for the
mode of interest scales roughly as [22]
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z rη in the denominator
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It was also shown in [22] (see (16) there) that
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which is thus much less than unity for the mode of interest.
The underlying reason is that the electron conductivity along
the guiding magnetic field is much greater than the cross-field
Hall conductivity. It is therefore allowable to set Ez = 0 and
ignore the term (m∂g/∂r)/k2

z rη in the denominator of (1),
which gives
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We now generalize this equation to the case of slightly
modulated (z-dependent) plasma equilibrium with a following
separable form of ω2

p/ωc:

ω2
p

ωc
= ω2

p0(r)

ωc0
[1 − ε(z) cos qz]. (6)

Here, ε � 1 and q are the modulation envelope and
wavenumber, respectively. The axial scale-length of the
envelope ε(z) is assumed to be much greater than 1/q. We
recall that k2

z = −∂2/∂z2 and transform (5) to
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The modulated equilibrium introduces resonant coupling
between the modes with kz = q/2 and kz = −q/2, which
suggests the following form for Eϕ :

Eϕ = A+eiqz/2 + A−e−iqz/2, (8)

where A+ and A− are slow functions of z compared with cos qz.
Let ω0 be an eigenfrequency of (7) for ε = 0 and

|kz| = q/2. It is then straightforward to separate spatial scales
in (7) and obtain a set of coupled equations for A+ and A−:
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We have neglected second axial derivatives of A+ and A− and
arranged (9) and (10) so that their right-hand sides represent
relatively small terms compared with the dominant terms on
the left-hand sides. With this ordering, we conclude that the
radial dependencies of A+ and A− need to be close to the
eigenfunction �(r) of the lowest order ODE
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The differential operator in this equation is self-adjoint. As
a result, multiplication of (9) and (10) by r� and integration
over radius lead to
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Having eliminated the lowest order terms, we now set

A+ = F(z)�(r), A− = G(z)�(r) (14)

2



Plasma Phys. Control. Fusion 55 (2013) 025003 L Chang et al

in (12) and (13) to obtain the following set of coupled equations
for F(z) and G(z):

0 = 4i
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ε(z), (15)
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2
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2.2. Spectral gap and continuum

In the case of z-independent ε, (15) and (16) have exponential
solutions

F ∝ G ∝ eiκz (17)

with κ the wave number. The corresponding dispersion
relation has two roots:

ω+(κ) = ω0[1 +
√

(4κ/q)2 + (ε/2)2],

ω−(κ) = ω0[1 −
√

(4κ/q)2 + (ε/2)2]. (18)

Here, ω+(κ) and ω−(κ) are the continuum frequencies above
and below the spectral gap, respectively. The upper and lower
tips of the spectral gap correspond to κ = 0:
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)
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)
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The normalized width of the gap, �ω ≡ [ω+(0)−ω−(0)]/ω0,
is therefore equal to the modulation amplitude ε. The central
frequency of the gap ω0 needs to be found from (11) as the
RLH eigenfrequency for an axially uniform plasma cylinder
and it can be written as

ω0 = 	
ωc0(0)c2q2

4ωp0(0)2
, (20)

where ωc0(0) and ωp0(0) are the on-axis values and the
numerical form factor 	 is determined by the plasma radial
profile.

2.3. Wall-localized eigenmodes

A discrete-spectrum eigenmode can be created inside the
spectral gap if the system’s periodicity is broken. We illustrate
that by considering an ideally conducting endplate located at
z = z0, so that the plasma now occupies only a half cylinder
to the right of the endplate (z > z0). The boundary condition
at the endplate is

Eϕ(r; z0) = 0 (21)

or, equivalently,

F(z0)e
iqz0/2 + G(z0)e

−iqz0/2 = 0 (22)

(see (8) and (14)). The electric field of the discrete-spectrum
mode must also vanish at z → ∞, i.e.

F(∞) = G(∞) = 0. (23)

Equations (15) and (16) (with ε = const) admit an exponential
solution

F ∝ G ∝ e−λz (24)

with a positive value of λ that satisfies boundary conditions in
(22) and (23).

Indeed, the exponential ansatz, (24), reduces (15), (16)
and (22) to an algebraic set
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F + Ge−iqz0 = 0. (27)

The solvability conditions for this set determine ω and λ as
functions of z0 as follows:

ω − ω0

ω0
= −ε

2
cos qz0, (28)

λ = ε

8
q sin qz0. (29)

We observe that λ is positive for 0 < qz0 < π , and the wave
field therefore vanishes at infinity in this case to represent a
discrete eigenmode whose frequency is automatically inside
the gap. In particular, the eigenfrequency is exactly at the
gap centre when qz0 = π/2. We further note that this
wall-localized solution can also be viewed as an odd-parity
eigenmode (Eϕ(z) = −Eϕ(2z0 − z)) in the entire periodic
cylinder with a defect at z = z0. An axial profile of ω2

p/ωc

with such defect is shown in figure 1(a).

