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A new type of ballooning mode invariance is found in this paper. Application of this invariance is

shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as

the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In

contrast to the conventional ballooning representation, which requires the translational invariance

of the Fourier components of the perturbations, the new invariance reflects that the independent

solutions of the high n mode equations are translationally invariant from one radial interval

surrounding a single singular surface to the other intervals. The conventional ballooning mode

invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational

surfaces in vacuum region are completely different from those with rational surfaces in plasma

region. But, the new type of invariance remains valid. This overcomes the limitation of the

conventional ballooning mode representation for studying free boundary modes. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4759012]

I. INTRODUCTION

The conventional ballooning mode representation has been

proved to be a successful theory in reducing the two-

dimensional (2D) problem of high n ballooning modes into a

one-dimensional (1D) problem for internal mode cases.1–3 Here,

n is toroidal mode number. Subsequently, the uniqueness and

inversion of the ballooning representation are proved in Ref. 4.

It is desirable if the ballooning mode representation for

internal modes can be extended for external modes. Efforts

in this direction have been made, since the peeling-

ballooning modes were brought to attention in Refs. 5 and 6.

However, those efforts retain the conventional ballooning

mode invariance assumption in the lowest order, while the

free boundary feature is only taken into account in the next

order for determining the envelope of Fourier components.

In fact, the conventional ballooning representation requires

the translational invariance of Fourier’s components. This

invariance breaks down in the lowest order in edge plasma

region. This can be seen from the difference between the

interchange and peeling modes.7–9 The behavior of Fourier

components with singular layers being in the plasma region

is completely different from that with singular layers being

in the vacuum region. Note that the infinities are regarded as

singular layers as well in our discussion. If the singular layer

is present in the plasma region, only the small solution is

allowed at the layer.7 In the contrary, if the singular layer is

present in the vacuum region, the large solution can be

accepted. Note that peeling modes are characterized by the

presence of singular layer in the vacuum region, so that the

large solution emerges at the singular layer.8,9 It is because

of this feature that the stability condition for peeling modes

becomes more stringent than that for interchange modes.

Therefore, to keep the key peeling effect, one cannot apply

the conventional ballooning invariance for external modes.

In this paper, we show that there is a more fundamental

type of invariance. This type of invariance relies solo on

the scale difference between the distance of mode rational

surfaces and equilibrium scale length and is independent of

sharp boundary changes, like plasma-vacuum interface. Note

that the solution of the set of linear differential equations can

be generally expressed as the linear combination of independ-

ent solutions. This decomposition method has been widely

used in plasma stability analyses.10 As soon as the scale sepa-

ration between equilibrium and perturbation remains valid,

the independent solutions of the high n mode equations are

translationally invariant from one radial interval surrounding a

single singular surface to other intervals. Therefore, with the

independent solutions being calculated in one radial interval,

the independent solutions in the rest intervals can be readily

obtained by applying the translational invariance. The inde-

pendent solutions in all intervals can be subsequently used to

make continuous connections between the intervals and to fit

any types of boundary conditions, including that for plasma-

vacuum interface. Note that the computation effort for all

Fourier components in one radial interval is equivalent to that

for a single Fourier component in the whole radial coordinate

domain. Therefore, by applying the variance of independent

solutions, one can reduce the 2D free boundary ballooning

mode problem into a 1D one.

The paper is arranged as follows: In Sec. II, the basic set

of equations is described. In Sec. III, an alternative descrip-

tion of the conventional ballooning mode representation for

internal modes is given. In Sec. IV, the 1D theory for free

boundary ballooning modes is described. In Sec. V, the first

order theory is presented. The conclusions and discussion are

given in the last section. The Appendix is also introduced to

explain the free boundary ballooning formalism in a reduced

model.

II. THE BASIC SET OF EQUATIONS

To be specific, we use the so-called s-a equilibrium model

to describe the ballooning representation,1 where s ¼ d ln q=
d ln r denotes magnetic shear and a ¼ �ð2Rq2=B2ÞðdP=drÞ
represents the normalized plasma pressure. Here, q is the safety
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factor, R and r represents respectively major and minor radii,

P is plasma pressure, and B denotes magnetic field. In this

equilibrium model, the plasma energy can be written as5

dWf ¼�
2p2B

nq0R3B2
pq

X
m

ðþ1
D

dx u�m s2½ðx�MÞ2þ c2�d
2um

dx2

�

þ 2s2ðx�MÞdum

dx
�ðx�MÞ2um

�a s ðx�MÞ2þ 1

2

� �
d

dx
ðumþ1� um�1Þ

�

þ sðx�MÞ d

dx
ðumþ1þ um�1Þ

þsðx�MÞðumþ1� um�1Þ�
1

2
ðumþ1þ um�1Þ� dmum

�

�a2

2
½ðx�MÞ2þ 1� um�

1

2
ðumþ2þ um�2Þ

� ��

�ðx�MÞðumþ2� um�2Þ
��

; (1)

and the surface and vacuum energy can be written as

dWsv ¼ �
2p2

nRq

X
m

u�mðD�MÞ sðx�MÞ d

dx
um

�

þ ½2� ðD�MÞ�um

� a
2
ðD�MÞðumþ1 � um�1Þ

�
x¼D

; (2)

where um is the mth Fourier components of the perturbations,

m is the poloidal mode number, with m0 being the one resonat-

ing at the first resonance surface at plasma edge, M � m0 � m,

dm is introduced to specify the magnetic well, and c is the nor-

malized growth rate, which is assumed to be very small for

marginal stability investigation and used to eliminate the sin-

gularities near the resonance surfaces for numerical computa-

tion. Here, the coordinate system is shown in Fig. 1,

x � m0 � nq, and D indicates plasma-vacuum interface. As

usual we cut off the Fourier components beyond the minimum

Mmin and maximum Mmax numbers. Total number of Fourier

components is given by Ng ¼ Mmax �Mmin þ 1.

