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The 2-D ballooning transform, devised to study local high toroidal number (n) fluctuations in

axisymmetric toroidal system (like tokamaks), yields a well-defined partial differential equation for the

linear eigenmodes. In this paper, such a ballooning equation of the second kind is set up for ion

temperature gradient driven modes pertinent to a 2-D non-dissipative fluid plasma; the resulting partial

differential equation is numerically solved, to calculate the global eigenvalues, and the 2-D mode

structure is presented graphically along with analytical companions. The radial localization of the

mode results from translational symmetry breaking for growing modes and is a vivid manifestation of

spontaneous symmetry breaking in tokamak physics. The eigenmode, poloidally ballooned at

# ¼ 6p=2, is radially shifted from associated rational surface. The global eigenvalue is found to be

very close to the value obtained in 1-D parameterized (k ¼ �p=2) case. The 2-D eigenmode theory is

applied to estimate the toroidal seed Reynolds stress [Y. Z. Zhang, Nucl. Fusion Plasma Phys. 30, 193

(2010)]. The solution obtained from the relatively simplified ballooning theory is compared to the

solution of the basic equation in original coordinate system (evaluated via FFTs); the agreement is

rather good. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731724]

I. INTRODUCTION

The late 1970s witnessed the emergence of the conven-

tional ballooning transform (the ballooning theory of first

kind (BM-I)) as a tool to solve the 2-D local eigenvalue

problem for high toroidal number (n) in axisymmetric toroi-

dal system like tokamaks.1–3 The new methodology reduced

the intrinsic 2-D eigenmode equation to a much simpler 1-D

ballooning equation; the feat was accomplished by exploit-

ing the approximate (to the lowest order in the small parame-

ter 1=
ffiffiffi
n
p

) translational invariance or the “ballooning

symmetry” of the original system. In this formalism, the 2-D

toroidal mode, radially localized at a rational surface, is also

found to be poloidally localized at either # ¼ 0 or # ¼ p. As

a result, it admits the up-down symmetry in the poloidal

cross section. However, the BM-I analysis is valid only if a

well-defined solvability condition is satisfied, and this condi-

tion puts restrictions on the mode structure that was, initially,

believed to exist only at a given radial position.4 For a com-

plex system (including non-dissipative ones away from mar-

ginal stability (throughout this paper, the complex BM-II

always refers to including the non-dissipative system having

finite growth rate as well as the dissipative system)), the

solvability condition consists of two equations and results in

a more stringent constraint for the occurrence of BM-I.5,6

While the existence of another type of solution different

from BM-I was anticipated since early 1980s,7,8 the balloon-

ing theory of the second kind (BM-II) was developed only in

early 1990s.9–16 The main features of BM-II, in contrast to

BM-I, can be summarized as follows: (a) no restriction due

to solvability condition implying that the 2-D toroidal mode

may occur at all radii; (b) the poloidal structure can only be

localized at # ¼ p=2 (or # ¼ �p=2); and (c) no up-down

symmetry in the poloidal plane.

Both BM-I and BM-II begin by subjecting the original

mode equation to the 2-D ballooning transform5

/lðxÞ ¼
1

2p

ðp

�p
dk
ðþ1
�1

dkeikðx�lÞ�ikluðk; kÞ; (1)

a mathematically proper transform with a unique inverse.

The LHS of Eq. (1), /lðxÞ, denotes the mode in the physical

representation ðx; lÞ where x is the radial variable and l labels

the discrete poloidal variable (see Eqs. (6) and (8) for detail).

The variables x and l enter the exponent as x� l implying

the translational invariance first noted by Lee and Van

Dam.2 The transformed potential uðk; kÞ is a function of two

continuous variables k 2 ð�1;1Þ and k 2 ½�p; p�; The

second variable k “extends” the parameter k(#0) in Lee-Van

Dam (Connor, Hastie, and Taylor) representation. Both these

representations are special cases in which /ðk; kÞ is a Dirac

d-function dðk� k0Þ. The explicit k-dependence of /ðk; kÞ
reminds us that the localization in k, the second dimension,

is to be determined (or no localization at all as in the toroidal

Alfvén eigenmode mode9,13,17–20) a post-priori as the

solution of the partial differential equation.

Invoking Eq. (1), the large n, 2-D mode equation (for

/lðxÞ) transforms to the 2-D ballooning equation

L0 þ
iL1

n

@

@k
þ L2

n2

@2

@k2
þ � � � � X

� �
/ k; kð Þ ¼ 0; (2)

where, the operators L0, L1, L2, … may contain @=@k, k, k
but not @=@k, and X is the global eigenvalue associated with

the 2-D ballooning equation. The ballooning operator L0

embodies the approximate translational symmetry

(x! xþ 1, l! lþ 1) of the original 2-D eigenmode equa-

tion and is invariant under the combined parity (CP)
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operation (k ! �k, k! �k). It must be emphasized that the

asymptotic expansion parameter of Eq. (2) is not 1=n, but the

operator 1=nð Þ@=@k, implying that the validity of the asymp-

totic expansion depends on the mode structure in the k space.

In other words, for a consistent asymptotic analysis, the 2-D

eigenfunction / k; kð Þ must satisfy the condition 1=nð Þ@
ln / k; kð Þ=@k� 1.

The lowest order limit of Eq. (2) ( 1=nð Þ@=@k� 1) is

the well-known 1-D ballooning equation

L0 � X kð Þ½ �v k; kð Þ ¼ 0: (3)

Notice that to the lowest order k is merely a parameter, and

v k; kð Þ is defined to be the eigenfunction of the operator L0

associated with the k-parameterized (not global) eigenvalue

X(k).

Let us, now, seek a 2-D solution of the form

u k; kð Þ ¼ w kð Þv k; kð Þ: (4)

Multiplying by the complex conjugate of v and integrating

over k (on both sides of Eq. (2)) to annihilate one dimension,

one obtains the equation for w kð Þ

iL1

n

@

@k
þ L2

n2

@2

@k2
� X� X kð Þ½ �

� �
w kð Þ þ � � � ¼ 0; (5)

where, Lj �
Ð1
�1 dkv�Ljv=

Ð1
�1 dkv�v (j ¼ 1; 2; � � �) and v* is

the complex conjugate of v. For a k-localized ballooning so-

lution, w(k) varies more rapidly in k than v(k, k). Specifi-

cally, it means that @ ln w=@k	 @ ln v=@k (noting that

@ ln v=@k 
 O 1ð Þ). On the other hand, the truncation of as-

ymptotic series requires n � 1=nð Þ@ ln w=@k� 1. As men-

tioned earlier,15 the small parameter e � 1=
ffiffiffi
n
p

provides a

consistent ordering for the above two conditions being satis-

fied simultaneously. It means that n becomes 1=
ffiffiffi
n
p

only for

the localized mode (@ ln w=@k 
 O
ffiffiffi
n
pð Þ). Existence of such

localized w(k) is the characteristic of the ballooning symme-

try breaking.