2.4. Even-parity eigenmode

In contrast with figure 1(a), figure (b) illustrates a defect with
π < qz0 < 2π that does not produce an odd-parity mode.
Instead, an even-parity mode exists in this case. This mode is
still described by (15) and (16), but the boundary condition at
z = z0 now changes from (21) to

[
∂Eϕ(r; z)

∂z

]
z=z0

= 0, (30)

or, equivalently,

F − Ge−iqz0 = 0. (31)

The solvability conditions for (25), (26) and (31) now give

ω − ω0

ω0
= ε

2
cos qz0, (32)

λ = −ε

8
q sin qz0, (33)

and we observe that λ is positive (the wave field vanishes at
infinity) when sin qz0 < 0, i.e. this even-parity eigenmode
indeed requires π < qz0 < 2π for its existence.
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(a) (b)

Figure 1. Axial profiles of ω2
p/ωc with defects: (a) defect location at sin qz0 = 1, (b) defect location at sin qz0 = −1.

2.5. Schrödinger equation for gap modes

Equations (15) and (16) can be straightforwardly transformed
into two independent second-order equations for F − G and
F + G:

16
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(34)
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(35)
Both of them can be further reduced to a time-independent
Schrödinger equation when ε is nearly constant. We assume
ε = 〈ε〉+u(z) with u(z) � 〈ε〉 and u(±∞) = 0. The discrete-
spectrum modes in this case are very close to the tips of the
gap. For the lower tip, we have

ω − ω0

ω0
= −〈ε〉

2
+ δ− (36)

with |δ| � 〈ε〉. We can then neglect u(z) and δ− in the
derivative term of (34) and obtain
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Similar procedure for the upper tip gives
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q2〈ε〉
16
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−δ+ +

u(z)

2

]
= 0. (38)

We note that any negative function u(z) acts as a potential well
that supports spatially localized eigenmodes of (37) and (38)
with δ− > 0 and δ+ < 0, respectively. The eigenfrequencies
of these modes belong to the spectral gap in the continuum.

3. Numerical implementation

An EMS [21] based on Maxwell’s equations and a cold plasma
dielectric tensor is employed to study the RLH spectral gap and
gap eigenmode inside. Maxwell’s equations are expressed in
the frequency domain:

∇ × E = iωB, (39)

Figure 2. Computational domain. The solid bar denotes a half-turn
helical antenna. The dot-dashed line is the machine and coordinate
system axis (r = 0). The coordinate system (r; ϕ; z) is right handed
with an azimuthal angle ϕ.

1

µ0
∇ × B = −iωD + ja, (40)

where E and B are the wave electric and magnetic fields,
respectively, D is the electric displacement vector, ja is the
antenna current and ω is the antenna driving frequency. These
equations are Fourier transformed with respect to the azimuthal
angle and then solved (for an azimuthal mode number m)
by a finite difference scheme on a 2D domain (r; z). The
computational domain is shown in figure 2. The quantities D

and E are linked via a dielectric tensor, [23] as follows:

D = ε0[εE + ig(E × b) + (η − ε)(E · b)b], (41)

where b ≡ B0/B0 is the unit vector along the static magnetic
field and

ε = 1 −
∑

α

ω + iνα

ω

ω2
pα

(ω + iνα)2 − ω2
cα

,

g = −
∑

α

ωcα

ω

ω2
pα

(ω + iνα)2 − ω2
cα

,

η = 1 −
∑

α

ω2
pα

ω(ω + iνα)
. (42)

The subscript α labels particle species (electrons and ions);
ωpα ≡ √

nαq2
α/ε0mα is the plasma frequency, ωcα ≡ qαB0/mα

is the cyclotron frequency, and να a phenomenological
collision frequency for each species. The static magnetic field
is assumed to be axisymmetric with B0r � B0z and B0ϕ = 0.
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Figure 3. Plasma density profile and RLH wave field in a straight cylinder: (a) radial profile of unperturbed plasma density, (b) azimuthal
magnetic field of the m = 1 mode for an illustrative frequency ω = 31.4 Mrad s−1 (solid bar shows antenna location, and the endplates are
located at z = 0 m and z = 30 m respectively), (c) computed dispersion relation for the m = 1 mode (dots) and analytical scaling from (20)
with q/2 = kz and 	 = 2.03 (dashed curve), (d) radial profile of the m = 1 mode at z = 20 m for ω = 31.4 Mrad s−1 (the profile shows
some modulations due to coupling to other weaker modes produced by the antenna).

