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Abstract
This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén
eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous
simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal
mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0)
and higher-n (n � 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum
damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the
n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the
equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8
Alfvén continuum, indicating enhanced dissipation due to continuum damping.

1. Introduction

This paper extends our recent work [1] in which we investigated
the effects of magneto-hydrodynamic (MHD) nonlinearity
on Alfvén eigenmode instability using hybrid simulations of
MHD fluid interacting with energetic particles. To clarify
the role of the MHD nonlinearity, the nonlinear MHD results
were compared with simulations in which only linear MHD
equations were solved together with a nonlinear response of
the energetic particles. At a low saturation level of the excited
mode (δB/B � 10−3), no significant difference was found
between the results of the linear MHD and the nonlinear MHD
simulations. On the other hand, when the mode saturation level
was δB/B ∼ 10−2 in the linear MHD simulation, the nonlinear
MHD simulation showed only half of that level. We found
that the nonlinearly generated n = 0 and higher-n sidebands
provide increased dissipation that appears to be responsible for
the reduced saturation level. The total dissipation increases
despite the fact that the dissipation from the n = 4 component
alone decreases slightly before saturation. This mechanism is
different from the one discussed in [2, 3] where the nonlinearity
would increase the damping rate of the dominant n = 4 mode
directly.

The need to examine nonlinear MHD effects is evident
from previous simulations [4] of the toroidal Alfvén eigenmode

(TAE) bursts in a Tokamak Fusion Test Reactor (TFTR)
experiment [5]. Many of the experimental characteristics,
such as (a) the synchronization of multiple TAEs, (b) the
modulation depth of the drop in the stored beam energy, (c)
the stored beam energy, were reproduced in those simulations.
However, the saturation amplitude of the TAE modes was
δB/B ∼ 2 × 10−2 which is considerably higher than the
value δB/B ∼ 10−3 inferred from the experimental plasma
displacement measurements at the plasma edge [6]. In the
simulation of [4], the only nonlinearity retained was the
nonlinearity in the energetic particle orbits, while the nonlinear
MHD effects were neglected. This suggested that the MHD
nonlinearity may need to be included in the simulations.

Recently, we have extended the MEGA code [7–9], which
is a hybrid simulation code for an MHD fluid interacting with
energetic particles, by implementing the energetic particle
source, collisions and losses. We used two versions of the
MEGA code, with either linear or nonlinear MHD equations
employed, to study the nonlinear MHD effects on TAE bursts
[10]. It was demonstrated for physical parameters close to
the TFTR experiment that the nonlinear MHD effects reduce
the saturation amplitude to a level δBm/n/B ∼ 5 × 10−3

for the dominant harmonic of the radial magnetic fluctuation.
The TAE bursts take place with a time interval close to the
experiment. The stored beam energy drop associated with
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each burst has a modulation depth of roughly 10%, which is
also close to the experimental value of 7%.

In this work, we study the nonlinear MHD effects on the
TAE instability with toroidal mode number n = 4 for lower
dissipation coefficients and with higher numerical resolution
than in the previous work [1]. This clarifies the spatial profiles
of the nonlinear sidebands and the mechanism of sideband
formation. We demonstrate that the saturation amplitude of
the TAE mode reduces due to generation of zonal (n = 0)

and higher-n (n � 8) sidebands. This reduction results from
dissipation associated with the sidebands. The n = 0 sideband
that includes the zonal flow peaks at the TAE gap locations.
The n = 0 poloidal flow is governed by the nonlinear
coupling of the n = 4 components and the equilibrium plasma
response to the n = 0 fluctuations. The spatial profile of
the n = 8 sideband peaks at the n = 8 Alfvén continuum,
which apparently enhances dissipation via continuum damping
[11, 12].

2. Simulation model

Several hybrid simulation models have been constructed
[13–17] to study the evolution of Alfvén eigenmodes
destabilized by energetic particles. In the MEGA code, the
bulk plasma is described by the nonlinear MHD equations and
the energetic ions are simulated with the δf particle method.
The MHD equations with the energetic-ion effects are given by

∂ρ

∂t
= −∇ · (ρv) + νn�(ρ − ρeq), (1)

ρ
∂

∂t
v = −ρ �ω × v − ρ∇

(
v2

2

)
− ∇p + (j − j ′

h) × B

+
4

3
∇(νρ∇ · v) − ∇ × (νρ �ω), (2)

∂B

∂t
= −∇ × E, (3)

∂p

∂t
= −∇ · (pv) − (γ − 1)p∇ · v + (γ − 1)