The Euler equations of Eq. (1) with inertial energy

included are given as follows:5

d

dx
Fmm0

dum0

dx
þKmm0um0

� �
� ðK†

mm0u
0
m0 þ Gmm0um0 Þ ¼ 0;

(3)

where

Fmm0 ¼
s2½ðx�MÞ2 � x2�; for m0 ¼ m;

0; otherwise;

(
(4)

Kmm0 ¼
7ðas=2Þðx�MÞðx�M61Þ7as=4; for m0¼m61;

0; otherwise;

�
(5)

Gmm0

¼

ðx�MÞ2�admþða2=2Þ½ðx�MÞ2þ1�; for m0 ¼m;

�a=2ð1þsÞ; for m0 ¼m61;

�ða2=4Þðx�M61Þ2; for m0 ¼m62;

0; otherwise:

8>>>>><
>>>>>:

(6)

In Eq. (3), the summation is assumed to be performed with

respect to repeated indices, the prime on um denotes

derivative with respect to x, and the superscript dagger repre-

sents Hermitian conjugation.

There are two set of boundary conditions for the coupled

differential equation (3). As x! þ1, it is required that

umx! 0, for all m. At the plasma-vacuum interface, the var-

iation of the surface-vacuum energy in Eq. (2) leads to the

following conditions:5

Fmm0
dum0

dx
þKmm0um0 � Vmm0um0 ¼ 0: (7)

This condition can be used to determine the eigenmodes and

eigenvalues.

III. INTERNAL BALLOONING MODE
REPRESENTATION IN CONFIGURATION SPACE

Before introducing the free boundary ballooning mode

representation, we first outline the internal ballooning mode

representation in the configuration space. This configuration-

space representation is an analogue to the conventional one

and is presented to explain the independent solution method

for including the invariance properties.

The eigenvalue problem in Eq. (3) is a 2D problem,

which involves N poloidal Fourier components in the radial

space: �1 < x <1. For high n modes, the distance

between nearby mode rational surfaces is much smaller than

the equilibrium scale length. Therefore, the Fourier compo-

nents of the perturbation exhibit a translational invariance in

the lowest order, as shown in Fig. 2. Mathematically, this

invariance can be expressed as1–3

umðx 6 kÞ ¼ um 6 kðxÞ expf7ikhkg: (8)

In the conventional ballooning formalism, this invariance is

used to express the sidebands with the main harmonic with

suitable spatial shifts. Consequently, Eq. (3) is transformed

into an equation for a single Fourier component. This proce-

dure reduces the 2D problem to 1D one by eliminating the

poloidal dimension.
FIG. 1. Coordinate system, in which the vertical dashed lines represent the

resonance surfaces and the vertical solid lines denote the region boundaries.
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Alternatively, we can use the invariance in Eq. (8) to

reduce the radial dimension from the infinite domain to a sin-

gle interval: D < x < 1þ D. One can solve the eigenmode

equation (3) for all Fourier components in a single interval

D < x < 1þ D; (9)

and then derive the solutions in other intervals by applying

the translational invariance in Eq. (8). For this single interval

the ballooning mode representation in Eq. (8) can be used to

construct the boundary conditions for the N Fourier

components

umð1þ DÞ ¼ e�ihk umþ1ðDÞ; (10)

d

dx
umð1þ DÞ ¼ e�ihk

d

dx
umþ1ðDÞ: (11)

Note that for farthest sidebands (mmin and mmax), one can

require

ummax
ð1þ DÞ ¼ 0; (12)

ummin
ðDÞ ¼ 0: (13)

Here, in principle, the small asymptotic solutions should be

used as the boundary conditions for farthest sidebands. But,

when sufficient number of sidebands are used, the boundary

conditions in Eqs. (12) and (13) are good enough. Note that

the conditions in Eqs. (10)–(13) completely determine the all

Fourier components in the interval in Eq. (9) with eigen fre-

quency. This also reduces the 2D problem to an 1D one.

To explain the equivalence of the current formalism to

the conventional one, let us use the independent solution

method to solve Eq. (3) in a single interval with the boundary

conditions in Eqs. (10)–(13) imposed. We cut off the Fourier

components beyond the minimum mmin and maximum mmax

numbers in this interval. Total number of Fourier compo-

nents for describing this interval is then given by N ¼ mmax

�mmin þ 1. Note that Eq. (3) are a set of second order differ-

ential equations. They can be transformed to a set of first

order differential equations for 2 N unknowns ym, as speci-

fied as follows:

y1 ¼ ummax
;

y2 ¼
d

dx
ummax

;

�

y2N�1 ¼ ummin
;

y2N ¼
d

dx
ummin

:

(14)

We introduce bold face to denote the corresponding 2N com-

ponent vector, for example y for fymg. Equation (3) with

boundary condition, Eq. (12) imposed allows 2N – 1 inde-

pendent solutions jy ðj ¼ 1; � � � ; 2N � 1Þ. The independent

solutions jy for Eq. (3) can be obtained by shooting code

from Dþ 1 to D, with the following 2N – 1 initial conditions

at x ¼ 1þ D imposed:

f1
y;2y; � � � ;2N�1ygx¼1þD ¼

01�ð2N�1Þ

I ð2N�1Þ�ð2N�1Þ

� �
; (15)

where 01�ð2N�1Þ and Ið2N�1Þ�ð2N�1Þ are respectively the zero

and unitary matrices with dimensions indicated by their super-

scripts. The general solution can therefore be expressed as

y ¼ f1
y;2y; � � � ;2N�1yg � c; (16)

where c is the constant vector of 2N – 1 components, which

are determined by the boundary conditions.

To construct the eigenvalue problem, we introduce fol-

lowing two square ð2N � 1Þ � ð2N � 1Þ matrices, which

consist of the values of independent solutions at both ends of

the interval,

L �

1y1
2y1 � � � 2N�1y1

1y2
2y2 � � � 2N�1y2

� � � � � �
1y2N�3

2y2N�3 � � � 2N�1y2N�3
1y2N�2

2y2N�2 � � � 2N�1y2N�2
1y2N�1

2y2N�1 � � � 2N�1y2N�1

0
BBBBBB@

1
CCCCCCA

x¼D

; (17)

R �

1y3
2y3 � � � 2N�1y3

1y4
2y4 � � � 2N�1y4

� � � � � �
1y2N�1

2y2N�1 � � � 2N�1y2N�1
1y2N

2y2N � � � 2N�1y2N

0 0 � � � 0

0
BBBBBB@

1
CCCCCCA

x¼1þD

¼

0 1 � � � 0 0

0 0 � � � 0 0

� � � � � � �

0 0 � � � 1 0

0 0 � � � 0 1

0 0 � � � 0 0

0
BBBBBB@

1
CCCCCCA
: (18)

FIG. 2. Invariant structure of the high n internal ballooning modes.
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Here, in the definition of matrix R we have used the bound-

ary conditions in Eq. (15). Note that the boundary condition

in Eq. (12) has been taken into account in constructing the

independent solutions in Eq. (15). The rest conditions in

Eqs. (10), (11), and (13) can be used to determine the con-

stant vector c as follows:

ðR � e�ihkLÞ � c ¼ 0; (19)

where hk is the usual ballooning mode phase. The last row of

this equation is derived from Eq. (13), and the rest from Eqs.

