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Abstract
A theory is developed to predict the error-field penetration threshold in low density, ohmically
heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in
the vicinity of the resonant surface to the applied error-field is calculated from nonlinear
drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory.
Error-field penetration, and subsequent locked mode formation, is triggered once the
destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect
of the ion polarization current (caused by the propagation of the error-field-induced island
chain in the local ion fluid frame). The predicted scaling of the error-field penetration
threshold with engineering parameters is (br/BT)crit ∼ ne B −1.8

T R −0.25
0 , where br is the

resonant harmonic of the vacuum radial error-field at the resonant surface, BT the toroidal
magnetic field-strength, ne the electron number density at the resonant surface and R0 the
major radius of the plasma. This scaling—in particular, the linear dependence of the threshold
with density—is consistent with experimental observations. When the scaling is used to
extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is
(br/BT)crit ∼ 5 × 10−5, which just lies within the expected capabilities of the ITER error-field
correction system.

1. Introduction

Tokamak [1] plasmas are highly sensitive to externally
generated, static, helical magnetic perturbations [2–8].
Such perturbations, which are conventionally termed error-
fields, are present in all tokamak experiments because of
imperfections in magnetic field-coils. An error-field can drive
magnetic reconnection in an otherwise tearing-stable plasma,
giving rise to the formation of locked (i.e. non-rotating)
magnetic island chains at (internal) resonant magnetic flux-
surfaces [9]. Such chains, which are generally known as locked
modes, severely degrade global energy confinement [10], and
often trigger major disruptions [2–4]. Fortunately, the (highly
sub-Alfvénic) toroidal rotation that occurs naturally in all
tokamak plasmas affords them some level of protection against
locked mode formation. To be more exact, rotation induces
localized shielding currents at the various resonant surfaces
within the plasma, and these currents suppress error-field

driven magnetic reconnection. Unfortunately, the residual
magnetic reconnection at the resonant surfaces produces a
toroidal electromagnetic locking torque that slows the plasma
rotation. Moreover, the rotation is suddenly arrested once
the error-field amplitude exceeds a certain critical value,
permitting locked mode formation to proceed without further
hinderance [11, 12]. This scenario is generally referred to
as error-field penetration. The critical resonant error-field
amplitude required to trigger penetration can be as small as
10−4 of the equilibrium toroidal field-strength.

Error-field penetration in low density, ohmically heated,
startup plasmas often leads to unacceptable limitations on the
available operating space in tokamak experiments. The scaling
of the error-field penetration threshold with engineering
parameters in such plasmas (at fixed shape and q95) is
conventionally expressed in the form(

br

BT

)
crit

∼ nαn

e B
αB

T R
αR

0 , (1)
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where br is the resonant harmonic (usually, the 2,1 harmonic)
of the vacuum radial error-field at the associated resonant
surface, BT is the toroidal magnetic field-strength, ne is the
electron number density at the resonant surface and R0 is the
plasma major radius. Empirical scaling studies performed on
the COMPASS-D, TEXTOR, ALCATOR C-MOD, DIII-D and
JET tokamaks [5–8] have established that αn � 1, and that
αB ranges between −2.9 and −0.6. The former value for αB

was derived from COMPASS-D data [5], and the latter from
ALCATOR C-MOD data [7]. Data from DIII-D and JET yield
αB values of −1.0 and −1.2, respectively [5]. The exponent αR

cannot be directly measured, but is inferred from dimensionless
scaling arguments [13] to take the value αR = 2 αn + 1.25 αB

[5]. It follows that αR lies in the range −1.6 to 1.25. The only
aspect of the scaling with engineering parameters upon which
data from all experiments are in agreement is that the scaling
with the density is approximately linear. The considerable
uncertainty in the value of αB (and, hence, in the value of
αR) leads to similar uncertainty in the predicted error-field
penetration threshold for ITER. Indeed, extrapolation from
JET [ne = 1.6 × 1019 m−3, BT = 3.5 T, R0 = 2.95 m,
(br/BT)crit = 1.1 × 10−4] [5] to ITER (ne = 2 × 1019 m−3,
BT = 5.3 T, R0 = 6.2 m) [14] yields estimates for the ITER
penetration threshold ranging from (br/BT)crit = 1.3 × 10−5

to (br/BT)crit = 2.7 × 10−4. The proposed ITER error-field
correction system is designed to reduce resonant error-field
levels down to br/BT � 5 × 10−5 [15]. Such a system
is sufficient to prevent locked mode formation in ohmically
heated plasmas according to the most optimistic estimate (i.e.
the latter estimate) for the ITER penetration threshold, but
not according to the most pessimistic. Clearly, it is desirable
to reduce the uncertainty in these estimates. One way of
achieving this goal would be to derive a plausible theoretical
model that is consistent with the available experimental data.
Unfortunately, this has proved to be a difficult task.

The original model of Fitzpatrick [11, 12] is based on the
idea that, prior to locked mode formation, error-field driven
reconnection is suppressed to such an extent that the response
of the plasma in the vicinity of the resonant surface to the
applied error-field can be determined from linear resistive-
MHD (magnetohydrodynamical) layer theory. Moreover, in
this model, the electromagnetic locking torque due to the
error-field is balanced by a viscous torque due to anomalous
perpendicular momentum transport. The scaling of the error-
field penetration threshold predicted by the Fitzpatrick model
(in the so-called visco-resistive regime) takes the form(

br

BT

)
crit

∼ β −1/6 ν 1/6
∗ ρ 4/3

∗ ∼ T
1/6

i B −1
T R

−7/6
0

∼ B
−13/15

T R
−13/12
0 . (2)

Here, the first scaling is in terms of the standard dimensionless
parameters, β (the ratio of the plasma thermal energy
density to the magnetic energy density), ν∗ (the ratio of the
electron collision frequency to the electron transit frequency)
and ρ∗ (the ratio of the ion sound radius to the plasma
major radius). Moreover, in deriving this scaling, it is
assumed that the momentum confinement timescale scales
like the energy confinement timescale, and that the plasma

heating is purely ohmic (see section 5). The second scaling
is in terms of the physics parameters, ne, Ti (the ion
temperature at the resonant surface), BT, and R0, and is
derived from the first scaling using β ∼ ne Ti/B

2
T , ν∗ ∼

ne R0/T 2
i and ρ∗ ∼ T

1/2
i /R0 BT (see section 5). The

final scaling is in terms of the engineering parameters, ne,
BT and R0, and is derived from the second scaling on the
assumption that ν∗ ∼ β ρ

2/3
∗ , which implies the dimensionally

consistent neo-ALCATOR-like [16, 17] temperature scaling
Ti ∼ B

4/5
T R

1/2
0 (see section 5). Unfortunately, the scaling

of the penetration threshold with engineering parameters
predicted by the Fitzpatrick model exhibits no dependence on
the density, and is, therefore, completely inconsistent with the
previously discussed experimental data.