×
[
νρω2 +

4

3
νρ(∇ · v)2 + ηj · (j − jeq)

]
+νn�(p − peq), (4)

E = −v × B + η(j − jeq), (5)

j = 1

µ0
∇ × B, (6)

�ω = ∇ × v, (7)

where µ0 is the vacuum magnetic permeability, γ = 5/3 is the
adiabatic constant, ν and νn are artificial viscosity and diffusion
coefficients chosen to maintain numerical stability and all the
other quantities are conventional. The subscript ‘eq’ represents
the equilibrium variables. The energetic-ion contribution is
included in the MHD momentum equation (equation (2)) as
the energetic-ion current

j ′
h(x) =

N∑
i=1

wiZhe(v
∗
‖i + vBi)S(x − xi )

−∇ ×
[
b

N∑
i=1

wiµiS(x − xi )

]
(8)

Figure 1. Spatial profiles of energetic-ion beta, bulk plasma beta
and safety factor.

where wi , v∗
‖i , vBi , S(x − xi ) and µi are weight, sum

of parallel velocity and magnetic curvature drift, magnetic
gradient drift, shape factor and magnetic moment of ith
particle, respectively. Zhe is the energetic-ion charge. The
second term of equation (8) represents the magnetization
current. The E × B contribution to j ′

h is cancelled by the
electrons, due to quasi-neutrality [7]. This model is accurate
as long as the energetic-ion density is much less than the bulk
plasma density. The MHD equations are solved using a fourth
order (in both space and time) finite difference scheme. The
drift-kinetic description [18] is employed for the energetic ions.
The computational particles are initially loaded uniformly in
the phase space.

In order to identify nonlinear MHD effects, we use linear
MHD calculations for comparison. The reduced equations for
the linear MHD model are
∂ρ

∂t
= −∇ · (ρeqv) + νn�(ρ − ρeq), (9)

ρeq
∂

∂t
v = −∇p + (jeq − j ′

heq
) × δB + (δj − δj ′

h) × Beq

+
4

3
∇(νρeq∇ · v) − ∇ × (νρeq �ω), (10)

∂B

∂t
= −∇ × E, (11)

∂p

∂t
= −∇ · (peqv) − (γ − 1)peq∇ · v + (γ − 1)ηδj · jeq

+νn�(p − peq), (12)

E = −v × Beq + ηδj. (13)

Here the variables with δ such as δB represent the fluctuations,
for example, δB = B − Beq.

A tokamak plasma with aspect ratio of R0/a = 3.2
was investigated where R0 and a are the major radius of
the geometrical centre of the simulation domain and the
plasma minor radius, respectively. The cylindrical coordinates
(R, ϕ, z) are employed. The shape of the outermost magnetic
surface is circular. The spatial profiles of the energetic-ion
beta, bulk plasma beta, and safety factor are shown in figure 1.
The bulk plasma density is uniform. The central energetic-ion
beta βh0 is 1.7%. The initial distribution of the energetic ions
is a slowing-down distribution with a maximum velocity 1.2vA

and the critical velocity 0.5vA, where vA denotes the Alfvén
velocity at the plasma centre. The ratio of the energetic-ion
Larmor radius to the minor radius is 1/16 for the energetic-ion

2



Nucl. Fusion 52 (2012) 094018 Y. Todo et al

velocity equal to the Alfvén velocity. We neglect the finite
Larmor radius effect for the energetic ions. This will lead
to an overestimate of the instability growth rate, although the
effect is partly mitigated due to the finite orbit arising from
the magnetic curvature and magnetic gradient drifts [19]. In
our previous work, we investigated nonlinear MHD effects for
different energetic-ion pressure [1]. We neglected energetic-
ion pressure in the equilibrium and used the same equilibrium
to focus on the nonlinear MHD effects. In this work we use
the same equilibrium for the purpose of comparison with the
previous work.

In what follows, we limit our consideration to the case of
the n = 4 mode, so that only the n = 4 component is present
in the linear MHD code. The MHD nonlinearities generate
fluctuations with toroidal mode numbers that are multiples
of 4 (n = 0, 4, 8, 12, 16, . . . ). The apparent symmetry of
the n = 4 mode and its nonlinear sidebands allows us to
restrict our simulation to a quarter of the tokamak domain
with 0 � ϕ � π/2, where ϕ is the toroidal angle. This
symmetry saves the CPU time and memory compared with a
full torus simulation. The energetic-ion current δj ′