(10) and (11). The existence of non-vanishing solutions for

Eq. (19) gives the following dispersion relation:

det jR � e�ihkLj ¼ 0: (20)

Equation (20) can be used to determine the eigen growth rate,

so that the stability condition can be obtained. As a numerical

example, Fig. 3 shows the marginal stable eigen modes in the

interval �0:5 < x < 0:5 for the case with hk ¼ 0, s¼ 0.4,

a ¼ 0:3546, and dm ¼ 0. The critical beta value agrees com-

pletely with the conventional ballooning mode theory.1,11

One can spread out the sidebands from the interval �0:5 < x
< 0:5 to other intervals according to the ballooning invariance

in Eq. (8). The expanded figure is given in Fig. 4. This is

exactly the single Fourier component in whole ballooning

Fourier spectrum as shown in Fig. 2. The smooth connection

of the expanded figure is assured by the boundary conditions

in Eqs. (10) and (11). This example shows how the 2D prob-

lem (multiple Fourier components) can be transformed into a

1D problem by a reduction in the radial direction. The compu-

tation resource used for computing multiple Fourier compo-

nents in a single interval is equivalent to that for a single

Fourier component in the expanded space. Therefore, the cur-

rent method uses the same amount of computation resource as

the conventional approach.

In this section, we discuss only the lowest order solu-

tion. The conventional theory for next order correction, for

example in Ref. 1, can be applicable here. This issue will be

further discussed in Sec. V.

IV. FREE BOUNDARY BALLOONING MODE
REPRESENTATION

In the plasma edge region, the conventional ballooning

mode invariance becomes no more valid. Nevertheless, as

shown in this section, there is a more fundamental invariance

that can be used to reduce the 2D problem of external high n

modes to a 1D one. To help understand the formalism

described below, we include the Appendix to delineate the

underlying thoughts in a reduced model. To discuss the free

boundary ballooning representation we consider the lowest

order solution, i.e., neglecting the radial variance of equilib-

rium quantities. The next order correction will be studied in

Sec. V.

We need to discuss the free boundary ballooning modes

with all intervals involved. The system to be considered is

shown in Fig. 1. The intervals are labeled from “1” to “kmax”

from the one adjacent to plasma vacuum interface to the far-

thest one in the plasma core. The kth region is thus defined

as

Dþ k � 1 < x < Dþ k; k ¼ 1; 2; � � � ; kmax: (21)

For specificity, we assume that the safety factor increases

monotonically from plasma core to edge. In the high n mode

case, the distance between intervals is very small as com-

pared to the equilibrium scale length. Therefore, the equilib-

rium quantities can be regarded to be unchanged in the

FIG. 3. Internal ballooning eigenmode as computed in a single interval,

using the conventional ballooning mode representation for boundary condi-

tions with hk ¼ 0. The equilibrium parameters are as follows: s¼ 0.4,

a ¼ 0:3546, and dm ¼ 0.

FIG. 4. Single Fourier component obtained by spreading out the sidebands

(m 6¼m0) in Fig. 3 to the expanded radial space according to the ballooning

invariance in Eq. (8).
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lowest order. The resonant Fourier component in the kth

regions is denoted as km0, with 1m0 � m0. One then has
km0 ¼ m0 � k þ 1. Due to the equilibrium similarity of each

interval, we can use the same number of Fourier components

(N) to describe each interval. Denoting the lower and upper

cutting-off Fourier components for kth region as kmmin and
kmmax, with 1mmin � mmin and 1mmax � mmax, one has kmmin

¼ mmin � k þ 1 and kmmax ¼ mmax � k þ 1. The total num-

ber of Fourier components in a interval becomes N ¼ mmax

�mmin þ 1. We require the farthest sidebands in the kth

interval to vanish

ukmmin
ðDþ k � 1Þ ¼ 0; (22)

ukmmax
ðDþ kÞ ¼ 0: (23)

Similar to Eq. (14), we denote the 2N unknowns in the kth

interval as

y1 ¼ ukmmax
;

y2 ¼
d

dx
ukmmax

;

�

y2N�1 ¼ ukmmin
;

y2N ¼
d

dx
ukmmin

:

(24)

We can construct the independent solutions in each interval

in the same way by imposing the boundary conditions at the

respective right ends. The independent solutions for kth

interval jy can be found by shooting code from Dþ k to

Dþ k � 1, with the following 2N – 1 initial conditions at

x ¼ Dþ k imposed

f1
y;2y; � � � ;2N�1ygx¼Dþk ¼

�
01�ð2N�1Þ

Ið2N�1Þ�ð2N�1Þ

	
: (25)

The general solution in the kth region can be expressed as

yðxÞ¼ kY � kc ¼ f1
y;2y; � � � ;2N�1yg � kc; (26)

where kc are constant vectors, which are determined by the

boundary conditions and matching conditions between intervals.

From the analysis in Sec. III, one can see that the conventional

ballooning invariance requires both independent solutions and

boundary conditions to be invariant. The requirement for bound-

ary part makes the conventional ballooning mode representation

inapplicable for edge region. Actually, the requirements for

boundary value invariance are unnecessary. The invariance of

independent solutions is more fundamental. Mathematically,

this invariance can be expressed as follows:

jum 7 2kðx 6 kÞ¼ jumðxÞ; (27)

where j labels the independent solutions. The difference

from the conventional ballooning invariance in Eq. (8) lies

in that the invariance here is related to the independent solu-

tions, instead of the Fourier components of the perturbation.