The model of Cole and Fitzpatrick [18] is similar to
that of Fitzpatrick, except that the response of the plasma
in the vicinity of the resonant surface to the applied error-
field is calculated from linear drift-MHD layer theory. This is
appropriate in situations in which the linear layer width is less
than the ion sound radius (i.e. the ion gyroradius calculated
with the electron temperature). The scaling of the error-field
penetration threshold predicted by the Cole and Fitzpatrick
model (in the so-called first semi-collisional regime) is(

br

BT

)
crit

∼ ν 1/4
∗ ρ 5/4

∗ ∼ n 1/4
e T

1/8
i B

−5/4
T R −1

0

∼ n 1/4
e B

−23/20
T R

−15/16
0 . (3)

(The three different scalings have the same interpretation
as before.) It can be seen that the predicted scaling with
engineering parameters is an improvement on that of the
Fitzpatrick model, since it does, at least, exhibit some density
dependence. Unfortunately, this dependence is far too weak
to account for the experimental data.

The model of Cole et al [19] is similar to that of Cole
and Fitzpatrick, except that the viscous torque which opposes
locked mode formation is due to a combination of anomalous
perpendicular ion viscosity and neoclassical toroidal flow
damping [20–22] induced by the non-axisymmetric harmonics
of the error-field. This is appropriate in situations in which the
flow damping is sufficiently strong to relax the ion toroidal
velocity in the vicinity of the resonant surface to a fixed
value determined by neoclassical theory. The scaling of the
error-field penetration threshold predicted by the Cole, Hegna
and Callen model (in the first semi-collisional layer response
regime, and the so-called 1/ν toroidal flow damping regime
[22]) takes the form(

br

BT

)
crit

∼ β ν −1/2
∗ ρ 3/2

∗ ∼ n 1/2
e T

11/4
i B

−7/2
T R −2

0

∼ n 1/2
e B

−13/10
T R

−5/8
0 . (4)

The predicted scaling with engineering parameters is an
improvement on that of the Cole and Fitzpatrick model, since
it exhibits a stronger density dependence. Unfortunately,
this dependence still appears to be too weak to explain the
experimental data.

The model presented in this paper is similar to that of
Cole, Hegna and Callen, except that the response of the plasma
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in the vicinity of the resonant surface to the applied error-
field is calculated from nonlinear drift-MHD island physics
[23, 24], rather than linear layer physics. This is appropriate in
situations in which, prior to locked mode formation, error-field
driven reconnection is not suppressed to such an extent that the
nonlinear island width is less than the linear layer width. As
we shall see, the scaling of the error-field predicted by this
new model (in the so-called polarization regime, and the 1/ν

toroidal flow damping regime) is(
br

BT

)
crit

∼ β ρ∗ ∼ ne T
3/2

i B −3
T R −1

0

∼ ne B
−9/5

T R
−1/4
0 . (5)

Thus, the new model captures the linear scaling of the
penetration threshold with density that is seen in all
experiments. Moreover, the predicted scaling of the threshold
with toroidal field-strength (and, hence, with major radius) falls
within the experimentally determined range. Using this model
to extrapolate from JET, we deduce an error-field penetration
threshold in ITER of (br/BT)crit ∼ 5 × 10−5 which (just)
lies within the expected capabilities of the ITER error-field
correction system.

This paper is organized as follows. Section 2 introduces
the nonlinear drift-MHD magnetic island evolution equations
used to calculate the response of the plasma in the vicinity
of the resonant surface to the applied error-field. Section 3
describes the error-field penetration regimes derived from the
aforementioned equations. The scaling of the penetration
thresholds associated with the various regimes is investigated
in section 4. Finally, the paper is summarized in section 5.

2. Preliminary analysis

2.1. Fundamental definitions

Consider a large aspect-ratio, low-β, circular cross-section,
tokamak plasma of major radius R0, and toroidal magnetic
field-strength BT. We adopt a conventional, right-handed,
quasi-cylindrical, toroidal coordinate system, (r , θ , ϕ), whose
symmetry axis (r = 0) coincides with the magnetic axis
of the plasma. The coordinate r also serves as a label for
the equilibrium magnetic flux-surfaces. Let the equilibrium
toroidal magnetic field and toroidal plasma current both run in
the +ϕ direction. Suppose that a helical magnetic island chain,
with mθ poloidal periods, and nϕ toroidal periods, is embedded
within the aforementioned plasma. The island chain is
assumed to be radially localized in the vicinity of its associated
resonant surface, minor radius rs, which is defined as the
equilibrium magnetic flux-surface where q(rs) = mθ/nϕ ≡
qs. Here, q(r) is the safety-factor profile. Let the full radial
width of the island chain’s magnetic separatrix be 4w. In the
following, it is assumed that εs ≡ rs/R0 � 1 and w/rs � 1.

It is helpful to define the magnetic shear length,
Ls ≡ R0 qs/(d ln q/d ln r)rs , and the density scale length,
Ln ≡ −rs/(d ln n/d ln r)rs . Here, n(r) is the electron
number density profile. (It is assumed that Ls, Ln > 0.)
It is also helpful to define the ion diamagnetic frequency,
ω∗ i ≡ kθ Ti/(e BT Ln), the ion beta, β ≡ µ0 ne Ti/B

2
T , the ion

gyroradius, ρi ≡ (Ti/mi)
1/2/(e BT/mi), and the ion sound

radius, ρs ≡ τ 1/2 ρi, where ne ≡ n(rs), kθ ≡ mθ/rs,
τ ≡ Te/Ti, Ti is the ion temperature, Te is the electron
temperature, e is the magnitude of the electron charge (as
well as the ion charge) and mi is the ion mass. Both of
the aforementioned temperatures are evaluated at the resonant
surface.

Let νθ i be the neoclassical ion poloidal flow damping
rate [25], and νϕ i the neoclassical ion toroidal flow damping
rate [22]. Both damping rates are evaluated at the resonant
surface, and any radial variation in these rates across the island
region is neglected.