For BM-I, the first-order perturbation in Eq. (5) is

assumed to give no contribution, i.e., L1 ¼ 0 (the solvability

condition). Owing to the CP conservation of both the 1-D

ballooning and the 2-D equation (up to second order in

1=nð Þ@=@k), the mode structure w(k) is localized at k0 ¼ 0

or p, which is equivalent to the poloidal angel # ¼ 0 or p.

The global eigenvalue X is close to the local eigenvalue (the

k-parameterized eigenvalue X(k) at k0 ¼ 0 or p) with only a

second-order correction, X� X k0ð Þ 
 O e2ð Þ. As mentioned

earlier, the meaning of the solvability condition needs to be

examined; this can be challenging in general but particularly

so for complex systems.5,6

For BM-II, in contrast, the second-order terms in Eq. (5)

are neglected while L1 remains non zero. As a result, the CP

symmetry, conserved for the 1-D ballooning equation, is vio-

lated in the second dimension for the BM-II equation. For a

complex BM-II, this violation leads to the localization of the

mode structure at k0 ¼ p=2 or �p=2 (corresponding to the

poloidal angel # ¼ �p=2 or p=2). The global eigenvalue

will be shown correct to the 2nd order of the local eigen-

value: X k0ð Þ. In order for BM-II to have a poloidal localiza-

tion, the system does not need to be necessarily dissipative.

As pointed out in Refs. 15, 16, and 21, the equilibrium free

energy, driving the instability, could be sufficient to warrant

such localization. Because it also leads to the breakdown of

the up-down symmetry of mode structure, the instability

driven asymmetry is an example of spontaneous symmetry

breaking.21

For both BM-I and the complex BM-II, it is the transla-

tional symmetry breaking of the 2-D ballooning equation

that results in the poloidal as wells as radial localization of

mode structure. The conservation of CP for BM-I leads to

the radial symmetry of the eigenmode. However, the CP

symmetry breaking of the complex BM-II causes the radial

asymmetry of mode around the associated rational surface.

This radial asymmetry is found to yield the finite seed paral-

lel Reynolds stress (Ref. 21) offering an alternative turbu-

lence driven mechanism to those proposed by other

theories.22–30 The parallel Reynolds stress is shown to be

zero for the slab modes in absence of equilibrium flows and

electric fields.31

For reader’s convenience, a few remarks are in order

with regard to various concepts in literature originating in

different symmetry breaking terms,15,21 namely ballooning

symmetry breaking, radial symmetry breaking, up-down

symmetry breaking, combined parity symmetry breaking,

and spontaneous symmetry breaking. The two terms

“symmetry breaking” and “symmetry violation” are used

here interchangeably.

The ballooning symmetry is, technically, the (combined)

translational invariance as mentioned above. Such symme-

tries, often, facilitate system analysis—equally significant is

the general notion that symmetry breaking imparts interest-

ing properties to the system. Translation invariance, for

example, implies no spatial structure (localization, for

instance). To create spatial structure, then, one would seek

mechanisms that break translational invariance. It is in this

context that the ballooning symmetry (and symmetry-break-

ing) has attracted considerable theoretical attention in toka-

mak research.

Seeking localization of 2-D high n toroidal modes in

tokamkas, the 2-D mode equations have to be “properly”

solved. There are leading contenders for the proper solution:

BM-I and BM-II-both are particular solutions of the 2-D bal-

looning equations and are characterized by different reflec-

tion symmetries.

Radial symmetry, in the tokamak context, refers to the

reflection symmetry of the mode structure with respect to

the pertaining rational surface. There exist many one-

dimensional (1-D) models where the radial symmetry viola-

tion is associated with details of the model—shear flow

driven instabilities are an example. It is also widely accepted

that without such symmetry violation, toroidal rotation can-

not be driven in a 1-D model. That raises a theoretically

interesting question—Are even instabilities, associated with

such a 1-D mode, excluded from the candidate list that could

drive toroidal rotation? By exploring a fluid ion temperature

gradient (ITG) model, we demonstrate that the answer is no;

instabilities could, indeed, power torioidal rotation.
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Up-down symmetry refers to the reflection symmetry of

the mode structure with respect to the equatorial surface of the

tokamak. Because toroidal rotation does imply up-down sym-

metry violation, the associated mode structure of the turbu-

lence drive must, necessarily, violate the up-down symmetry.

CP symmetry pertains to the simultaneous reflection in

radial and poloidal directions. Mathematically, it corresponds

to k! �k, k! �k in the 2-D ballooning equations and is

equivalent to the simultaneous reflection (x! �x, l! �l)
in the (x, l) representation. Both the ballooning equation and

the BM-I mode conserve CP symmetry. BM-II, however,

does not leading to up-down asymmetry. This is the universal

or ubiquitous mechanism (regardless of specific modes) of

driving not only toroidal but also poloidal Reynolds stress.15

The concept of spontaneous symmetry breaking is asso-

ciated with instability-driven asymmetry. For barely unstable

modes in a non-dissipative fluid ITG model, the system is

almost real. Such modes are not radially localized, and the

asymptotic expansion parameter n is not small enough to

guarantee the validity of the skewed mode. Even if such

modes were to exist, they will not fall into the non-

dissipative BM-II class. Therefore, the purposely chosen

non-dissipated fluid ITG model is adopted to demonstrate

the mechanism of spontaneous symmetry breaking. Such a

mechanism may not be even significant in reality when the

system is dissipative. The intrinsic dissipation could provide

mode localization even for marginally stable BM-II modes.

The rest of this paper is organized as follows. In Sec. II

of the paper, a non-dissipative 2-D fluid model, appropriate

for demonstrating spontaneous symmetry breaking, is

devised for the ion temperature gradient driven mode. The

model is then transformed into a 2-D ballooning equation and

solved analytically under certain simplifying assumptions.