When the independent solutions are obtained in a single

interval, one actually obtains the independent solutions in all

intervals by applying the invariance in Eq. (27). With the in-

dependent solutions known for all intervals, the eigenvalue

problem can be constructed through fitting the continuity

conditions between intervals and boundary conditions at the

plasma core and vacuum-plasma interface.

Let us describe the detailed procedure. First, we use the

shooting code to obtain the independent solutions in the first

interval, using Eq. (25) as initial conditions at the right end. To

construct the eigenvalue problem, we define the following two

square ð2N � 1Þ � ð2N � 1Þ matrices, which consist of the

values of independent solutions at the kth interval boundaries

L �

1y1
2y1 � � � 2N�1y1

1y2
2y2 � � � 2N�1y2

� � � � � �
1y2N�3

2y2N�3 � � � 2N�1y2N�3

1y2N�2
2y2N�2 � � � 2N�1y2N�2

1y2N�1
2y2N�1 � � � 2N�1y2N�1

0
BBBBBBBB@

1
CCCCCCCCA

x¼Dþk�1

;

R �

1y3
2y3 � � � 2N�1y3

1y4
2y4 � � � 2N�1y4

� � � � � �
1y2N�1

2y2N�1 � � � 2N�1y2N�1

1y2N
2y2N � � � 2N�1y2N

0 0 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA

x¼Dþk

¼

0 1 � � � 0 0

0 0 � � � 0 0

� � � � � � �

0 0 � � � 1 0

0 0 � � � 0 1

0 0 � � � 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: (28)

We also introduce the following ð2N � 1Þ � N matrix for the

last interval

kmaxL�

1y1
3y1 ��� 2N�3y1

2N�1y1
1y2

3y2 ��� 2N�3y2
2N�1y2

� � ��� � �
1y2N�3

3y2N�3 ��� 2N�3y2N�3
2N�1y2N�3

1y2N�2
3y2N�2 ��� 2N�3y2N�2

2N�1y2N�2
1y2N�1

3y2N�1 ��� 2N�3y2N�1
2N�1y2N�1

0
BBBBBB@

1
CCCCCCA

x¼Dþkmax�1

:

(29)

Due to the invariance property in Eq. (27), the matrices L
(including kmaxL) and R in Eqs. (28) and (29) are interval-

independent. Therefore, we can construct L (including
kmaxL) and R with the independent solutions in the first

interval, i.e., we can substitute the subscripts on the right

hand sides of Eqs. (28) and (29): x ¼ Dþ k � 1; x ¼ Dþ k,

and x ¼ Dþ kmax � 1 with x ¼ D; x ¼ Dþ 1, and x ¼ D,

respectively.

Next, let us deal with the boundary conditions at the

core plasma and the matching conditions between intervals.

Note that the matrix kmaxL in Eq. (29) picks up only the inde-

pendent solutions that satisfy the boundary conditions jy ¼ 0
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at the farthest end in the plasma core. Therefore, the replace-

ment of L with kmaxL at the last interval can guarantee the sat-

isfaction of the boundary condition y¼ 0 at the innermost

side toward plasma core. Therefore, using kc to construct the

general solutions as in Eq. (26), there are only number N in-

dependent solutions left for the kmax interval, while for the

rest of intervals there remain number 2N – 1 independent sol-

utions. The matching conditions between the kmax and kmax�1

intervals becomes

kmaxL � kmax c ¼ R � kmax�1c: (30)

and the matching conditions between k and kþ 1 (with

k ¼ 1; � � � ; kmax � 2) intervals are

L � kþ1c ¼ R � kc: (31)

Equations (30) and (31) can be expressed as matrix form

kmaxLð2N�1Þ�N �Rð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

0ð2N�1Þ�N Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

� � � � � � � �

0ð2N�1Þ�N 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ

0
BBB@

1
CCCA

�

kmax cN�1

kmax�1cð2N�1Þ�1

�
1cð2N�1Þ�1

0
BBB@

1
CCCA ¼

0ð2N�1Þ�1

0ð2N�1Þ�1

�

0ð2N�1Þ�1

0
BBB@

1
CCCA; (32)

where again the matrix dimensions are explicitly denoted by

the respective right superscripts. Here, the number of linear

equations is ðkmax � 1Þð2N � 1Þ, while the number of

unknowns kc is ðkmax � 1Þð2N � 1Þ þ N. There are number

N excessive unknowns. These excessive unknowns are

required to fit the boundary conditions at the plasma-vacuum

interface. To single out the N excessive unknowns, we intro-

duce the following normalization procedure. Without losing

generality, one can use the freedom of choosing the exces-

sive N unknowns to define the normalization of independent

solutions. We use for example the following normalization

for global independent solutions at the plasma-vacuum

interface:

kumjx¼D ¼ dkm; (33)

where dkm ¼ 1 when k¼m, otherwise dkm ¼ 0. Including the

normalization conditions in Eq. (33) to define the excessive

N unknowns, Eq. (32) is transformed to the following matrix

equations

kmaxLð2N�1Þ�N �Rð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

0ð2N�1Þ�N Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

� � � � � � � �

0ð2N�1Þ�N 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ

0N�N 0N�ð2N�1Þ 0N�ð2N�1Þ � � � 0N�ð2N�1Þ LN�ð2N�1Þ
o

0
BBBBBB@

1
CCCCCCA

�

kmaxCN�N

kmax�1Cð2N�1Þ�N

kmax�2Cð2N�1Þ�N

�
1Cð2N�1Þ�N

0
BBBBBB@

1
CCCCCCA
¼

0ð2N�1Þ�N

0ð2N�1Þ�N

�

0ð2N�1Þ�N

IN�N

0
BBBBBB@

1
CCCCCCA
; (34)

where the N � ð2N � 1Þ matrix

L0 �

1y1
2y1 � � � 2N�1y1

1y3
2y3 � � � 2N�1y3

� � � � � �
1y2N�3

2y2N�3 � � � 2N�1y2N�3
1y2N�1

2y2N�1 � � � 2N�1y2N�1

0
BBBB@

1
CCCCA

x¼D

: (35)

Here, L0 is constructed according to the normalization con-

dition in Eq. (33).