The hydromagnetic timescale, the resistive diffusion time-
scale, the momentum confinement timescale and the particle
confinement timescale are defined τH ≡ R0 (µ0 mi ne/B

2
T)1/2,

τR ≡ µ0 r 2
s /η‖, τM ≡ ne mi r

2
s /µ⊥ i , and τP ≡ r 2

s /D⊥,
respectively. Here, η‖ is the parallel electrical resistivity,
µ⊥ i the phenomenological perpendicular ion viscosity (due to
small scale plasma turbulence) and D⊥ the phenomenological
perpendicular particle diffusivity (likewise, due to small scale
plasma turbulence). Again, all transport coefficients are
evaluated at the resonant surface, and any radial variation in
these coefficients across the island region is neglected.

2.2. Island evolution equations

In this paper, it is assumed that the response of the plasma
in the vicinity of the resonant surface to the applied error-
field is governed by the strong poloidal flow damping
regime/low toroidal flow damping limit magnetic island
evolution equations derived in [24]. These equations take the
form

4I1 τR
d

dt

(
w

rs

)
= −2mθ + 2mθ

(wv

w

)2
cos φ

−Ip β0

(
w0

rs

)2
r 3

s

w 3 + ρ 3
s

, (6)

−2mθ

(
wv

w0

)2 (
w

rs

)2

sin φ

= 4 β0

(
νϕ i

τM ω 2
∗ i

)1/2 (
1

ω∗ i

dφ

dt
− vnc − vf

)
. (7)

Here, for the sake of simplicity, the stability index for the mθ ,
nϕ tearing mode [26] is given the vacuum value �′ rs = −2mθ .
Moreover, 4w is the full radial width of the true island
chain, 4wv is the full radial width of the vacuum island chain
associated with the resonant harmonic of the error-field and φ

is the helical phase difference between the true island chain
and the vacuum island chain. In addition, I1 = 0.8227, and
vnc ≡ kθ V nc

p /ω∗ i, where V nc
p is the so-called neoclassical

phase velocity: i.e. the phase velocity that the island chain
would have were it to simply co-rotate with the equilibrium ion
fluid at the resonant surface. As a consequence of the poloidal
and toroidal flow damping present in the plasma, the poloidal
and toroidal components of the unperturbed (by the island) ion
fluid velocity at the resonant surface are both constrained to
take fixed values determined by neoclassical theory. It follows

3
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that the neoclassical phase velocity is also fixed by neoclassical
theory. Finally,

w0 ≡ ρi

δ
, (8)

β0 ≡ β

δ 2
, (9)

δ ≡
(

Ln

Ls

εs

qs

)1/2

. (10)

Equation (6) governs the time evolution of the island
chain’s radial width [27, 28]. The first term on the right-hand
side is due to the intrinsic MHD stability of the mθ , nϕ tearing
mode (the fact that this term is negative indicates that the
mode is intrinsically stable). The second term specifies the
destabilizing effect of the resonant harmonic of the applied
error-field. Finally, the third term parametrizes the stabilizing
effect (since Ip > 0—see the appendix) of the ion polarization
current induced by the propagation of the island chain relative
to the local ion fluid in circumstances in which this fluid cannot
easily cross the magnetic separatrix [29, 30].

The ion polarization term in equation (6) has a slightly
different form to that specified in [24]: i.e. its denominator is
w 3 + ρ 3

s , rather than w 3. This modification has been made
to incorporate additional physics into the model. To be more
explicit, as discussed in [23], when w 	 ρs the island chain
lies in the so-called sonic regime. In this regime, the ion fluid
cannot easily cross the island separatrix, and the polarization
term (which is stabilizing) varies with island width as w−3. On
the other hand, as w → ρs the island chain enters the so-called
hypersonic regime. In this regime, the ion fluid can pass almost
freely through the separatrix, and the polarization term (which
is again stabilizing) exhibits no strong variation with island
width. The modification to the polarization term in equation (6)
is meant to incorporate hypersonic island physics into the
plasma response model. According to this modification, the
polarization term ceases to increase like w−3 as w → ρs, but
instead asymptotes to a fixed value. The basic reason for this
behavior is the decoupling of the ion fluid from the island chain
as w → ρs.

Equation (7) specifies how the phase evolution of the
island chain is governed by the balance of the electromagnetic
locking torque due to the error-field (left-hand side) and the
viscous restoring torque (right-hand side) that develops when
the chain does not propagate at its natural frequency: i.e. its
propagation frequency in the absence of the error-field. The
natural frequency is defined ω0 ≡ v0 ω∗ i, where v0 ≡ vf + vnc.

If, during the solution of equations (6) and (7), the island
width w ever passes through zero and becomes negative then
the situation is easily rectified by making the transformation
w → −w and φ → φ − π . In other words, an island chain
of negative width is equivalent to an island chain of positive
width with the X- and O-points interchanged.

The neoclassical toroidal flow damping is assumed to lie in
the so-called 1/ν regime, in which it is dominated by toroidally
trapped ions. Consequently, the toroidal flow damping rate can
be written [19, 22] as

νϕ i = n 2
ϕ ω 2

tr i

νi
q 2

s ε 3/2
s � 2

(
mθ w 2

v

rs Ls

)2

. (11)

Here, ωtr i ≡ (Ti/mi)
1/2/Ls is the ion transit frequency, νi ≡

τ 3/2 (me/mi)
1/2 (ne e2 η‖/me) is the ion collision frequency,

me is the electron mass and � is (to within a constant of
order unity) the ratio of δB/BT to br/BT ≡ (mθ w 2

v /rs Ls),
where δB is the net torodial modulation of the magnetic field-
strength produced by all harmonics of the error-field, and br is
the resonant harmonic of the vacuum radial error-field. Both
δB and br are evaluated at the resonant surface.