The analysis of Sec. II is verified in Sec. III using a novel,

iterative numerical method. The detailed iterative procedure

of the numerical method is given in Appendix A. The verifi-

cation, displayed in graphics for two typical parameter sets A

and B, spans the global eigenvalue, the asymptotic condition,

and the mode structure. In particular, the verification of the

asymptotic condition is displayed graphically by substituting

the ballooning solution back into the original mode equation

in the x-l representation via fast Fourier transform (FFT).

Since the seed parallel Reynolds stress is the natural conse-

quence of the skewed mode structure of BM-II, its calculation

in 2-D ballooning representation is presented in Sec. IV. Our

detailed calculation confirmed the earlier prediction that the

seed parallel Reynolds stress reverses sign when the magnetic

shear measure equals unity.21 We have also explored the

complex issues one faces when an attempt is made to apply

the current work to experimental observations.32–35 Major

conclusions of this paper are summarized in Sec. V. The ana-

lytical solution of ballooning equation for arbitrary k is also

found very useful for comparison between analytical and nu-

merical results. It is given in Appendix B.

II. MODEL EQUATION AND ANALYTIC SOLUTION IN
BALLOONING REPRESENTATION

In this section, drawn heavily from Ref. 21, we investi-

gate a non-dissipative fluid ITG model pertaining to an axi-

symmetric, large-aspect-ratio torus with concentric, circular

magnetic surfaces. In the quasitoroidal coordinates (r; #; f)

that correspond, respectively, to the minor radial, poloidal,

and toroidal directions, the toroidal mode that is localized at

the rational surface r0 is represented by

un r; #; fð Þ ¼ e�ixtþinf�im#
X

l

ul rð Þe�il#; (6)

where n is the toroidal mode number, m ¼ nq r0ð Þ, and the in-

teger l labels the sidebands coupled to the central Fourier

mode m. The 2-D fluid ITG eigenmode equation is derived

(zero equilibrium radial electric field and flow) from the

three lowest order ion fluid transport equations, namely parti-

cle, momentum, and energy conservation law. In this deriva-

tion, we also use the adiabatic electron response and quasi-

neutrality condition, and obtain 36,37

q2
sr2
? �

c2
s

x2
r2
k �

x� x̂�e
xþ x̂�i

� 2x̂de

x

� �
/n r; #; fð Þ ¼ 0; (7)

where r2
? � @2=@r2 þ 1=r2ð Þ@2=@#2, rk � b � r ¼ 1=qRð Þ

@=@#þ q rð Þ@=@f½ �, qs �
ffiffiffiffiffiffiffiffiffiffi
miTe

p
=eB, cs �

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, x̂�e �

x�e i=nqð Þ@=@#, x�e � khTe=eBð Þ d ln n0=drð Þ, x̂�i �
x�i i=nqð Þ @=@#, x�i � khTi=eBð Þ d ln pi=drð Þ, x̂de �
xde i=nqð Þ r sin#@=@rð þcos#@=@#Þ, xde ��k#Te=eBR, and

k# �m=r0. Additionally, Te is the electron temperature, n0 is

the plasma density in equilibrium, Ti and pi are the ion tem-

perature and pressure respectively, e is the unit charge, B is

the magnetic field, and R is the major radius; all physical

quantities are evaluated at r¼ r0 except for q rð Þ.
Introducing new radial variables x � k#ŝ r � r0ð Þ, where

ŝ � d ln q rð Þ=d ln r, and substituting Eq. (6) into Eq. (7)

yields the model equation in x; lð Þ representation. At this

stage, we further restrict our model by using an ad hoc

symmetry breaking term, basically, arising from the @=@#
contained in x̂�i. The 2-D model equation in x; lð Þ represen-

tation (up to first order in l=m), then, reads as

k#qsŝð Þ2 d2

dx2
þ x2

s

x2
x� lð Þ2 �

1þ k#qsð Þ2 þ x�i=xð Þ k#qsð Þ2 � x�e=x�i
h i

1þ x�i=xð Þ

8<
:
þ

1þ k#qsð Þ2 þ x�i=xð Þ k#qsð Þ2 � x�e=x�i
h i

1þ x�i=xð Þ2
x�i
x

l

m

9=
;ul xð Þ � xde

x
1þ ŝ

d

dx

� �
ulþ1 xð Þ þ 1� ŝ

d

dx

� �
ul�1 xð Þ

� �
¼ 0: (8)
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This is the model equation that we shall study to explore the

content of the ballooning theory of second kind. The

substitutions5

d

dx
! ik; x� lð Þ ! i

@

@k
; l! �i

@

@k
;

ul61 xð Þ ! e�i kþkð Þ/ k; kð Þ (9)

transform Eq. (8) into the 2-D ballooning equation of the

second kind

L0 þ
iL1

n

@

@k
� X

� �
/ k; kð Þ ¼ 0; (10)

where

L0 ¼
1

g2

@2

@k2
þ g2k2 � 2q

ŝ
cos k þ kð Þ þ kŝ sin k þ kð Þ½ �;

(11)

L1 ¼
1

ŝen

x�i
x�e

1þ k#qsð Þ2 þ x�i k#qsð Þ2 � x�e=x�i
h i

=x

1þ x�i=xð Þ2
;

(12)

X ¼ � q

ŝen

x
x�e

1þ k#qsð Þ2 þ x�i k#qsð Þ2 � x�e=x�i
h i

=x

1þ x�i=x
;

(13)

and g2 � xk#qsŝ=xs, en � Ln=R, Ln � d ln n0=drð Þ�1
, and

xs � cs=qR. Equation (10) is the precise BM-II version of

Eq. (2) for the physical model Eq. (8).

In order to solve 2-D BM-II, Eq. (10), we begin with the

ballooning equation

1

g2

@2

@k2
þ g2k2 � 2q

ŝ
cos k þ kð Þ½

�
þ kŝ sin k þ kð Þ� � X kð Þgv k; kð Þ ¼ 0 (14)

with the evanescent boundary condition at large jkj. Substi-

tuting Eq. (4) into Eq. (10) and invoking the annihilation pro-

cedure, we obtain the differential equation in k (the second

dimension)

iL1

n

d ln w kð Þ
dk

þ @ ln v
@k

� �
� X� X kð Þ½ � ¼ 0 (15)

with w kð Þ obeying periodic boundary condition. In Eq. (15),

L1 �

ð1
�1

dkv�L1vð1
�1

dkv�v
: (16)

Consistent with the ordering of the asymptotic theory, the

term @ ln v
@k can be neglected in Eq. (15) as long as the condi-

tion @ ln v=@k� d ln w=dk is satisfied. Eq. (15) is, then,

reduced to

iL1

n

d ln w kð Þ
dk

� X� X kð Þ½ � ¼ 0: (17)