The solution of Eq. (34), fkCg, can be found directly by

the matrix inversion procedure or formally by the following

recurrence relations

kmax�1C ¼ R�1 kmaxL kmaxC; (36)
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kC ¼ ðR�1LÞkmax�k�1 R�1kmaxL kmaxC;
for k ¼ 1; � � � ; kmax � 2;

(37)

kmaxC ¼ ½L0ðR�1LÞkmax�2 R�1kmaxL��1: (38)

Here, Eq. (36) is obtained from the first row of Eq. (34), Eq.

(37) from the second to the last but one row, and Eq. (38)

from the last row with 1C from Eq. (37). When kmaxC is deter-

mined using R and various L’s by Eq. (38), the rest kC can

be evaluated by Eqs. (36) and (37).

Each of the N columns of solution matrix fkCg can be

used to construct a set of solutions in every intervals accord-

ing to Eq. (26). The number N columns generate number

N sets of solutions. These N sets of solutions over every

interval can be connected respectively to form number

N global independent solutions over the whole domain
jyg ðj ¼ 1; � � � ;NÞ, which satisfy the boundary conditions
jyg ¼ 0 at x!1, the normalization conditions in Eq. (33),

and the continuity conditions between intervals. The general

global solution is the linear combination of these N global in-

dependent solutions

y2N ¼ Y2N�N � cN
g ¼ f

1
yg; � � � ;Nygg

2N�N � cN
g : (39)

Here, the right superscripts are used to indicate the matrix

dimensions.

Now, we can consider the boundary condition Eq. (7) at

the plasma-vacuum interface to construct the eigenvalue prob-

lem. From Eq. (24), we can find the relationship between the

ordinal number m for Fourier components and the matrix

index i: m ¼ mmax � ði� 1Þ=2 for i ¼ 1; 3; � � �. Therefore,

using Eq. (39), the boundary condition Eq. (7) becomes

D � cg ¼ 0; (40)

where the elements of N � N matrix D are given as follows:

Dij ¼ ½D� ði0 � iÞ�f�s½D� ði0 � iÞ�Y2i;j

�½2� ½D� ði0 � iÞ��Y2ði�1Þþ1;j

þ a
2
½D� ði0 � iÞ�ðY2ði�2Þþ1;j � Y2iþ1;jÞg:

(41)

Here, i0 ¼ m0 � mmax þ 1, and Y�1;j ¼ Y2Mþ1;j ¼ 0. From

Eq. (3), one can see that D is a function of the growth rate c.

The eigenvalue can be determined by

det jDðcÞj ¼ 0: (42)

For marginal stability problem, one can choose a very small

c for shooting code to get independent solutions in the first

interval in the plasma region. The stability is then simply

determined by the eigenvalue problem5

D � cg ¼ kcg: (43)

If the eigenvalue k � 0, the system is stable, otherwise

unstable.

With the free ballooning mode formalism described

above, we can now apply this formalism to determine the

peel-ballooning eigenmode stability. The procedure is as

follows: First, we construct the independent solutions in a

single interval: D 	 x 	 Dþ 1, and use these independent

solutions to construct matrices: L; R; kmaxL, and L0. Second,

using these independent solution matrices, we can solve for

fkCg from Eq. (34) (or equivalently Eqs. (36)–(38)). With

fkCg, one can construct the global independent solution

matrix Y in Eq. (39). Thirdly, one can use the matrix Y to

construct the eigenmatrix D in Eq. (41). Finally, one can

determine the eigenvalue from Eq. (42) and eigenvectors

from Eq. (40). The stability condition is determined by the

eigenvalue. For the marginal stability problem, one can alter-

natively use Eq. (43) to determine the stability.

As numerical examples, we use this procedure to com-

pute two cases in the s-a equilibrium model: The first is for

the case with the resonance surface nearest to the plasma-

vacuum interface residing in the plasma region, the second is

for the case with the nearest resonance surface being in the

vacuum region. Their parameters are, respectively, as fol-

lows: s¼ 0.4, a ¼ 0:3; dm ¼ 0, and D ¼ �0:05 for the first

case; s¼ 1.8, a ¼ 1:05; dm ¼ 0, and D ¼ �0:9 for the sec-

ond case. Both cases are ballooning mode stable. The magi-

nal beta values for internal ballooning stability for the first

case is a ¼ 0:3546, and for the second case is a ¼ 1:0514.

We find peeling ballooning mode instabilities in both cases.

Their eigenmodes are plotted in Figs. 5 and 6, respectively.

We have compared these results with the 2D results by the

AEGIS code (s-a version).12 Completely agreements are

found, in view of that in our equilibrium model the equilib-

rium parameters s, a, and dm are constants.

Before proceeding to the next order theory in Sec. V,

we note that the current lowest order theory satisfies both

FIG. 5. Peeling-ballooning modes computed using the free boundary bal-

looning representation, with the nearest resonance surface being in the

plasma region D ¼ �0:05. The equilibrium parameters are as follows:

s¼ 0.4, a ¼ 0:3, and dm ¼ 0.
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the lowest order equations and boundary conditions. There-

fore, the applicability of current lowest order theory is inde-

pendent of the convergency of the next order solution. This

is different from the conventional ballooning mode theory,

in which the lowest order solution does not satisfy the

global radial boundary conditions (see Fig. 2). The applic-

ability of the lowest order theory in the conventional bal-

looning theory depends therefore on the convergence of

next order solution in order to get an overall profile that sat-

isfies the global boundary conditions (see for example Refs.

1 and 5).

V. FIRST ORDER SOLUTION FOR FREE BOUNDARY
BALLOONING MODE THEORY

In this section, we investigate the next order theory.

This is the first order correction to the lowest order theory

presented in the last section. The conventional theory for

next order correction in Ref. 5 does not apply here. This is

because the theory in Ref. 5 relies on the assumption that the

lowest order solutions are of the small type at the singular

layers (see also the further discussion in the last section).

This does not characterize the peeling component in our low-

est order theory.