The strong poloidal flow damping regime ordering used
to derive equations (6) and (7) is valid provided

(εs/qs)
2 νθ i 	 ω∗ i 	 νϕ i, (12)

and
δ � 1. (13)

This regime is also consistent with the orderings (εs/qs) ∼ δ,
and β ∼ δ 4. (The ordering β � δ 4 is dictated by the
requirement that the ion polarization term in the island width
evolution equation not violate the constant-ψ approximation
[26].) In addition, the low toroidal flow damping limit ordering
employed in the derivation of the island evolution equations is
valid as long as

νϕ i τM � r 2
s

w 2
. (14)

The assumption that the plasma response in the vicinity of
the resonant surface is governed by nonlinear magnetic island
physics, rather than linear layer physics, is valid provided that
the linear layer width is much less than the island width. In the
so-called visco-resistive layer regime [12], this requirement
reduces to (

τH

τR

)1/6 (
τH

τM

)1/6

rs � w. (15)

The parameter vf ≡ v0 − vnc, which specifies the island’s
unperturbed (by the error-field) phase velocity relative to its
neoclassical phase velocity, as well as the parameter Ip, which
multiplies the ion polarization term in equation (6), can be
determined by means of the procedure set out in the appendix.
Note that vf > 0, which indicates that the island chain
propagates in the electron diamagnetic direction relative to the
local ion fluid. Furthermore, Ip > 0, which indicates that
the ion polarization current generated by the aforementioned
propagation is stabilizing.

Finally, any influence of the perturbed bootstrap current
[31] and magnetic field-line curvature [32] on the evolution
of the island chain has been neglected in equations (6) and
(7), since such effects are only important for relatively wide
island chains, and are, therefore, not germane to a discussion
of error-field penetration.

2.3. Normalized island evolution equations

Let T ≡ |ω0| t , � ≡ sgn(ω0) φ, y ≡ (w/w0)
3 and yv ≡

(wv/w0)
3. The island evolution equations (6) and (7) reduce to

C1
dy

dT
= −y 2/3 + y 2/3

v cos � − C2 F(y), (16)

d�

dT
= 1 − C3 y 2/3 sin �, (17)

4
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Figure 1. A typical rotating solution in the Rutherford error-field penetration regime. The left-hand panel shows the time variation of the
relative phase, �, between the island chain and the vacuum island chain. The right-hand panel shows the time variation of the normalized
island width, x1/3. Calculation performed with x̂v = 0.35.

where

C1 ≡ 2 I1

3

|v0| τR ω∗ i

mθ

w0

rs
, (18)

C2 ≡ Ip

54 1/3

β0

mθ τ 1/2

rs

ρi
, (19)

C3 ≡ mθ

2 β0

τ
1/2

D τ
1/2

M ω∗ i

|v0|
(

w0

rs

)2

, (20)

and

F(y) ≡ 3

2 2/3

τ 1/2 δ y 2/3

y + τ 3/2 δ 3
, (21)

τD ≡
(

wv

w0

)4

ν −1
ϕ i = νi

n 2
ϕ ω 2

tr i

1

q 2
s ε

3/2
s � 2

(
rs Ls

mθ w 2
0

)2

. (22)

Here, τD is termed the toroidal flow damping timescale.
Observe that 0 � F(y) � 1.

Let x ≡ C
3/2

3 y and xv ≡ C
3/2

3 yv . The normalized layer
equations (16) and (17) transform to

D1
dx

dT
= −x 2/3 + x 2/3

v cos � − D2 G(x), (23)

d�

dT
= 1 − x 2/3 sin �, (24)

where

D1 ≡ C1

C
1/2

3

, (25)

D2 ≡ C2 C3, (26)

G(x) ≡ 3

2 2/3

d x 2/3

x + d 3
, (27)

d ≡ τ 1/2 C
1/2

3 δ. (28)

Observe that 0 � G(x) � 1. The parameters D1 and D2

measure the degree of shielding (prior to penetration) of the
resonant harmonic of the error-field by the plasma in the
vicinity of the resonant surface that is due to neoclassical flow
and the ion polarization current, respectively.

3. Nonlinear error-field penetration regimes

3.1. Rutherford regime

In the so-called Rutherford error-field penetration regime
(which is named after a somewhat similar regime described
in [12]), the first and the third terms on the right-hand side of
the island width evolution equation, (23), are assumed to be
negligible. Defining x̂v ≡ xv/D

3/2
1 , where it is assumed that

x̂v ∼ 1 (because we shall presently show that (29) and (30)
can only be solved when 0 � x̂v < 0.3685), equations (23)
and (24) reduce to

dx

dT
� x̂ 2/3

v cos �, (29)

d�

dT
= 1 − x 2/3 sin �. (30)

The approximations used to derive the above pair of equations
are valid provided

D1 	 1, D2 : (31)

i.e. as long as shielding due to neoclassical flow is strong, and
also dominates shielding due to the ion polarization current. As
discussed below, equations (29) and (30) possess two different
types of solution, depending on the value of the parameter x̂v.

For 0 � x̂v < 0.3685, the relative phase, �, between the
island chain and the vacuum island chain increases continually
in time: i.e. the island chain rotates with respect to the vacuum
chain. A typical rotating solution is shown in figure 1. Note
that the island width “pulsates” on a normalized timescale T ∼
1, and periodically falls to zero when � = π . Moreover, each
time the island width becomes zero, the relative phase between
the island chain and the vacuum chain changes abruptly from
π to 0. As a consequence of these abrupt changes, the relative
phase is constrained to lie in the range 0 � � � π . However,
� spends as much time in the subrange 0 � � � π/2, as in
the subrange π/2 < � � π , implying that the error-field has
a destabilizing influence on the island chain half of the time,

5
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Figure 2. Schematic diagram indicating how the behavior shown in
figure 1 is modified when the normalized linear layer width, δl ,
becomes comparable with the similarly normalized pulsating island
width, x1/3.

and a stabilizing influence the other half. This explains why
the island width pulsates, rather than growing continually. The
mean island width associated with a rotating solution is such
that w ∼ D

−1/2
1 wv � wv. In other words, the mean island

width is much less than the vacuum island width, indicating
strong shielding of the resonant harmonic of the error-field by
the plasma in the vicinity of the resonant surface.

Figure 2 shows, schematically, how the behavior described
above is modified when the linear layer width becomes
comparable with the pulsating island width. As is well known,
plasma is trapped inside the magnetic separatrix of a nonlinear
magnetic island chain, giving rise to a no slip constraint,
according to which changes in the local perpendicular plasma
flow must be mirrored by changes in the island phase velocity
[11]. However, the no slip constraint is relaxed as soon as the
island width falls below the linear layer width. In other words,
the island chain is no longer dragged along by the local plasma
flow, and is free to adopt any phase relation with respect to
the error-field. Thus, in figure 2, as soon as the island chain
is dragged sufficiently out of phase with the error-field that its
width is reduced to the linear layer width, its phase adjusts
itself such as to enable renewed island growth. Moreover, as
the linear layer width increases, relative to the island width, the
pulsations in the island width, and the oscillations in the island
phase, gradually decrease in amplitude, until the island width
and phase both become constant in time (with the island width
less than the linear layer width). Of course, this is the scenario
envisaged in linear error-field penetration theory [11].