Because of the CP conservation of the ballooning operator,

the k-parameterized eigenvalue X(k) can be approximated

by a truncated Fourier series in cos pk (p ¼ 0; 1; 2;…), e.g.,

X kð Þ ¼ c0 þ c1 cos kþ � � � : (18)

The set of Eqs. (14) and (17) constitutes the starting

point of the numerical solution as presented in Sec. III. The

analytical solution, however, is also found feasible by

assuming that only the first two terms in Eq. (18) are signifi-

cant for localized modes, i.e.,

X kð Þ ¼ c0 þ c1 cos k: (19)

This approximation is found plausible in our numerical

explorations in Sec. III. Substituting Eq. (19) into Eq. (17),

then integrating over k, we obtain the eigenvalue X ¼ c0

owing to the periodic boundary condition on w kð Þ. Then,

w kð Þ is solved to be

w kð Þ ¼ w 0ð Þeinl sin k; (20)

where l � c1=L1. This simple expression is obtained

because in our model, L1 is independent of k. If l is complex

and finite (not too small imaginary part), w kð Þ becomes

localized either at p=2 (Im l < 0) or at �p=2 (Im l > 0) in

the limit of large n. The asymptotic expansion parameter

turns out to be

n � 1

n

@ ln w
@k



ffiffiffiffiffiffiffiffiffiffiffi
jImlj

n

r
� 1 (21)

and w(k) has a width

4k � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njImlj

p � 1: (22)

Putting it all together, the condition for the asymptotic theory

to be valid, works out to be

1

n
� jIm lj � n: (23)

Now, we are able to analytically solve the ballooning

equation in certain parameter ranges by adopting the standard

method in literature (Ref. 15 and references cited herein). At

k0 ¼ rkp=2 (rk ¼ 1 for Im l < 0 and rk ¼ �1 for Im l > 0

(this can be uniformly expressed rk ¼ �sgn Imlð Þ and termed

“localization rule”)), the ballooning equation (Eq. (14))

becomes

1

g2

@2

@k2
þ V kð Þ � X kð Þ

� �
v k; rk

p
2

� 	
¼ 0; (24)
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where V kð Þ � g2k2 � rk 2q=ŝð Þ kŝ cos k � sin k½ �. It is impor-

tant to note that the ballooning operator acquires maximal par-

ity violation at k0 ¼ rkp=2 in k space. This is in contrast to the

conventional ballooning operator that conserves the k parity.

Expanding V(k) at k� defined by @V kð Þ=@k ¼ 0, we obtain

k� ¼ rk
q

g2ŝ
ŝ � 1ð Þ cos k� � k�ŝ sin k�½ � (25)

and the mode structure v k; rkp=2ð Þ for large g2

v k; rk
p
2

� 	
¼ eig2 k�k�ð Þ2=2: (26)

It is important to note that k� is a measure of the radial asym-

metry of the mode. In the physical space, Eq. (26) reads

v x� l; rk
p
2

� 	
¼

ffiffiffiffiffiffiffi
2pi

g2

s
eik� x�lð Þ�i x�lð Þ2= 2g2ð Þ: (27)

The mode structure given by Eq. (27) retains the translational

symmetry, but violates CP conservation. The latter yields a

radial symmetry breaking in the “slab” limit (l! 0),

v x; rk
p
2

� 	
¼

ffiffiffiffiffiffiffi
2pi

g2

s
eik�x�ix2= 2g2ð Þ: (28)

In a sense, it can be called the modified (by toroidicity) slab

mode.21

Substituting the analytic form of the mode (consist-

ing of Eq. (27) for ballooning base, and Eq. (20) for fast

k modulation) back in the 2-D ballooning representation

Eq. (1), and, in turn, into the local mode representation

Eq. (6), we obtain the 2-D mode structure in the physical

space,

un x; #; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pnjlj

s
einf�im#

X
l

v x� l; rkp=2ð Þeirk nlþl2= 2nlð Þ�l rk#þp=2ð Þ½ �þi3p=4�i#0=2; (29)

where #0 is the phase of l. Equation (29), valid in large n
limit, is derived by integrating over k via the saddle point

method. For the finite Im l, the second term in the exponent

of Eq. (29), per the “localization rule,” results in rapid decay

for l > l, where l is the ballpark number of the influential

sidebands

l � jlj
ffiffiffiffiffiffiffiffiffiffiffi

n

jImlj

r
� m: (30)

Equation (29) suggests that the mode is poloidally localized

at # ¼ �rkp=2 in the large n limit.

Note that for the model equation, where L1 is independ-

ent of k, the global eigenvalue is readily obtained by inte-

grating Eq. (17). Its value is thus found very close to that of

the local one, since cos rkp=2ð Þ ¼ 0. In general, L1 could

depend on k. In that case, Eq. (17) should be divided by L1

before doing integration over k. The global eigenvalue could

be slightly away from the local one. The k-dependency of L1

is generally weak, because the dependency can only come

into existence through the ballooning solution v k; kð Þ and

cos k, sin k, etc. Therefore, the deviation from local eigen-

value is also small. Admittedly, if L1 were to cross zero

somewhere in k, the present analysis breaks down, and the

theory of BM-II will need to be re-worked.

III. NUMERICAL RESULTS OF GLOBAL EIGENVALUE
AND MODE STRUCTURE

One of major goals of this paper was to test and possibly

verify the analytic results through detailed numerical calcula-

tions. Two typical parameter sets A and B are chosen for the

comparison. For the parameter set A, corresponding to the

operating conditions on HL-2A (R ¼ 1:65 m, a ¼ 0:65 m,

Te ¼ 1:5 keV, and B ¼ 2 T), physical parameters of the

theory turn out to be: k#qs ¼ 0:6, ŝ ¼ 1:2, q ¼ 1:5, en ¼ �0:1,

x�i=x�e ¼ 3, and n¼ 60. The set B, reflecting JET operation

(R ¼ 2:96 m, a ¼ 1:25 m, Te ¼ 3 keV, B ¼ 3 T), yields the

corresponding physical parameters: k#qs ¼ 0:5, ŝ ¼ 1:5,

q ¼ 3, en ¼ �0:02, x�i=x�e ¼ 6, and n¼ 60.