h generally
contains all toroidal harmonics that are multiples of 4. This
produces MHD fluctuations with toroidal mode numbers that
are multiples of n = 4 and obscures the effects of the MHD
nonlinearity. We therefore retain only the n = 4 component
of the hot particle current, while we artificially remove the
energetic-ion current density fluctuation δj ′

h if n �= 4.
In the previous work we investigated two sets of

dissipation coefficients, the number of grid points, and the
number of computational particles [1]. In the first set, the
viscosity, diffusion and resistivity coefficients in the MHD
equations were chosen to be ν = νn = η/µ0 = 10−6vAR0,
and the number of grid points for the cylindrical coordinates
(R, ϕ, z) was 128 × 64 × 128; the number of computational
particles was 5.2 × 105. The second set had lower dissipation
coefficients, ν = νn = η/µ0 = 2.5 × 10−7vAR0, and
a larger number of grid points and computational particles:
256 × 128 × 256 and 4.2 × 106, respectively. In this paper, we
further reduce the dissipation coefficients to ν = νn = η/µ0 =
6.1 × 10−8vAR0 and we increase the number of grid points
and computational particles to 512×128×512 and 1.7×107.
This fine-scale grid provides adequate spatial resolution for the
nonlinearly generated sidebands.

3. Simulation results

3.1. Comparison of linear MHD and nonlinear MHD
simulations

The spatial profile of the unstable n = 4 TAE mode at
the linear phase of the instability is shown in figure 2. A
magnetic flux coordinate system (r, ϕ, ϑ) is constructed for
data analysis. The phase of the mode in the figure is chosen
so that the cosine part of the dominant harmonic m/n = 6/4
is maximized at the peak location. Evolution of the radial
velocity vr/vA is presented in figure 3 for linear and nonlinear
MHD simulations. Figure 3 shows the m/n = 6/4 component
of vr/vA measured at the TAE peak location r = 0.44a. The
frequency and the growth rate of the TAE are ω = 0.309ωA and
γ = 4.6 × 10−2ωA, respectively, with ωA = vA/Raxis, where
Raxis is the major radius of the magnetic axis. Figure 3 shows

Figure 2. Spatial profiles of poloidal harmonics of the radial
velocity in a TAE with toroidal mode number n = 4 for radial
velocity. The figure represents a snapshot at ωAt = 189. Solid
(dashed) lines show cos(mϑ + nϕ) [sin(mϑ + nϕ)] harmonics with
poloidal mode number m labelled in the figure.

Figure 3. Comparison of the radial velocity evolution in the linear
and nonlinear MHD runs using the cosine part of m/n = 6/4
harmonics at r/a = 0.44.

a significant reduction of the saturation level in the nonlinear
MHD run. The saturation level of vr/vA is ∼8 × 10−3 for
the nonlinear MHD simulation while it is ∼1.3 × 10−2 at
ωAt ≈ 340 for the linear MHD simulation. In the linear
MHD run, another unstable TAE mode (with major harmonics
m/n = 6/4 and 7/4) produces a second (higher) maximum in
figure 3 at ωAt ≈ 450.

In order to clarify the physics mechanism that reduces
the TAE saturation level, we use the same approach as in the
previous work [1]. We decompose the MHD fluctuations for
each toroidal mode number n � 0. For example, the velocity
fluctuation is decomposed into

vn(R, ϕ, z) = vnc(R, z) cos(nϕ) + vns(R, z) sin(nϕ) (14)

vnc(R, z) = 4

π

∫ π/2

0
v(R, ϕ, z) cos(nϕ) dϕ

vns(R, z) = 4

π

∫ π/2

0
v(R, ϕ, z) sin(nϕ) dϕ

(for n �= 0))

(15)

vnc(R, z) = 2

π

∫ π/2

0
v(R, ϕ, z) dϕ, vns(R, z) = 0

(for n = 0). (16)

We then analyse the evolution of the MHD fluctuation energy
and the energy dissipation for each toroidal mode number n

En ≡
∫ (

1

2
ρ0v

2
n +

2δBn · Beq + δB2
n

2µ0
+

δpn

γ − 1

)
dV , (17)
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Figure 4. Evolution of the partial damping rates for each toroidal
mode number and the total damping rate in the nonlinear MHD
simulation. The curve with a label γd lin shows (for comparison) the
damping rate in the linear MHD simulation.