For x̂v � 0.3685, the island chain eventually locks to the
vacuum island chain in such a manner that its relative phase,
�, asymptotes to a constant value. Furthermore, this value is
always such that the error-field destabilizes the island chain

(i.e. −π/2 < � < π/2). A typical locked solution is shown
in figure 3. Unlike the rotating solution, the island width
increases continually in time. In order to find the final saturated
island width, we must employ a second normalization scheme.
Defining x̂v ≡ xv/D

3/2
1 , x̂ ≡ x/D

3/2
1 , T̂ ≡ T/D

3/2
1 and

�̂ ≡ D1 �, and assuming that x̂v, x̂, T̂ , �̂ ∼ 1, equations (23)
and (24) reduce to

dx̂

dT̂
� −x̂ 2/3 + x̂ 2/3

v , (32)

0 � 1 − x̂ 2/3 �̂. (33)

This ordering is designed to retain all terms in (29) and
(30) except the d�/dT term, which becomes negligible once
the island chain locks, whilst allowing for saturation (which
involves introducing the x̂ 2/3 term into (32)), and, finally,
ensuring that all terms in (32) and (33) are of similar magnitude.
The above equations, which are valid as long as inequality
(31) is satisfied, imply that the island width and relative phase
asymptote to w = wv (which is equivalent to x̂ = x̂v) and
� ∼ D −1

1 � 1, respectively, on a normalized timescale
T ∼ D

3/2
1 	 1. Thus, the island chain eventually locks in

phase with, and grows to the same width as, the vacuum island
chain. This state of affairs is termed full reconnection, since
it implies zero shielding of the resonant harmonic of the error-
field by the plasma in the vicinity of the resonant surface.

In summary, the Rutherford error-field penetration regime
is characterized by strong shielding of the resonant harmonic
of the error-field, followed by full reconnection once the
penetration threshold has been exceeded. The shielding is a
consequence of neoclassical flow at the resonant surface. The
critical vacuum island width above which penetration occurs is(

wv

w0

)
crit

= (yv)
1/3
crit = (xv)

1/3
crit

C
1/2

3

= c 1/3

(
D1

C3

) 1/2

= c 1/3 C
1/2

1 C
−3/4

3 , (34)

where c = 0.3685, and use has been made of (25).

3.2. Polarization regime

In the so-called polarization error-field penetration regime, the
term on the left-hand side, and the first term on the right-hand
side, of the island width evolution equation, (23), are assumed
to be negligible. Defining x̂v ≡ xv/D

3/2
2 and x̂ ≡ x/d 3, and

assuming that x̂v, x̂ ∼ 1 (because we shall presently show
that (35) and (36) can only be solved when 0 � x̂v � 1 and
0 � x̂ � 2), equations (23) and (24) reduce to

0 � x̂ 2/3
v cos � − H(x̂), (35)

d�

dT
= 1 − d 2 x̂ 2/3 sin �, (36)

where

H(x̂) ≡ 3

2 2/3

x̂ 2/3

x̂ + 1
. (37)

6
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Figure 3. A typical locked solution in the Rutherford error-field penetration regime. The left-hand panel shows the time variation of the
relative phase, �, between the island chain and the vacuum island chain. The right-hand panel shows the time variation of the normalized
island width, x1/3. Calculation performed with x̂v = 0.38.

Figure 4. A typical rotating solution in the polarization error-field penetration regime. The left-hand panel shows the time variation of the
relative phase, �, between the island chain and the vacuum island chain. The right-hand panel shows the time variation of the normalized
island width, x̂ 1/3. Calculation performed with x̂v = 0.9 and d = 0.5.

Observe that 0 � H(x̂) � 1, and that H(x̂) attains its peak
value of unity at x̂ = 2. The approximations used to derive
equations (35) and (36) are valid provided

D2 	 d 2, D1 d 3 : (38)

i.e. provided that shielding due to the ion polarization current is
strong, and also dominates shielding due to neoclassical flow.

We suppose, for the sake of argument, that

d < 2 −1/3. (39)

In this case, since 0 � H(x̂) � 1, it is possible to find
rotating solutions of (35) and (36), in which the relative phase
between the island chain and the vacuum island chain increases
continually in time, when 0 � x̂v � 1. Such solutions are
characterized by x̂ < 2 and d 2 x̂ 2/3 < 1. A typical rotating
solution is shown in figure 4. As before, the island width
pulsates on a normalized timescale T ∼ 1, periodically falling

to zero when � = π/2. Each time the island width becomes
zero, the relative phase changes abruptly from π/2 to −π/2.
As a consequence of these abrupt changes, the relative phase
is constrained to lie in the range −π/2 � � � π/2. Thus,
the island chain is always destabilized by the error-field. The
island width is, however, prevented from increasing by the
strong stabilizing influence of the ion polarization current.
The mean island width of a rotating solution is such that
w ∼ D

−1/2
2 d wv � wv. In other words, the mean island

width is much less than the vacuum island width, indicating
strong shielding of the resonant harmonic of the error-field by
the plasma in the vicinity of the resonant surface.