To derive the next order equation, the perturbed quanti-

ties are expanded as follows:

um ¼ um þ dum: (44)

We have denoted the perturbed quantities with tag “d” and

used the same letters for both lowest and full quantities. Sim-

ilarly, the equilibrium matrices are expanded as

Fmm0 ¼ Fmm0 þ dFmm0 þ
@Fmm0

@c
dc; (45)

Kmm0 ¼ Kmm0 þ dKmm0 ; (46)

Gmm0 ¼ Gmm0 þ dGmm0 ; (47)

where dFmm0 ¼ Fmm0 � hFmm0 ir, with h� � �ir denoting the av-

erage over entire radial domain to be considered. As defined

in Eqs. (4)–(6) we assume that only matrix Fmm0 depends on

the eigen growth rate c. Note that the Euler-Lagrange equa-

tion (3) is generic for MHD description.13 The definitions of

equilibrium matrices in Eqs. (4)–(6) can be extended beyond

the lowest order expressions in 1/ n. Depending on the spe-

cific equilibrium, the order dum=um can be chosen to be 1/ n
or its fractional power.

The next order equation can be then expressed as

d

dx
Fmm0

ddum0

dx
þKmm0dum0

� �
� ðK†

mm0du0m0 þ Gmm0dum0 Þ

þ d

dx
dFmm0

dum0

dx
þ dKmm0um0

� �
� ðdK†

mm0u
0
m0 þ dGmm0um0 Þ

þdc
d

dx

@Fmm0

@c
dum0

dx

� �
¼ 0: (48)

This is a set of inhomogeneous equations for unknowns dum.

We can derive from Eq. (7) that the linearized boundary con-

ditions for dum are as follows:

Fmm0
ddum0

dx
þKmm0dum0 � Vmm0dum0

�

þ dFmm0 þ dc
@F
@c

� �
dum0

dx
þ dKmm0um0

� dVmm0um0

�
x¼D

¼ 0; (49)

dumjx!þ1 ! 0: (50)

We can derive the next order correction of the eigen growth

rate by applying the operator
Ðþ1
D umf� � �g on Eq. (48).

Using the boundary condition Eq. (49), the boundary condi-

tions for um in Eq. (7), and the Hermitian property of the ho-

mogeneous part of Eq. (48), one can obtain

dc ¼ �

ðþ1
D

dx½u0mðdFmm0u
0
m0 þ dKmm0um0 Þ þ umðdK

†

mm0u
0
m0 þ dGmm0um0 Þ� þ umdVmm0um0 jDðþ1

D
dxu0m

dFmm0
dc u0m0

: (51)

FIG. 6. Peeling-ballooning modes computed using the free boundary bal-

looning representation, with the nearest resonance surface being in the vac-

uum region D ¼ �0:99. The equilibrium parameters are as follows: s¼ 1.8,

a ¼ 1:05, and dm ¼ 0.
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Therefore, using the lowest order eigen function and lowest

order eigen growth rate obtained in the last section we

can compute the first order growth rate dc through Eq. (51).

It is interesting to point out that, when the perturbed equi-

librium quantities dFmm0 ; dKmm0 , dGmm0 , and dVmm0 vanish,

the perturbed growth rate vanishes as well: dc ¼ 0. As dis-

cussed in the last section for the case with a and s being

constant, this property is confirmed numerically by the

global calculation.

Next, we derive the next order correction for eigenfunc-

tion. Equation (48) is a set of inhomogeneous equations for

dum. Its solution is the sum of homogeneous solutions and

special solutions. Note that the homogeneous part of Eq.

(48) has the same structure as the lower order one investi-

gated in the last section. Therefore, the same independent

solutions can be used to construct the homogeneous solution

of Eq. (48). As Eq. (26), the general solution of first order in

the kth region can be expressed as

dyðxÞ ¼ f1
y;2y; � � � ;2N�1yg � kdcþkdg: (52)

Here, kdg denotes the special solution in the kth region. The

special solution kdg can be obtained by numerical shooting

from Dþ k to Dþ k � 1, with the initial condition kdg ¼ 0

imposed at x ¼ Dþ k.

The constant vectors kdc in Eq. (52) can be determined

by the boundary and matching conditions. Note that the way

constructing the special solution kdg assures the boundary

condition at x! þ1 in Eq. (50) to be satisfied. The bound-

ary condition at plasma-vacuum interface Eq. (49) can be

expressed as follows:

FLd�1dcþ ðK � VÞL0 � 1dc ¼ dh; (53)

where

dh ¼ �F � 1dgd � ðK � VÞ � 1dg0 � dF þ dc
@

@c
F

� �
u0

� ðdK� dVÞu

and u is a vector which is constituted by um. Here, L0 is

defined in Eq. (35) and

Ld �

1y2
2y2 � � � 2N�1y2

1y4
2y4 � � � 2N�1y4

� � � � � �
1y2N�2

2y2N�2 � � � 2N�1y2N�2

1y2N
2y2N � � � 2N�1y2N

0
BBBBBB@

1
CCCCCCA

x¼D

;

1dg0 ¼

1dg1

1dg3

�
1dg2N�1

0
BBB@

1
CCCA

x¼D

; 1dgd ¼

1dg2

1dg4

�
1dg2N

0
BBB@

1
CCCA

x¼D

:

The matching conditions between the last two neighboring

regions kmax � 1 and kmax can be expressed as follows:

kmaxL � kmaxdcþkmaxdg ¼ R � kmax�1dc: (54)

The matching conditions between k and k þ 1 regions are

L � kþ1dcþ kþ1dg ¼ R � kdc; (55)

where k ¼ 1; � � � ; kmax � 2. The boundary and matching con-

ditions in Eqs. (53)–(55) can be summarized in the following

matrix equation:

kmaxLð2N�1Þ�N �Rð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

0ð2N�1Þ�N Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ � � � 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ

� � � � � � � �

0ð2N�1Þ�N 0ð2N�1Þ�ð2N�1Þ 0ð2N�1Þ�ð2N�1Þ � � � Lð2N�1Þ�ð2N�1Þ �Rð2N�1Þ�ð2N�1Þ

0N�N 0N�ð2N�1Þ 0N�ð2N�1Þ � � � 0N�ð2N�1Þ ½FLd þ ðK � VÞL0�N�ð2N�1Þ

0
BBBBBBB@

1
CCCCCCCA

�

kmaxdcN�1

kmax�1dcð2N�1Þ�1

kmax�2dcð2N�1Þ�1

�

1dcð2N�1Þ�1

0
BBBBBBB@

1
CCCCCCCA
¼ �

kmaxdgð2N�1Þ�1

kmax�1dgð2N�1Þ�1

�

2dgð2N�1Þ�1

dhN�1

0
BBBBBBB@

1
CCCCCCCA
: (56)

We note that the independent solution matrices R and

L here are the same as those used in the lowest order

theory.