It is therefore appropriate to use a near axis expansion for the
field, namely B0z is only dependent on z and

B0r (r, z) = −1

2
r
∂B0z(z)

∂z
. (43)

A helical antenna is employed to excite an m = 1 mode in
the plasma. The enclosing chamber is assumed to be ideally
conducting so that the tangential components of E vanish at
the chamber walls, i.e.

Eϕ(Lr; z) = Ez(Lr; z) = 0,

Er(r; 0) = Eϕ(r; 0) = 0,

Er(r; Lz) = Eϕ(r; Lz) = 0, (44)

with Lr and Lz the radius and the length of the chamber,
respectively. Further, all field components must be regular
on axis.

4. Numerical results and discussion

4.1. RLH mode in a straight cylinder

We first use EMS to calculate the radial structure of the RLH
mode in a straight cylinder with a uniform static magnetic
field and recover the mode dispersion relation. We consider
a single-ionized argon plasma with a radial density profile

shown in figure 3(a). The surrounding vacuum chamber
and the position of the rf-antenna are shown in figure 2.
The static magnetic field in this simulation is B0 = 0.01 T
and the electron–ion collision frequency on axis is νei|r=0 =
4×106 s−1. We run EMS for various frequencies of the antenna
current, select the m = 1 azimuthal component of the plasma
response and calculate the dominant axial wavenumber, kz,
of this component via Fourier decomposition. We observe
an apparently preferred axial propagation direction for the
m = 1 wave generated by the helical antenna. The collision
frequency is sufficient to damp the radiated waves significantly
towards the endplates but the dominant wavelength is still
seen clearly in the plot of the excited field (figure 3(b)). The
resulting relation between kz and ω is shown in figure 3(c).
We note that kz scales as

√
ω with frequency, in agreement

with analytical scaling obtained in [22]. A least squares fit
to the dispersion relation given by (20) with q/2 = kz shows
that the form factor 	 equals 2.03 for the selected density
profile. The radial profile of this m = 1 mode is presented in
figure 3(d).

4.2. Spectral gap in a periodic structure

In order to demonstrate the spectral gap, we run EMS for
the same conditions as in section 4.1 except that the static

5
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Figure 4. Identification of the spectral gap in simulations: (a) on-axis wave field at z = 15 m as a function of driving frequency; vertical
lines show analytical predictions for the gap centre ω0 and the upper and lower tips of the continuum ω+ and ω−, (b) spatial distributions of
wave energy for antenna frequencies inside and outside the spectral gap (solid bar denotes the antenna location).

magnetic field is weakly modulated along z and has the form
B0z = B0(1 + 0.25 cos qz) with B0 = 0.01 T and q = 40 m−1.
The radial component of the static field is determined by
(43). We scan the antenna frequency (for a fixed amplitude
of the antenna current) and analyse wave propagation from
the antenna. Figure 4 illustrates the results. Figure 4(a)
is a plot of the on-axis signal at a 4.8 m distance from the
antenna, and shows an interval of strong suppression (from 36
to 44 Mrad s−1), which represents the anticipated spectral gap.
The location and width of this gap agree well with analytic
estimates based on (19) and (20). Figure 4(b) presents spatial
distributions of wave energy for frequencies that are inside and
outside of the spectral gap, from which we also see that wave
propagation is evanescent inside the gap.

4.3. Gap modes

To form an eigenmode inside the spectral gap shown in figure 4,
we introduce a defect in the otherwise periodic static magnetic
field. Equations (28) and (32) suggest that this defect should be
located at cos qz0 = 0, in order for the eigenmode frequency
to be at the gap centre. The mode is then expected to have
the shortest possible width (see (29) and (33)). Moreover,
sections 2.3 and 2.4 indicate that the gap eigenmode can have
either odd parity or even parity, depending on the defect profile.
We will confirm this analysis by simulation results shown in
figures 5 and 6.

Figures 5(a)–(d) illustrate the odd-parity gap eigenmode
associated with the defect shown in figure 1(a). In order to

6
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Figure 5. Odd-parity gap eigenmode: (a) longitudinal profiles of the static magnetic field (solid line) and the rf magnetic field on axis for
ω = 40.2 Mrad s−1 (dots), together with the theoretically calculated envelope (dotted line), (b) longitudinal profile of Eϕ (on-axis) at
ω = 40.2 Mrad s−1 (vertical dot-dashed line marks the defect location, and solid horizontal bar marks the antenna), (c) resonance in the
dependence of the on-axis amplitude of the rf magnetic field on driving frequency at the location of the defect, (d) 3D plot of the on-axis
wave field strength as a function of z and ω.

minimize the role of collisional dissipation and thereby obtain
a sharper resonant peak in figure 5(c), we have reduced the
collision frequency to 0.1νei in figure 5 simulation results.
Figure 5(a) shows that the eigenmode is a standing wave
localized around the defect. Its exponential envelope with a
decay length of 1.25 m is consistent with analytical expectation
from (29). The evanescent field of the mode is only weakly
coupled to the distant antenna, but the resonance with the
antenna frequency still allows the mode to be excited easily.
The internal scale of this mode is close to twice the system’s
periodicity, consistent with Bragg’s law. Figure 5(b) shows
the on-axis profile of the mode electric field, implying an odd
function of Eϕ at z0. The corresponding magnetic field Bϕ is,
instead, an even function. Figure 5(d) presents a full view of
the plasma response in (z; ω) space with a clear eigenmode
peak inside the spectral gap.