When x̂v > 1, the rotating solution of equations (35)
and (36) breaks down close to � = 0, indicating that
we need to look for another type of solution. Defining
x̂v ≡ xv/D

3/2
2 , x̂ ≡ x/(D2/D1)

3/5, T̂ ≡ T/(D1/D2)
2/5, and

�̂ ≡ �/(D1/D2)
2/5, and assuming that x̂v, x̂, T̂ and �̂ ∼ 1,

7
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equations (23) and (24) reduce to

dx̂

dT̂
� x̂ 2/3

v , (40)

d�̂

dT̂
� 1 − x̂ 2/3 �̂. (41)

This ordering is designed to retain all terms in (35) and (36)
except the polarization term, which becomes negligible once
the island width increases to such an extent that x 	 d 3,
whilst allowing for island growth (which involves introducing
the dx̂/dT̂ term into (40)), and, finally, ensuring that all terms
in (40) and (41) are of similar magnitude. The above equations
are valid provided the inequalities

D2 	 D1, (42)

D
2/3
1 D2 	 1 (43)

are both satisfied. According to equations (40) and (41),
the island width grows linearly in time, while the relative
phase between the island chain and the vacuum chain grows
as T when T � (D1/D2)

2/5, attains a maximum value
� ∼ (D1/D2)

2/5 � 1 when T ∼ (D1/D2)
2/5, and then

decays as T −2/3 when T 	 (D1/D2)
2/5. In other words,

the island chain locks in phase with the vacuum chain on a
normalized timescale T ∼ (D1/D2)

2/5 � 1.
In order to determine the saturated island width, we must

adopt a third ordering scheme. Defining x̂v ≡ xv/D
3/2
2 ,

x̂ ≡ x/D
3/2
2 , T̂ ≡ T/(D1 D

1/2
2 ) and �̂ ≡ D2 �, and assuming

that x̂v, x̂, T̂ , �̂ ∼ 1, equations (23) and (24) reduce to

dx̂

dT̂
� −x̂ 2/3 + x̂ 2/3

v , (44)

0 � 1 − x̂ 2/3 �̂. (45)

This ordering is designed to retain all terms in (40) and (41)
except the d�̂/dT̂ term, which becomes negligible once the
island chain locks, whilst allowing for island saturation (which
involves introducing the x̂ 2/3 term into (44)), and, finally,
ensuring that all terms in (44) and (45) are of similar magnitude.
The above equations, which are valid as long as the inequalities
(39), (42) and (43) are satisfied, imply that the island width and
the relative phase asymptote to w = wv (which is equivalent
to x̂ = x̂v) and � ∼ D −1

2 � (D1/D2)
2/5, respectively, on a

normalized timescale T ∼ D1 D
1/2
2 	 (D1/D2)

2/5. In other
words, the island chain eventually achieves full reconnection.

In summary, the polarization error-field penetration
regime is characterized by strong shielding of the resonant
harmonic of the error-field, followed by full reconnection once
the penetration threshold has been exceeded. The shielding is
a consequence of the ion polarization current. The critical
vacuum island width above which penetration occurs is

(
wv

w0

)
crit

= (yv)
1/3
crit = (xv)

1/3
crit

C
1/2

3

=
(

D2

C3

) 1/2

= C
1/2

2 , (46)

where use has been made of (26).

Figure 5. Boundaries of the Rutherford and polarization error-field
penetration regimes plotted in D1-D2 space.

3.3. Summary

Figure 5 shows the boundaries of the Rutherford and
polarization error-field penetration regimes plotted in D1-D2

space. In both regimes, the resonant harmonic of the error-field
is strongly shielded by the plasma in the vicinity of the resonant
surface until the resonant harmonic exceeds a certain critical
magnitude. However, as soon as this occurs, the island chain
locks to the vacuum island chain, and the island chain’s width
subsequently grows until it matches that of the vacuum chain.
In the Rutherford regime, penetration is triggered when the
electromagnetic locking torque due to the resonant harmonic
of the error-field overcomes the viscous torque due to the
rotating plasma. On the other hand, in the polarization regime,
penetration is triggered when the destabilizing influence of
the error-field overcomes the stabilizing influence of the ion
polarization current (induced by the rotation of the island
chain in the local ion fluid frame—see the appendix). In
the region of figure 5 not occupied by the Rutherford and
polarization regimes neither neoclassical flow nor the ion
polarization current are large enough to cause strong shielding
of the resonant harmonic of the error-field by the plasma in the
vicinity of the resonant surface. In this situation, error-field
driven reconnection always proceeds to full reconnection: i.e.
the error-field penetration threshold is effectively zero.

The relationship between the resonant harmonic of the
vacuum radial error-field, br, and the vacuum island width,
wv, is

br

BT
= mθ w 2

v

rs Ls
, (47)

where br is evaluated at the resonant surface. Hence, from
(34) and (46), the critical value of br required to trigger
penetration is(

br

BT

)
crit

= c 2/3 2 5/2 I1

3

β 3/2 |v0| 5/2

m
3/2
θ δ 3

τR ω∗ i

(τ
1/2

D τ
1/2

M ω∗ i) 3/2

rs

Ls

(48)

in the Rutherford regime, and(
br

BT

)
crit

= Ip

54 1/3

β

δ 4 τ 1/2

ρi

Ls
(49)

8
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in the polarization regime, where use has been made of
(18)–(20).

4. Scaling of error-field penetration threshold

4.1. Preliminary analysis

The standard dimensionless scaling parameters β, ν∗ and ρ∗
[13] are defined:

β ≡ µ0 ne Ti

B 2
T

, (50)

ν∗ ≡ Ls ne e 2 η‖
m

1/2
e T

1/2
e

, (51)

ρ∗ ≡ T
1/2

i m
1/2
i

e BT Ls
. (52)

It follows from the definitions in section 2.1, as well as
equation (22), that

ω∗ i τH ∼ nϕ

β 1/2 ρ∗
δ 2

, (53)

τR

τH
∼ qs

τ 1/2

(
mi

me

)1/2 (
εs

qs

)2
β 1/2

ν∗ ρ 2∗
, (54)

τD

τH
∼ ε

1/2
s τ 2

n 4
ϕ q 5

s

δ 4

� 2

ν∗
β 1/2 ρ 4∗

, (55)

where we have neglected any numerical constants of order
unity, and have assumed that Ls ∼ qs R0. Now, in an ohmically
heated tokamak plasma, the energy confinement timescale, τE ,
satisfies the constraint

ne Ti

τE

∼ η‖

(
BT

µ0 Ls

)2

, (56)

which is obtained by equating the energy loss rate to the ohmic
heating rate. We assume that the momentum confinement
timescale is similar to the energy confinement timescale, as is
generally observed to be the case in ohmically heated tokamak
plasmas [33]. It follows that

τM

τH
∼ qs

τ 1/2

(
mi

me

)1/2
β 3/2

ν∗ ρ 2∗
. (57)

Making use of equations (53)–(55) and (57), the three most
important parameters defined in section 2.3 take the values

d ∼ ε
1/8
s τ 7/8

q
1/2

s |v0| 1/2

(
mi

me

)1/8
qs

εs

δ

� 1/2
, (58)

D1 ∼ |v0|
(

mi

me

) 1/2
εs

qs

β

ν∗ δ 2 d
, (59)

D2 ∼ 1

nϕ qs τ 3/2

εs

qs

β d 2

ρ∗ δ 4
. (60)

Finally, it follows from equations (48) and (49) that
the error-field penetration thresholds in the Rutherford and
polarization regimes can be written as(

br

BT

)
crit

∼ nϕ qs τ |v0|
(

mi

me

)1/2
β ρ 2

∗
ν∗ δ 2 d 3

(61)

and (
br

BT

)
crit

∼ 1

τ 1/2

β ρ∗
δ 4

, (62)

respectively.