In general, a numerical solution of the set of 2-D bal-

looning equation, Eqs. (14) and (17), is not straightforward,

because the parameters contained in the ballooning equation

are likely to depend on the mode frequency, which is linked

to the global eigenvalue (see Eq. (13), for example). In that

case, the coefficients of the equation in first dimension

depend on the solution of the equation in second dimension,

whose potential X(k), in turn, is the parameterized eigen-

value of the equation in the first dimension. Fortunately,

from the analysis in Sec. II, we expect that the global eigen-

value may be well approximated by the local one. This sug-

gests a way to break up the above mentioned entanglement,

e.g., by resorting to iteration methods.

The details of the “iterative procedure” are given in

Appendix A. In the rest of this section we exhibit, graphically,

the numerical solutions of the 2-D ballooning equations and

compare them to analytical solutions derived in Sec. II for the

parameter sets A and B. The related theoretical parameters are

calculated by making use of the global eigenvalues are

x=jx�ij ¼ 0:108þ 0:0894i, l ¼ �0:136� 3:65i, l ¼ 14:8,

g2 ¼ 2:10þ 1:74i, rk ¼ 1 for the set A, and x=jx�ij
¼ 0:0706þ 0:0167i, l ¼ �0:198� 11:1i, l ¼ 25:9, g2 ¼
23:8 þ5:64i, rk ¼ 1 for the set B. Because the validity of the

analytical expression of ballooning equation, Eq. (26), gets

better for large g2, one has reason to expect that the analytical

results for parameter set B (as compared to set A) should be

closer to the numerical solution.
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The ballooning wave functions v k; kð Þ, corresponding to

the local eigenvalues, are plotted versus k for k ¼ 0;
p=4; p=2; p in Figs. 1A(a)–1A(d) and Figs. 1B(a)–1B(d) for

the parameter sets A and B, respectively. The corresponding

local eigenvalues are listed in Table I. The numerical results as

displayed in Fig. 1 with solid line are obtained from Eqs. (A1),

(A3), and (A5) with k0 replaced by k; the dotted-dashed line is

the analytical result obtained from Eq. (B4) in Appendix B,

the extension of Eq. (26) for arbitrary k.

Fig. 1 indicates that the parity conservation in k space

holds for k¼ 0, p, but is violated for k¼p/4, p/2. The maxi-

mal violation is near k¼p/2, and then decreases as k reaches

p. The oscillation of v k; kð Þ for k¼p is associated with

lower growth rate in contrast to k¼ 0. Since k¼ 0 and k¼p
correspond, respectively, to the good and bad curvature

regions of plasma, this result indicates that the bad curvature

destabilizes the ITG mode for the given parameter set with

less oscillatory mode structure. It is also interesting to men-

tion that while the mode structure is in very good agreement

with the analytical formula (Figs. 1B(a)–1B(d)), the analyti-

cal result is still acceptable when g2 is barely above unity

(Figs. 1B(a)–1B(d) for parameter set A).

A FORTRAN code is developed to, numerically, solve

the global eigenvalue problem of Eqs. (A1)–(A5). All

selected numerical results displayed below are obtained from

convergent iteration. The wave functions in k space, w(k),

are solved and presented in Figs. 2(A) and 2(B) for parame-

ter sets A and B respectively, and compared with the analytic

formula in Eq. (20). Numerical solutions in Fig. 2(A) show

that the wave function w(k) has a width Dk ¼ 0:0675

(defined by Eq. (22)).

It is interesting to observe that the numeric-analytic

agreement is excellent for parameter set B, but for the pa-

rameter set A the agreement is less good, because the analyt-

ical ballooning solution (Eq. (B4)) deviates away from being

true for this parameter set (g2 ¼ 2:10þ 1:74i). It is worth

mentioning that for both the parameter sets A and B, Im l is

found to be not “too small” as required by the theory. Also

w(k) is highly localized at k ¼ p=2 for Im l< 0, consistent

with the theoretical analysis. On the other hand, for Im

l> 0, w(k) is localized at k ¼ �p=2. However, for most pa-

rameters we explored, Im l< 0 pertains.

The real and imaginary parts of X(k) versus k are dis-

played in Figs. 3(A) and 3(B) for parameter sets A and B,

respectively. Again X(k) is barely distinguishable from the

expression c0 þ c1 cos k used to obtain analytical Eq. (19);

The Fourier coefficients up to the 5th harmonics are presented

in Table II for both the parameter sets. It also indicates the

appropriateness of limiting X(k) to the first harmonic.

Combining the numerical ballooning solution v k; kð Þ and

w(k) via Eq. (4) and substituting it into Eq. (1), we obtain the

2-D wave functions ul xð Þ via FFT. It is displayed in Figs.

4A(a)–4B(a) for parameter sets A and B, respectively, for

selected significant sidebands, where solid line stands for

Re ul xð Þ½ � and dotted-dashed line stands for Im ul xð Þ½ �. It is

seen that ul xð Þ decays rapidly with increasing l and can be

neglected when l > l. Therefore, this behavior is in good

agreement with analytic expressions given earlier. For exam-

ple, the decay length l, defined by Eq. (30), is found to be 14.8

for the parameter set of Fig. 4(A), and the condition l� m is

numerically verified. The radial positive shift from the associ-

ated rational surface (x¼ 0) is also seen in Fig. 4.

In order to further compare the numerical results with

analytical ones, use is made of Eq. (B6) to calculate ul xð Þ.
The results are displayed in Figs. 4A(b) and 4B(b) for param-

eter sets A and B, respectively, for a few selected significant

sidebands (l ¼ �4; 0; 4) only. As expected, the agreement

looks better for parameter set B than parameter set A.

FIG. 1. The real (blue line) and imaginary (red line) parts of ballooning wave functions vðk; kÞ versus k for (a) k¼ 0; (b) k¼p/4; (c) k¼p/2; (d) k¼p for pa-

rameter sets A and B. Solid line: numerical solution; dotted-dashed line: analytical solution obtained from Eq. (B4). The parameter sets chosen are k#qs ¼ 0:6,

ŝ ¼ 1:2, q¼ 1.5, en ¼ �0:1, x�i=x�e ¼ 3, n¼ 60 for A, and k#qs ¼ 0:5, ŝ ¼ 1:5, q¼ 3, en ¼ �0:02, x�i=x�e ¼ 6, n¼ 60 for B.

TABLE I. The local eigenvalues corresponding to the ballooning wave

functions as displayed in Figs. 1(a)–1(d) for both parameter sets A and B.