Dn =
∫

[νρ0ω
2
n +

4

3
νρ0(∇ · vn)

2 + ηδjn · jn] dV. (18)

We found that
∑

n Dn/2E4 is an effective damping rate for
the cases where nonlinear coupling between the different
toroidal mode numbers is essential. In figure 4 the evolution
of γdn = Dn/2E4 and γd ALL = ∑

n Dn/2E4 are compared
with γd lin = D4/2E4 in the linear MHD simulation. The
total damping rate γd ALL, in the nonlinear MHD simulation,
is clearly greater than the n = 4 TAE damping rate γd lin in
the linear MHD simulation. This explains why the saturation
level is reduced by the MHD nonlinearity. The nonlinear
coupling increases the total energy dissipation leading to a
lower saturation level. The damping rate from the higher-
n sidebands (n = 8, 12, 16) is greater than that from the
n = 0 sideband. This is different from the cases with higher
dissipation coefficients shown in figures 7 and 8 in [1]. The
reason why the higher-n sidebands are more important for
the lower dissipation coefficients is that the dissipation of
the higher-n sidebands arises from continuum damping. This
is clarified in the next subsection. Figure 5 is a schematic
diagram for energy transfer in the linear and nonlinear MHD
runs. Dissipation shown in figure 5 is the resistive and viscous
processes that convert magnetic and fluid kinetic energy into
thermal energy. Physical damping for the TAE mode and the
nonlinear sidebands included in the MHD simulations is the
continuum damping that also dissipates both magnetic and
fluid kinetic energy through the resistive and viscous processes.

3.2. Spatial profiles of nonlinear sidebands

In this subsection, we first discuss the nonlinearly driven
perturbations with n = 0. Figure 6 shows the profiles of the
n = 0 flow, perturbed magnetic field, density and pressure
at ωAt = 189. The radial components of the flow and the
magnetic field perturbations are negligibly small and are not
shown in the figure. The profiles peak at the n = 4 TAE gap
locations, r/a = 0.25, 0.43 and 0.55 where the safety factor
values are q = 9/8, 11/8 and 13/8, respectively. The dominant
harmonics are m/n = 0/0 and 1/0.

In the previous work we discussed how the n = 0 sideband
is formed [1]. When the n = 0 sideband is sufficiently small
to neglect its feedback on the dominant (n = 4) mode, the

Figure 5. A schematic diagram of energy transfer for linear MHD
and nonlinear MHD simulations.

sideband evolution can be described by the following equation:

∂

∂t
z + Meq(z) = s (19)

where z represents the n = 0 perturbation z =
t (δρ, δv, δB, δp) and Meq is a linear MHD operator which is
a function of the equilibrium variables. The source vector s on
the right-hand side of equation (19) is a (quadratic) contribution
determined by the TAE eigenfunction. We found that z grows
at the rate 2γTAE. Then, equation (19) is reduced to

2γTAEz + Meq(z) = s. (20)

In this work, we analyse each term in equation (20) for the
n = 0 poloidal flow shown in figure 6(a). We have three
nonlinear terms for the n = 0 ploloidal flow in equation (2),

F1 = −�ωn=4 × vn=4, (21)

F2 = −∇
(

v2
n=4

2

)
, (22)

F3 = (jn=4 × Bn=4)/ρeq, (23)

where we neglected the viscous terms and divided the equation
by ρeq. The nonlinear source for the n = 0 poloidal flow
can be expressed as s = F1 + F2 + F3. The three nonlinear
contributions to the source term for the n = 0 poloidal flow are
shown in figure 7. These contributions are strongly localized
at the n = 4 TAE gap which indicates that the nonlinearity
involves poloidal harmonics m and m + 1. The term F2 is
negligibly small compared with F1 and F3. Next, we move the
linear response term Meq(z) to the right-hand side, and split
−Meq(z) into a sum of the following three terms:

F4 = −∇pn=0, (24)

F5 = (δjn=0 × Beq)/ρeq, (25)

F6 = (jeq × δBn=0)/ρeq. (26)

Each term for the n = 0 poloidal flow is shown in figure 8.
Note that F6 is negligibly small compared with F4 and F5.
The sum of the nonlinear source and the linear response for
the n = 0 poloidal flow, s − Meq(z), is shown in figure 9(a).
The nonlinear source s and the equilibrium plasma response
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Figure 6. Spatial profiles of the poloidal harmonics with n = 0 for (a) poloidal flow, (b) toroidal flow, (c) poloidal magnetic field
perturbation, (d) toroidal magnetic field perturbation, (e) density perturbation and (f ) pressure perturbation during the linearly growing
phase of the TAE instability at ωAt = 189. Solid and dashed curves show the cos(mϑ) and the sin(mϑ) harmonics, respectively.