4.2. Self-consistency check

Our derivation of the polarization error-field penetration
threshold, (62), depends on a great many ordering assumptions.
We check that—in theory, at least—it is possible to
simultaneously satisfy all of these constraints.

Suppose, as seems reasonable in a study of conventional
error-field penetration in low density, ohmically heated,
tokamak plasmas, that nϕ , qs, τ , ε

1/2
s ∼ 1. Suppose, further,

that β ∼ δ 4, and εs/qs ∼ δ, since these orderings are implicit
in the derivation of the island evolution equations introduced
in section 2.2. Finally, suppose that d ∼ 1, which corresponds
to choosing the strongest toroidal flow damping rate that is
consistent with the analysis of section 3.2. It follows from
(58)–(60) that

D1 ∼ |v0| δ
ν̄

, (63)

D2 ∼ δ

ρ∗
, (64)

where ν̄ ≡ (me/mi)
1/2 ν∗/δ 2. Now, if 1 � D1 � D2, which

corresponds to
ν̄

δ
� |v0| � ν̄

ρ∗
, (65)

then the operating point in figure 5 lies in the polarization
regime. Furthermore, in this regime, inequalities (12), (14)
and (15), which must all be satisfied in order for the island
evolution equations used in our analysis to be valid, yield the
constraints

δ 2

|v0| 2
� ν̄

ρ∗
� 1. (66)

Assuming that |v0| 	 δ 3/2, ν̄/δ, the previous two inequalities
can be combined to give

|v0| � ν̄

ρ∗
� 1. (67)

The lower limit on ν̄/ρ∗ comes from the inequality D2 	 D1,
whereas the upper limit comes from inequality (15). Inequality
(67) implies that expression (62) for the error-field penetration
threshold is valid as long as the plasma in the vicinity of
the resonant surface is not too collisional, and the natural
frequency of the resonant magnetic island chain is small
compared with the local ion diamagnetic frequency. Note,
incidentally, that the latter restriction is lifted when d � 1. If
ν̄/ρ∗ > 1 then the response of the plasma in the vicinity of the
resonant surface to the error-field is governed by linear layer

9
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physics, rather than nonlinear island physics [12]. On the other
hand, if ν̄/ρ∗ < |v0| then the operating point in figure 5 lies
in the Rutherford regime, instead of the polarization regime,
and expression (62) must be replaced by expression (61).
This suggests that the polarization regime is favoured over
the Rutherford regime in plasmas with relatively high (but not
too high) collisionality and weak flow—i.e. ohmically heated
plasmas.

4.3. Scaling analysis

Assuming that inequality (67) is satisfied, which—in theory,
at least—is possible, we examine the scaling of the error-field
penetration threshold, (62).

Consider, first of all, the scaling with the standard
dimensionless parameters β, ν∗ and ρ∗. In fact, it is
immediately clear from equation (62) that(

br

BT

)
crit

∼ β ρ∗. (68)

Next, consider the scaling with the physics parameters
ne, Ti, BT and R0. Now, according to equations (50)–(52),
β ∼ ne Ti B

−2
T , ν∗ ∼ ne T −2

i R0 (since η‖ ∼ T
−3/2

i ), and
ρ∗ ∼ T

1/2
i B −1

T R −1
0 . Hence, we obtain(
br

BT

)
crit

∼ ne T
3/2

i B −3
T R −1

0 . (69)

Finally, consider the scaling with the engineering
parameters ne, BT and R0. In order to obtain such a scaling,
we need to adopt a particular scaling law for the energy
confinement timescale, τE (and, hence, for the momentum
confinement time, τM). Now, the only widely accepted
empirical scaling for the energy confinement timescale in low
density, ohmically heated, tokamak plasmas is the well-known
neo-ALCATOR scaling law [34], according to which [16, 17]

BT τE ∼ ne BT R 3
0 (70)

at fixed q95 and aspect-ratio. Unfortunately, the right-hand side
of this expression cannot be expressed solely in terms of β, ν∗
and ρ∗. However, if we slightly change the exponent of R0

from 3 to 3.25 then we can write

BT τE ∼ ne BT R
13/4
0 ∼ β 5/4

ν
1/4
∗ ρ

7/2
∗

. (71)

Now, the ohmic power balance relation (56) yields

BT τE ∼ β 2

ν∗ ρ 3∗
. (72)

Combining the previous two expressions, we obtain

ν∗ ∼ β ρ 2/3
∗ , (73)

implying that
Ti ∼ B

4/5
T R

1/2
0 , (74)

which is very similar to the temperature scaling predicted
by the standard neo-ALCATOR energy confinement law: i.e.

Ti ∼ B
4/5

T R
2/5
0 . Eliminating Ti between expressions (69) and

(74), we finally arrive at(
br

BT

)
crit

∼ ne B
−9/5

T R
−1/4
0 . (75)

Note that this scaling of the error-field penetration threshold
reproduces the linear variation with plasma density that has
been observed in all experimental investigations of error-field
penetration in low density, ohmically heated, tokamak plasmas
[2–8]. Moreover, the predicted variation of the threshold
with toroidal magnetic field-strength is intermediate between
the B −2.9

T variation found on the COMPASS-D [5] tokamak,
and the B −1.2

T , B −1.0
T and B −0.6

T variations found on the
JET [5], DIII-D [5] and ALCATOR C-MOD [7] tokamaks,
respectively. Finally, the predicted variation of the threshold
with major radius is consistent with the conventional constraint
that (br/BT)crit should be solely a function of the standard
dimensionless parameters β, ν∗ and ρ∗ [5, 13].