Fig. 1A Fig. 1B

(a) for k¼ 0 x=jx�ij ¼ 0:0755þ 0:220i x=jx�ij ¼ 0:0455þ 0:0642i

(b) for k¼p/4 x=jx�ij ¼ 0:0749þ 0:188i x=jx�ij ¼ 0:0472þ 0:0518i

(c) for k¼p/2 x=jx�ij ¼ 0:108þ 0:0878i x=jx�ij ¼ 0:0704þ 0:0170i

(d) for k¼p x=jx�ij ¼ 0:214þ 0:0397i x=jx�ij ¼ 0:110þ 0:00783i
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By making use of the 2-D wave function in (x, l) repre-

sentation, Eq. (1), and the Poisson formula

X
l

ð1
�1

dke�il kþkþ#ð Þv k; kð Þ ¼ 2p
X

p

v 2pp� k� #; kð Þ;

(31)

the mode structure in x; #ð Þ coordinate system, given by

Eq. (6), may be expressed as

u x;#ð Þ¼ e�im#
X

l

e�il# 1

2p

ðp

�p
dkw kð Þ

ð1
�1

dkeik x�lð Þ�iklv k;kð Þ

¼ e�im#
X

p

ðp

�p
dkw kð Þv 2pp�#�k;kð Þeix 2pp�#�kð Þ:

(32)

Because v decays rapidly in k space in our numerical calcu-

lations, it was found sufficient to include p only up to 62.

Figures 5(A) and 5(B) show the real parts of potential con-

tour of the mode structure on a poloidal cross section for the

parameter sets of Fig. 4. Use is made of the radial conversion

formula q ¼ r0 1þ x=mŝð Þ=a to draw the level plot in polar

coordinate system. Notice that a in the formula is not the

minor radius and equals a ¼ 3r0=2 in Fig. 5. The blue

dotted-dashed line stands for the associated rational surface

(r0). The poloidal localization at # ¼ �p=2 is in accordance

with the preceding analytical analysis. The radial symmetry

breaking can also be seen from the fact that the mode struc-

ture is skewed.

Before concluding the section, it is worth checking the

“trustworthiness” of our numerical results. We did this by

substituting ul xð Þ and the global eigenvalue back into the

model equation before the ballooning transform, Eq. (8). The

accuracy is measured by Fe � L̂ul xð Þ
X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

u�
l

xð Þul xð Þdx
p , where L̂ul xð Þ

is the LHS of Eq. (8). The comparison results are shown for

FIG. 2. The localization at rkp=2 of second dimensional wave functions w(k) for parameter sets A and B. Solid line: numerical solution; dotted-dashed line:

analytical solution obtained from Eq. (20).

FIG. 3. The real (blue line) and the imaginary (red line) parts of k-parameterized eigenvalue X(k) versus k for parameter sets A and B. Solid line: the k-para-

meterized eigenvalue X(k); dashed line: the global eigenvalue X; dotted-dashed line: c0 þ c1cos k.
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the following values of the asymptotic expansion parameter

defined by Eq. (21): n¼ 0.247 in Fig. 6(A) and n¼ 0.431 in

Fig. 6(B) (or parameter sets A and B, respectively). We find

that the precision of the global eigenvalue reaches 10-3,

which well satisfies the assumed accuracy (
1/n). Thus,

such a cross error analysis ensures the validity of the asymp-

totic approach of ballooning theory for local modes.

IV. SEED PARALLEL REYNOLDS STRESS

The turbulence driven seed parallel Reynolds stress

emerges as a natural consequence of the skewed mode struc-

ture of BM-II. In this section, we extend the previous analy-

sis (Ref. 21) to more detailed numerical evaluation. The seed

parallel Reynolds stress induced by turbulence is defined by

<k � h~ur ~uki, where ~ur is the radial component of the fluctu-

ating E� B velocity, ~uk is the fluctuating parallel flow ve-

locity, and h� � �i stands for the ensemble average. For

tokamaks, the physical quantity is the average over a mag-

netic surface,

<k �
1

2p

ðp

�p
d#h~ur ~uki: (33)

In the fluid ITG model, ~ur and ~uk are, respectively,

expressed by

~ur ¼ �
Te

eBr

@u
@#

; (34)

~uk ¼ �
iTe

mi

1

x
1þ x�i

x

� 	
rku; (35)

TABLE II. The Fourier coefficients of X(k) for parameter sets A and B.

Fourier coefficients Set A Set B

c0 �0:0130þ 1:00i �0:0193þ 1:00i

c1 �2:71� 0:206i �4:02� 0:0781i

c2 �0:0234þ 0:00854i 0:0176� 0:00859i

c3 0:00191þ 0:00521i 0:00116� 0:00107i

c4 0:00154� 0:000570i 0:0000726� 0:000126i

FIG. 4. (a) the real (solid line) and imaginary (dotted-dashed line) parts of 2-D wave function ulðxÞ versus x for various l for parameter sets A and B; (b) the

comparison of real parts of ulðxÞ between numerical solutions (solid line) and analytical ones (dotted-dashed line) obtained from Eq. (B6) for several selected

sidebands for parameter sets A and B.
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where, u is the normalized (to Te=e) fluctuating electrostatic

potential. Substituting Eqs. (34) and (35) into Eq. (33) yields

the contribution from the jth rational surface to <k

<k;j ¼ �
T2

e

2mieB
Im

1

x
1þ x�i

x

� 	� �X1
l¼�1

mþ l

r
kkjul xð Þj2erb;

(36)

where, kk � x� lð Þ=qR, er, and b are the unit vectors in the

radial and magnetic field directions, respectively. The total

stress is obtained by summing over all the rational surfaces.

Under the approximation15

X
j

<k;j �
ð1
�1

dx<k;j; (37)

it yields

<k ¼
X

j

<k;j

� � k#T2
e

2mieB
Im

1

x
1þ x�i

x

� 	� �
hkki

ð1
�1

dx
X1

l¼�1
jul xð Þj2erb;

(38)
where hkki is a measure of the seed parallel Reynolds stress

and is defined by

hkki �

X1
l¼�1

ð1
�1

dxu�l kkul

X1
l¼�1

ð1
�1

dxu�l ul

: (39)

Equation (38) is essentially same as the last two terms of

Eq. (5) in Ref. 31.

Note that the analytical expression for v seen in Eq. (27)

suggests that it is the finite radial shift from rational surface

(non-zero k�) that is the source of finite hkki.

FIG. 5. The potential contours of the real parts of 2-D mode structure on a poloidal cross section for parameter sets A and B. a equals 3r0/2 in this figure.