The solutions kdc can be obtained from Eq. (56) by the

direct matrix inversion, or equivalently by the following re-

currence relations:
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kmax�1dc ¼ R�1 kmaxL�kmaxdcþR�1 � kmaxdg;

kdc ¼ ðR�1LÞkmax�k�1 R�1kmaxL � kmaxdc

þ ðR�1LÞkmax�k�1R�1 � kmax�1dg

þ
Xkmax�2

i¼k

ðR�1LÞi�kR�1�iþ1dg;

for k ¼ 1; � � � ; kmax � 2;

where

kmaxdc ¼ �½ðR�1LÞkmax�2 R�1kmaxL��1

� ½½FLd þ ðK � VÞL0��1dh

þðR�1LÞkmax�2R�1 � kmaxdg

þ
Xkmax�2

i¼1

ðR�1LÞi�1R�1 � iþ1dg�:

As soon as the solutions of Eq. (56), kdc, are obtained, the

first order eigen function is determined by Eq. (52).

Note that the fixed boundary ballooning mode theory

can be regarded as a special case of free boundary one. The

lowest and first order theory in this paper can also be gener-

alized to the fixed boundary ballooning mode case. One of

the distinguished features of the current formalism of fixed

boundary ballooning modes lies in that the applicability of

the lowest order stability criterion does not depend on the

convergency of the first order solution. This is different

from the conventional WKB approach, for example, in

Ref. 1. The comparison of current perturbation theory with

the conventional WKB type of formulation will be further

exploited in the future numerical application of current

theory.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we found a new type of ballooning invari-

ance: the invariance of the independent solutions for high n

mode equations. This is different from the conventional

ballooning invariance: the invariance of the Fourier compo-

nents of high n modes. The conventional ballooning invari-

ance requires both the equations and boundary conditions

to be translationally invariant. The free boundary balloon-

ing formalism developed in this paper requires only the

invariance of the governing equations. The translational

invariance of the fundamental independent solutions can be

derived directly from the invariance of equations. The

invariance of the independent solutions is more fundamen-

tal and can be used to treat external modes. Using this

newly discovered invariance, it is shown that the 2D exter-

nal ballooning mode problem can be reduced to a 1D

problem.

To construct the 1D formalisms for both internal and

external ballooning modes, one needs only to calculate the in-

dependent solutions in a single interval, which is equivalent to

a 1D calculation. In the internal ballooning mode case, these

independent solutions are used to fit the boundary conditions at

both ends of the interval. In the external ballooning mode

case these independent solutions are used to fit the boundary

conditions at plasma core and plasma-vacuum interface and

the continuity conditions between nearby intervals. Comparing

with the internal ballooning mode calculation, the extra

amount of calculation for external ballooning modes is about

the calculation of the recurrence equations in Eqs. (36)–(38).

Counting in this extra calculation, one may regard it as a

quasi-1D problem.

In difference from the procedure in Refs. 5 and 6, which

consider only the next order correction for the envelope due

to the free boundary. The current formalism taps the invari-

ance property in the lowest order. From the interchange

mode theory, we know that each Fourier components

behaves at their respective resonance surfaces ðx�MÞ ! 0

as follows:7

um ! ðx�MÞ�1=26
ffiffiffiffiffiffiffi
�DI

p
;

where DI is the Mercier index and 6 sign depends on the

position of the resonance surfaces for individual Fourier

components. If the mode resonance surface (x – M)¼ 0

resides inside the plasma region, only the positive-sign so-

lution (i.e., the so-called small solution) is allowed, since

the negative-sign solution (i.e., the so-called large solution)

can lead the energy integral
Ð
jumj2 dx to diverge. However,

in the case with the resonance surface residing in the vac-

uum region the large solution is acceptable. As a matter of

fact, the minimization of the total energy of plasma, vac-

uum, and surface contributions leads the large solution to

prevail, if the resonance surface resides in the vacuum

region. It is because of the presentation of large solution

that a more stringent stability criterion for peeling modes is

obtained.8,9 This indicates that each Fourier component can

behave quite differently according to the locations of their

respective resonance surfaces (x – M), inside or outside

plasma region. Furthermore, using the transform tm ¼ 1=
ðx�MÞ, one can prove that the infinite legs (x�M!
�1) have similar behavior as the resonance surfaces (x –

M¼ 0). The Fourier components differs in accordance with

how much their infinite legs extend into the vacuum region.

Similarly, another type of peeling modes occurs when the

infinite leg contains the large solution.8,9 This shows that

even for those Fourier components with their resonance

surfaces residing inside plasma region they are not invari-

ant. Therefore, using the conventional ballooning invari-

ance in Refs. 5 and 6 for free boundary modes can cause

the peeling effect to be left out in the leading order. In our

theory the translational invariance is applied to the inde-

pendent solutions, which contain both the large and small

solutions, therefore, the peeling mode effects are taken into

account to the leading order.

For the internal ballooning modes, the amplitudes of

each Fourier component remain the same in the leading

order, as shown in Fig. 2. The envelope of the amplitudes of

leading order is determined by the next order effects, by tak-

ing into account the slow variances of equilibrium quanti-

ties.1,2 This is different for peeling ballooning modes. Since

the distance between the respective resonance surface of

individual Fourier component and the plasma-vacuum inter-

face determines how much the peeling energy of individual
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Fourier harmonic can be released, various types of envelopes

can develop naturally by the energy minimization of the

leading order, without taking into consideration the slow var-

iances of equilibrium quantities. For example, Fig. 5 can be

interpreted as follows: the envelope of decaying type toward

plasma core of six visible resonance peaks are due to their

extensions of x�M! �1 legs in the vacuum region

becoming shorter and shorter. From the peeling mode theory

of this type,9 we know that the shorter the leg in the vacuum

region, the less the peeling energy can be released. This

results in the decaying type of envelope in Fig. 5. This fea-

ture tells the key difference of the current formalism from

that in Ref. 5.