By contrast, if we perform an analogous scaling study for
the predicted error-field penetration threshold in the Rutherford
regime, (61), we find that(

br

BT

)
crit

∼ β ν −1
∗ ρ 2

∗ ∼ T 4
i B −4

T R −3
0 ∼ B

−4/5
T R −1

0 . (76)

As before, the first, second, and third terms on the right-
hand side are the scalings with dimensionless parameters,
physics parameters, and engineering parameters, respectively.
Note that the scaling with engineering parameters exhibits no
dependence on the plasma density. Indeed, as is apparent from
an examination of expression (2), this particular scaling with
engineering parameters is almost indistinguishable from that
derived from the original Fitzpatrick (1993) model [11, 12].
Hence, we conclude that, unlike the threshold derived from
the polarization regime, the nonlinear error-field penetration
threshold derived from the Rutherford regime cannot account
for the experimental observations.

An experimental scaling law of the form (br/BT)crit ∼
nαn

e B
αB

T R
αR

0 (with αR = 2 αn + (5/4) αB) corresponds to a
theoretical scaling law of the form (br/BT)crit ∼ β αβ ν αν∗ ρ

αρ∗ ,
where αβ = αn − x, αν = x and αρ = −(5/3) αB − 2 αn −
(2/3) x. Here, x is arbitrary. Thus, an experimental scaling
law cannot be uniquely mapped to a theoretical scaling law,
although the inverse mapping is unique. The former mapping
is not unique because in an ohmically heated tokamak plasma
(at fixed edge-q and shape) there are only two independent
experimental variables—i.e. ne and BT—whereas there are
three independent indices in the theoretical scaling law. It
follows that it is impossible to infer a unique theoretical scaling
law (for the error-field penetration threshold in ohmically
heated tokamak plasmas) from experimental data without the
aid of a theoretical model.

5. Summary and discussion

A theory has been developed in order to predict the error-
field penetration threshold in low density, ohmically heated,
tokamak plasmas. The novel feature of this theory is that
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the response of the plasma in the vicinity of the resonant
surface to the applied error-field is calculated from nonlinear
drift-MHD magnetic island theory, rather than linear layer
theory. Error-field penetration, and subsequent locked mode
formation, is triggered once the destabilizing effect of the
resonant harmonic of the error-field overcomes the stabilizing
effect of the ion polarization current (caused by the rotation
of the error-field-induced island chain in the local ion fluid
frame)—see section 3.2. The predicted scaling of the error-
field penetration threshold with engineering parameters is
(br/BT)crit ∼ ne B −1.8

T R −0.25
0 , where br is the resonant

harmonic of the vacuum radial error-field at the resonant
surface, BT the toroidal magnetic field-strength, ne the electron
number density at the resonant surface and R0 the major radius
of the plasma—see section 4.3. This scaling—in particular, the
linear dependence of the threshold with density—is consistent
with experimental observations [5–8]. When the scaling is
used to extrapolate from JET to ITER, the predicted ITER
error-field penetration threshold is (br/BT)crit ∼ 5 × 10−5,
which just lies within the expected capabilities of the ITER
error-field correction system.

The analysis presented in this paper is based on a fluid
approach that is, strictly speaking, only valid in a collisional
plasma. At low collisionalities, such that νi � εs ω∗ i, which
corresponds to (see sections 2.2, 4.1 and 4.2)

ν̄

ρ∗
�

(
me

mi

)1/2 1

δ 3
, (77)

the ion polarization term in the island width evolution equation
is reduced by a factor ε

3/2
s [35, 36]. Moreover, the critical

island width below which the polarization term ceases to vary
as w−3 becomes the ion banana width ρb ∼ (qs/ε

1/2
s ) ρs, rather

than ρs. However, neither of these modifications to the analysis
would lead to a change in the predicted scaling of the error-field
penetration threshold with engineering parameters.

Appendix. Determination of vf and Ip

It is helpful to define the complete elliptic integrals

E(k) ≡
∫ π/2

0
(1 − k2 sin2 u)1/2 du, (78)

K(k) ≡
∫ π/2

0
(1 − k2 sin2 u)−1/2 du. (79)

Let

〈1〉 ≡ K(1/k)/(k π), (80)

〈X2〉 ≡ (4k/π) E(1/k), (81)

〈X4〉 ≡ (16k/3π)
[
2 (2k2 − 1) E(1/k) − (k2 − 1) K(1/k)

]
(82)

for k > 1. As explained in [24], the parameter vf is calculated
by solving the differential equation

0 � d

dk

[ 〈X4〉
4k

dkM +

(
1 − 1

2

τM

τP

) 〈X4〉〈1〉
〈X2〉2

]

Figure 6. The phase velocity parameter, vf , calculated as a function
of the perpendicular diffusivity ratio, τM/τP. In order from the top to
the bottom, the various curves correspond to τ = 0.25, 0.5, 1.0, 2.0
and 4.0, respectively.

+
1

2

τM

τP

( 〈X4〉〈1〉
〈X2〉2

− 1

)

× [(1 + 2τ) 〈X2〉 dkM + τ 4k 〈1〉/〈X2〉]
〈X2〉 M + τ

(83)

for M(k) in the region 1 < k < ∞, subject to the boundary
conditions

M(k → 1) → (1 − v0)
π

4
, (84)

M(k → ∞) → 1 − vf

2k
, (85)

where

v0 = (1 + τ)

2


1 +

τM

τP
−

[
1 − 2

τM

τP

(
1 − τ

1 + τ

)
+

(
τM

τP

)2
]1/2


 .

(86)

Here, dk ≡ d/dk. Once the function M(k) has been
determined, the parameter Ip is calculated from

Ip = 2π

3
v0 (1 − v0) −

∫ ∞

1

〈X2〉
〈1〉

( 〈X4〉〈1〉
〈X2〉2

− 1

)
× [

dkM (〈X2〉 M − 1) +〈X2〉 M (dkM + 4k 〈1〉/〈X2〉2)
]

dk.

(87)

Figures 6 and 7 show vf and Ip calculated, as described
above, for various different values of the diffusivity ratio
τM/τP ≡ D⊥/µ⊥ i and the temperature ratio τ ≡ Te/Ti.
The fact that vf is positive indicates that the island chain
propagates in the electron diamagnetic direction relative to
the local equilibrium ion fluid. Moreover, the fact that Ip is
positive indicates that the ion polarization current induced by
this propagation has a stabilizing effect on the island chain.
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Figure 7. The ion polarization parameter, Ip, calculated as a
function of the perpendicular diffusivity ratio, τM/τP. In order from
the bottom to the top, the various curves correspond to τ = 0.25,
0.5, 1.0, 2.0 and 4.0, respectively.
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