We have also performed similar calculations for the defect
shown in figure 1(b). This defect produces an even-parity mode
seen in figures 6(a)–(d). Except for different symmetries, the
features of the even and odd modes are apparently similar.

The effects of collisionality on gap eigenmodes are shown
in figure 7, from which we could see clearly a strength drop
as the collisionality is increased. Although the resonant peak
decreases and broadens for larger values of νei, it is still clearly
visible even at the highest collision frequency.

5. Summary and thoughts about possible
experiments

We have shown that longitudinal modulation of the guiding
magnetic field in a plasma column creates a spectral gap for
radially localized helicon waves. Calculations performed with
an EMS code reveal that this gap prohibits wave propagation
along the column when the driving frequency of the rf antenna
is in the forbidden range. The calculated width of the gap
is consistent with analytical estimates. We have also shown
that a discrete eigenmode can be formed inside the spectral
gap by introducing a local defect to the periodic structure.
Both the theoretical analysis and simulations demonstrate two
types of gap eigenmode in the ‘imperfect’ system: odd-parity
mode and even-parity mode, depending the type of the defect
employed. The gap mode is localized around the defect and
represents a standing wave rather than travelling wave. Its
distinctive feature is a resonant peak in the plasma response to
the antenna current. The gap eigenmode has two characteristic
spatial scales: a short inner scale and a smooth envelope. The
inner scale is nearly twice the system’s periodicity, which is
characteristic for Bragg’s reflection; the envelope depends on
the modulation amplitude and it scales roughly as the inverse
width of the spectral gap.
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Figure 6. Even-parity gap eigenmode: (a) longitudinal profiles of the static magnetic field (solid line) and the rf magnetic field on axis for
ω = 41.8 Mrad s−1 (dots), together with the theoretically calculated envelope (dotted line), (b) longitudinal profile of Eϕ (on-axis) at
ω = 41.8 Mrad s−1 (vertical dot-dashed line marks the defect location, and solid horizontal bar marks the antenna), (c) resonance in the
dependence of the on-axis amplitude of the rf magnetic field on driving frequency near the location of the defect, (d) 3D plot of the on-axis
wave field strength as a function of z and ω.

Figure 7. Effects of collisionality on gap eigenmodes: (a) results for odd-parity mode (figure 5(c)), (b) results for even-parity mode
(figure 6(c)).

A plausible way to identify the gap mode in a linear device
with multi-mirror configuration would be to use the endplate
of the machine as a controllable defect in the periodic system.
This could make the mode observable with a modest number
of mirrors in the machine. LAPD is an apparent candidate
for such experiments, provided that dissipative processes in
the plasma do not destroy the gap-mode resonance. We
have estimated these dissipative processes for LAPD plasma
conditions. Collisional damping rate of the m = 1 RLH mode

can be roughly estimated as γ ∼ νec
2/(a2ω2

p), [24] where
νe is the collision frequency for electrons (a sum of electron-
ion and electron-neutral collisions). Collisional damping can
therefore be controlled by varying the plasma radius. Our
illustrative simulation is for a = 0.05 m, but the LAPD vacuum
chamber allows us to produce plasmas with considerably larger
value of a (up to 0.5 m [20, 25]) and thereby reduce the
damping significantly. It may be preferable to choose plasma
parameters in such a way that the gap-mode frequency is in
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the range of operational frequencies for standard rf generators
(6–28 MHz [26]) through (20). The LAPD magnetic coils are
about 0.61 m in radius (inner), [25] which limits the number
of magnetic field periods within the machine length to about
20. This number seems to be large enough for the mode
identification, especially because the axial extension of the
mode is expected to decrease when the modulation amplitude
increases. Stronger modulation of the magnetic field broadens
the gap and makes it easier to identify the mode in the presence
of finite damping. Thus, the amplitude of modulation is an
apparent control knob for the conceivable experiment. The
LAPD experiment can use larger plasma radius and stronger
magnetic field (with the same plasma density n ∼ 1018 m−3)
to reduce the damping but still keep the mode frequency in the
convenient operational range for the rf-antenna.
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