In this paper, we also develop the first order theory to

include the effects of slow equilibrium variance. This is dif-

ferent from the conventional WKB formalism in Refs. 1 and

5. One of the distinguished features of the current formalism

lies in that the applicability of the lowest order stability crite-

rion does not depend on the convergency of the first order

solution.

Since the current formalism is adaptable to the cases

with various sharp boundary changes, it therefore can be also

generalized to study the piece-wise equilibrium cases. For

example, the H-mode pedestal can be modeled approxi-

mately by two sets of independent solutions: one for pedestal

top and inward region and the other for pedestal region. By

suitable matching procedure, the 2D problem can be reduced

to two 1D problems. Similarly, the current formalism can

also be applied to study the X-point effect. In the presence of

X-point the magnetic shear becomes infinite toward to the

X-point. This case is difficult to be handled by the existing

2D codes. The current 1D approach may offer an approxi-

mate solution for it. Introducing a set of independent solu-

tions for the region at the vicinity of X-point and using them

to match the independent solutions in the plasma core, one

can also reduce to this type of complicated 2D problem to

a few 1D problems. Further applications remain to be

exploited in the future.
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APPENDIX: EXPLANATION OF THE FREE BOUNDARY
BALLOONING FORMALISM IN A REDUCED MODEL

Let us use the case with single sideband coupling from

either side and with only three resonance surfaces involved

to explain the free boundary ballooning formalism in the

main text.

As shown in Fig. 1, the three regions are labeled as

follows: the 1st region: D! 1þ D, containing the reso-

nance surface m0=n; the 2nd region: 1þ D! 2þ D, con-

taining the resonance surface ðm0 � 1Þ=n; and the 3rd

one: 2þ D! 3þ D, containing the resonance surface

ðm0 � 2Þ=n. In this model only three Fourier harmonics

are present in each region: in the 1st region they are

ðm0 þ 1Þ=n; m0=n, and ðm0 � 1Þ=n; in the 2nd region they

are m0=n; ðm0 � 1Þ=n, and ðm0 � 2Þ=n; and in the 3rd

region they are ðm0 � 1Þ=n; ðm0 � 2Þ=n, and ðm0 � 3Þ=n
components.

One can compute the independent solutions for three

components: ðm0 þ 1Þ=n; m0=n; ðm0 � 1Þ=n in the 1st region

D! 1þ D. Since they are three coupled 2nd order differen-

tial equation (3), they can be transformed to a set of six first

order differential equations. Their solutions can be expressed

as a vector:

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (A1)

When the following six initial conditions

1

0

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
;

0

1

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
;

0

0

1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
;

0

0

0

1

0

0

0
BBBBBBBB@

1
CCCCCCCCA
;

0

0

0

0

1

0

0
BBBBBBBB@

1
CCCCCCCCA
;

0

0

0

0

0

1

0
BBBBBBBB@

1
CCCCCCCCA
(A2)

are given at the right end of the 1st region x ¼ 1� D, one can

get the six independent solutions by shooting respectively

from x ¼ 1� D to x ¼ D

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

1

;

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2

;

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

3

;

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

4

;

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

5

;

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

6

: (A3)

The general solution in the 1st region can be written as the

linear combination of the independent solutions
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um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ 1c1

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

1

þ 1c2

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2

þ 1c3

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

3

þ 1c4

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

4

þ 1c5

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

5

þ 1c6

um0þ1

dum0þ1

dx
um0

dum0

dx
um0�1

dum0�1

dx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

6

; (A4)

where 1ci (i¼ 1,…, 6) are constants to be determined by the boundary and matching conditions.

With the same boundary conditions in Eq. (A2) applied respectively for the right ends of the 2nd and 3rd regions, one can

expect the independent solutions in the 2nd and 3rd regions are translationally invariant to those in the 1st region in Eq. (A3) with

shifted mode numbers. Consequently, the general solutions in the 2nd and 3rd regions can be expressed respectively as follows:

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ 2c1

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

1

þ 2c2

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

2

þ 2c3

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

3

þ 2c4

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

4

þ 2c5

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

5

þ 2c6

um0

dum0

dx
um0�1

dum0�1

dx
um0�2

dum0�2

dx

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

6

;

(A5)

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼ 3c1

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

1

þ 3c2

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

2

þ 3c3

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

3

þ 3c4

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

4

þ 3c5

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

5

þ 3c6

um0�1

dum0�1

dx
um0�2

dum0�2

dx
um0�3

dum0�3

dx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

6

;

(A6)

where 1;2ci (i¼ 1,…, 6) are constants.

Note that the general solutions in Eqs. (A4)–(A6)

for three regions contain 18 constants: 1c1;
1c2;

1c3;
1c4;

1c5;
1c6;

2c1;
2c2;

2c3;
2c4;

2c5;
2c6;

3c1;
3c2;

3c3;
3c4;

3c5;
3c6: One also

has the same number of boundary and matching conditions:

(a) the 3 boundary conditions at plasma-vacuum interface

x ¼ D; (b) the 3 boundary conditions at the plasma core

x ¼ 3� D; (c) the 6 matching conditions at the region
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interface x ¼ 1� D; (d) the 6 matching conditions at the

region interface x ¼ 2� D. Therefore, the 18 constants can

be determined completely by the boundary and matching

conditions. This constitutes the eigenvalue problem for

determining the so-called peeling-ballooning modes. These

constants determine not only the behavior of individual Fou-

rier components, but also the envelope in the leading order.

This is different from the conventional ballooning mode

theory, in which the only envelope shape determined in the

leading order is the so-called hk effect.

As explained in Sec. III through Figs. 3 and 4, the gen-

eral solution in the 1st region in Eq. (A4) is obtained through

a computation that is equivalent to a 1D calculation. The

general solutions in the 2nd and 3rd regions in Eqs. (A5) and

(A6) are obtained through applying the invariance property

in Eq. (24) and no additional computation is required. This

shows how the 2D free boundary ballooning mode problem

is reduced to a 1D problem. Here, we have outlined the

underlying thoughts in a reduced model. The general formal-

ism is described in the main text.
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