FIG. 6. The fitness of the ballooning solution to the 2-D model equation in the (x, l) representation for parameter sets A and B. Solid line: l¼ 0; dotted-dashed

line: l¼ 10.
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The analytical mode structure is obtained as a single component on the RHS of Eq. (29),

ul xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

i

njljg2

s
eik� x�lð Þ�i x�lð Þ2= 2g2ð Þþirk nlþl2= 2nlð Þ�lp=2½ �þi3p=4�i#0=2: (40)

Substituting Eq. (40) into Eq. (39) and expressing x� l of kk in terms of parameter derivative �d=db yields

hkki ¼

X1
l¼�1

e�jImljl2= njlj2ð Þ � d

db

� �ð1
�1

dxe� x�lð Þ2Img2=jg2j2�b x�lð Þ

qR
X1

l¼�1
e�jImljl2= njlj2ð Þ

ð1
�1

dxe� x�lð Þ2Img2=jg2j2�b x�lð Þ
; (41)

where b � 2Imk�. The operator �d=db yields the quantity

independent of l. The absolute sign of Im l arises from the

localization rule (see footnote b). Therefore, Eq. (41) is

reduced to

hkki ¼ �
1

qR
jg2j2 Im k�ð Þ

Im g2ð Þ (42)

and k� is solved (from Eq. (25) for small jq=ŝg2j � 1) to be

k� � rk
ŝ � 1ð Þq

ŝg2
: (43)

Combining Eqs. (42) and (43), we find

hkki ¼ rk
ŝ � 1ð Þ

ŝR
: (44)

This expression for hkki including all sidebands is the same
as that of Ref. 21; the latter was obtained forl! 0 only. The

semi-numerical hkki is computed in terms of the 2-D bal-

looning solution by making use of the formula

hkki �

ð1
�1

dkv� k; rkp=2ð Þi @
@k

v k; rkp=2ð Þ

qR

ð1
�1

dkv� k; rkp=2ð Þv k; rkp=2ð Þ
(45)

derived from Eq. (39) via the ballooning transform, and

approximating the localized w(k) at rkp=2 by d-function.

The significance of this computation is to get rid of the

approximation caused by making use of analytic expres-

sion of ballooning solution Eq. (26). The numerical

results in use of Eq. (45) are found in excellent agreement

with 2-D integration in use of Eq. (39) for a few selected

examples.

The dimensionless parallel wave number hk̂ki ¼ hkkiR
(normalized to major radius), obtained by various approaches

(using Eqs. (42), (44), and (45)), is plotted and compared with

the magnetic shear ŝ in Fig. 7. For this exercise, we added

another parameter set C in addition to the parameter sets

A and B. The parameter set C is essentially the same as the

parameter set A, but has a different density gradient, en ¼
�0:3 instead of en ¼ �0:1. The parameter set C is purposely

chosen to violate the requirement g2 	 1 needed for the va-

lidity of analytical expression Eq. (26). The three hollow

circles in Fig. 7 correspond to the sets A, B, and C for which,

jg2j ¼ 2:72, 24.5, and 1.31, respectively. It is very interesting

to note that the simple analytic formula Eq. (44) is a good

description for the sign reversal of hk̂ki at ŝ ¼ 1.

In recent years, a few laboratories have reported intrin-

sic toroidal rotation in tokamaks.32–35 The spontaneous sym-

metry breaking induced parallel Reynolds stress is a

ubiquitous turbulence driven mechanism for sowing seeds

for the intrinsic toroidal rotation. This feature, however, is

not unique to ITG and is common to all types of tokamak

turbulence because of the 2-D mode structure imposed by

the tokamak geometry.

One must, however, use extreme caution in applying the

theoretical results (obtained in this paper) to the observations

in experiment and simulation:

(1) First of all, the seed parallel Reynolds stress may not be

directly proportional to the actual Reynolds stress in

tokamaks. For example, the seed Reynolds stress drives

initial shear flow, which in turn may drive other instabil-

ities, or induce radial electric fields to achieve a new

equilibrium. In the new equilibrium, the seed Reynolds

stress may not be dominant.

(2) Second, the above calculation is model-dependent; it is

based on ITG instability in a non-dissipative fluid, for

which the normal density gradient is stabilizing. Other

instabilities are likely to lead to different parametric

tendencies.

(3) Last but not the least, the present theory is a simple illus-

trative model founded on only one symmetry breaking

term. Many other contending symmetry breaking terms,

such as those due to radial dependency and derivatives

on the poloidal angle, are ignored without evaluating

their weights. Nonetheless, there could be some interest-

ing qualitative features shared among different models

and different symmetry breaking terms. For example, the

sign of Reynolds stress reverses at a certain radial
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position. Many more concrete calculations are needed to

supplement this effort.

V. CONCLUSION

In this paper, building on the work reported in Ref. 21,

we have harnessed theoretical, numerical, and graphical

methods to present the essence of the 2-D BM-II pertinent to

a non-dissipative fluid ITG model. The primary result is a

theory of induced toroidal rotations via spontaneous symme-

try breaking. The resulting 2-D ballooning eigenmode equa-

tions are numerically solved for the localized BM-II; the

solution comprises, inter alia, the global eigenvalue, the 2-D

mode structure, and the seed parallel Reynolds stress under

verified asymptotic conditions. The numerical solutions for

all explored parameter regimes agree well with earlier theo-

ries of BM-II (Refs. 15, 16, and 21) under the assumption

that X(k) is truncated to the first harmonics. In that case,

w(k) exhibits a monopole-like structure. It demonstrates the

mechanism of (instability-induced) spontaneous symmetry

breaking that leads to the formation of local modes.

The characteristic features of BM-II are summarized as

follows. The mode structure is radially asymmetric and is

localized at the poloidal angle # ¼ �rkp=2, where rk is

determined by the localization rule: rk ¼ 1 for Im l< 0 and

rk ¼ �1 for Im l> 0. The measures of poloidal and radial

localization are, respectively, l � jlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=jImlj

p
� m and

Dr=r0 � jlj=qŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njImlj

p
.

In addition, the accuracy of numerical solutions of the

2-D ballooning equation set is tested by substituting them

back in the original equation in x; lð Þ representation via FFT.

The numerical solutions turn out to be well within the

assumed accuracy (
1/n).

Finally, hkki, the key determinant of the seed parallel

Reynolds stress, is derived in 2-D ballooning representation

and computed numerically and found to be consistent with

analytical solutions. It is important to note that the main

result of the present theory on seed parallel Reynolds Stress

is the demonstration of sign reversal when the magnetic

shear parameter equals one. However, it must be stressed

that more work needs to be done before one can, confidently,

attempt to correlate and “meaningfully” compare the

obtained results with experiments and simulations.
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APPENDIX A: THE ITERATIVE PROCEDURE FOR
GLOBAL EIGENVALUE OF BALLOONING THEORY

In this appendix, we provide the details of the iterative

procedure for determining global eigenvalues in ballooning

theory (Sec. III).

Specifically, the set of equations of Eqs. (14) and (17) is

cast into the following form, where the k-parameterization is

explicitly shown, and k0 stands for the assumed k localiza-

tion. We shall solve the system iteratively.

fL0 x k0ð Þ; k½ � � X x k0ð Þ; k½ �gv k; k; x k0ð Þð Þ ¼ 0; (A1)

iL1 x k0ð Þ; k½ �
n

d ln w kð Þ
dk

� X x½ � � X x k0ð Þ; k½ �g ¼ 0;f (A2)

where, X x½ � is the global eigenvalue,

L0 x k0ð Þ; k½ � ¼ 1

g2 x k0ð Þð Þ
@2

@k2
þ g2 x k0ð Þð Þk2

� 2q

ŝ
cos k þ kð Þ þ kŝ sin k þ kð Þ½ �; (A3)

L1 x k0ð Þ; k½ � ¼ 1

ŝen

x�i
x�e

1þ k#qsð Þ2 þ x�i k#qsð Þ2 � x�e=x�i
h i

=x k0ð Þ

1þ x�i=x k0ð Þ½ �2
; (A4)

X x k0ð Þ; k½ � ¼ � q

ŝen

x kð Þ
x�e

1þ k#qsð Þ2 þ x�i k#qsð Þ2 � x�e=x�i
h i

=x k0ð Þ
1þ x�i=x k0ð Þ

: (A5)

FIG. 7. Dimensionless parallel wave number hk̂ki � hkkiR versus magnetic

shear ŝ for different parameter sets.
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Notice that the definitions of Eqs. (A3)–(A5) are different

from those of Eqs. (11)–(13) because of the explicit k-param-

eterization. On the other hand, it is worth pointing out the

term “global eigenvalue” in contrast to “local eigenvalue.”

The latter would refer to the one corresponding to the 1-D

ballooning equation (Eqs. (A1), (A3), and (A5)) with k0

replaced by k.

In practice of iterative solution, the initial guess can be

obtained in ad hoc manner. For example, for a given set of

parameters, one may use a working parameter running from

zero to one in front of the curvature term of Eq. (A3), while

setting k0 ¼ rkp=2 in that term. This way assures using the

correct ITG branch of slab model to begin with. We substi-

tute initial guess x(0) (the localized solution near

k0 ¼ rkp=2) into L0 x; k½ � and solve the ballooning equation,

L0 x 0ð Þ; k
h i

� X 0ð Þ k½ �
n o

v 0ð Þ k; kð Þ ¼ 0; (A6)

where, X 0ð Þ k½ � is the solved eigenvalue as a function of k.

Notice that in Eq. (A6), the k dependence arises solely from

the mode coupling effects contained in the curvature term.

The same x(0) is also substituted into Eq. (A4) for x(k0) in

L1 x k0ð Þ; k½ �. Now, Eq. (A2) becomes

iL1 x k0ð Þ; k½ �
n

d ln w 0ð Þ kð Þ
dk

� X x½ � � X 0ð Þ k½ �
n o

¼ 0: (A7)

In general, L1 could weakly depend on k. This causes only

minor quantitative correction to our numerical results. Inte-

grating over k on the period yields the first iterative global

eigenvalue

X 1ð Þ x 1ð Þ
h i

¼

ðp

�p

dk

L1 x k0ð Þ; k½ �
X 0ð Þ k½ �ðp

�p

dk

L1 x k0ð Þ; k½ �

; (A8)

where corresponding x(1) is to be solved from Eq. (A5), as

soon as the RHS of Eq. (A8) is computed. This x(1) is used

to kick off the next iteration by substituting it into

L0 x k0ð Þ; k½ � and L1 x k0ð Þ; k½ � for x(k0), respectively. For the

ith iteration, the accuracy of the solution can be measured by

d ið Þ � 1� x ið Þ

x iþ1ð Þ










: (A9)

The success of the iteration relies on the fast convergence to

make d ið Þ reach a sufficiently small value. Up to the date, we

have accomplished dozens of groups of parameters by using

the iterative method. The results indeed show the success.

Typically, the iteration number is 4 to achieve d < 10�4 for

such parameters as k#qs ¼ 0:6, ŝ ¼ 1:2, q ¼ 1:5, en ¼ �0:1,

x�i=x�e ¼ 3, and n ¼ 60.

APPENDIX B: ANALYTICAL SOLUTION OF
BALLOONING EQUATIONS FOR ARBITRARY k

For arbitrary k, the ballooning equation, in lieu of Eq.

(24) for k! k0 ¼ rkp=2, is

1

g2

@2

@k2
þ V k; kð Þ � X kð Þ

� �
v k; kð Þ ¼ 0; (B1)

where

V k; kð Þ ¼ g2k2 � 2q

ŝ
cos k þ kð Þ þ kŝ sin k þ kð Þ½ �: (B2)

Expanding V k; kð Þ at k� kð Þ defined by @V k; kð Þ=@k ¼ 0, we

obtain

k� ¼
q

g2ŝ
ŝ � 1ð Þ sin k� þ kð Þ þ k�ŝ cos k� þ kð Þ½ �: (B3)

The corresponding analytical solution of the ballooning

equation, Eq. (B1), still keeps the form of Eq. (26), but

replacing k� by k� kð Þ, the solution of Eq. (B3), i.e.,

v k; kð Þ ¼ eig2 k�k� kð Þð Þ2=2: (B4)

In the physical space, Eq. (B4), corresponding to Eq. (27),

reads

v x� l; kð Þ ¼
ffiffiffiffiffiffiffi
2pi

g2

s
eik� kð Þ x�lð Þ�i x�lð Þ2= 2g2ð Þ: (B5)

This expression combined with Eq. (20) is used to calculate

the analytical 2-D mode structure

ul xð Þ ¼ 1

2p

ðp

�p
dkv x� l; kð Þw kð Þe�ikl: (B6)
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26Ö. D. Gürcan, P. H. Diamond, C. J. McDevitt, and T. S. Hahm, Phys.

Plasma 17, 032509 (2010).
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