−Meq(z) nearly cancel each other, so that the absolute value
of s − Meq(z) is smaller than those of s and Meq(z) by
one order of magnitude. The term 2γTAEvθn=0 is shown in
figure 9(b). We see very good agreement between the two
quantities, s − Meq(z) and 2γTAEvθn=0. This demonstrates
that the n = 0 fluctuations z are the solution of equation (20)
and the spatial profiles of the n = 0 fluctuations shown in
figure 6 are given by z = (2γTAEI + Meq)

−1(s) where I is
the unit operator. It should be emphasized that the spatial
profile z depends on 2γTAE, the growth rate of the nonlinear
source during the linear phase of the TAE instability. When the
instability is saturated, the growth rate of the nonlinear source
approaches zero. Then, the n = 0 fluctuations z that are
matched to the TAE linear growth are no longer a solution of
equation (19) for the nonlinear phase. We found in the previous
work this leads to the excitation of the geodesic acoustic mode
(GAM) [20, 21]. This is different from the energetic particle
driven GAM discussed in [22, 23].

We now discuss the spatial profiles of the n = 8 sideband.
The absolute radial velocity profile is shown in figure 10. The

peak locations of each poloidal harmonic is plotted with the
n = 4 and n = 8 Alfvén continua in figure 11(a). The n = 8
perturbations have twice the TAE frequency, 2ωTAE. We see a
peak of each poloidal harmonic at the n = 8 Alfvén continuum.
This indicates that the n = 8 perturbations are subject to
continuum damping that provides substantial dissipation even
when the dissipation coefficients are reduced by 1/16 from the
original case, as shown in figure 4. The continuum damping
is known to be insensitive to dissipation coefficients and exist
within an MHD model. It is interesting to note that the peak
locations of the n = 8 harmonics are close to the n = 4 mode
gap locations and relatively far from the rational surfaces of
the n = 4 mode. We have already seen in figure 7 that the
spatial profiles of the nonlinear source for the n = 0 poloidal
flow also peak at the TAE gap locations. Thus the nonlinear
coupling of the TAE mode arises primarily at the gap locations
and involves predominantly two poloidal harmonics, m and
m + 1. Figure 11(b) is a schematic diagram for the continuum
damping of the n = 8 sideband.
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Figure 7. Spatial profiles of the nonlinear sources for poloidal flow with n = 0 at ωAt = 189; (a) F1, (b) F2, (c) F3 and (d) (F1 + F2 + F3).

Figure 8. Spatial profiles of the contributions to the linear plasma response for poloidal flow with n = 0 at ωAt = 189; (a) F4, (b) F5, (c) F6

and (d) (F4 + F5 + F6).

4. Summary

The nonlinear MHD effects on the evolution of the Alfvén
eigenmode were investigated with hybrid simulations of an
MHD fluid interacting with energetic particles. To clarify the
role of the MHD nonlinearity, the nonlinear MHD results were
compared with results from a reduced model, where only linear

MHD equations were solved together with a nonlinear response
of the energetic particles. Specifically, we studied the evolution
of an n = 4 TAE mode destabilized by its resonant interaction
with energetic particles in a tokamak plasma.

We have extended our previous simulation of the nonlinear
MHD effects [1] to the regime of lower dissipation coefficients
and higher numerical resolution. This step clarifies the
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Figure 9. Spatial profiles of (a) F1 + F2 + F3 + F4 + F5 + F6 and (b)
the n = 0 component of the poloidal velocity multiplied by twice
the TAE growth rate at ωAt = 189.

Figure 10. Spatial profiles of the poloidal harmonics of the absolute
radial velocity with n = 8 during the linearly growing phase of the
TAE instability at ωAt = 189. The curves are labelled by poloidal
mode number m.

spatial profiles of the nonlinearly generated sidebands and the
mechanism of sideband formation. We demonstrate that the
saturation amplitude of the TAE mode is reduced due to the
generation of zonal (n = 0) and higher-n (n � 8) sidebands,
and this reduction is attributed to the enhanced dissipation
produced by the sidebands. The nonlinear sidebands that
include zonal flow peak at the TAE gap locations. It
is also found that the n = 0 poloidal flow represents a
balance between the nonlinear driving force from the n = 4
components and the equilibrium plasma response to the n = 0
fluctuations. The spatial profile of the n = 8 sideband exhibits
a resonance at the n = 8 Alfvén continuum. This indicates the
dissipation of the n = 8 sideband results from the continuum
damping. The higher-n (n � 8) sidebands are essential for
mode saturation in the limit of small dissipation coefficients,

Figure 11. The dots (labelled by poloidal mode number m in the
upper panel) mark peak locations and frequencies of the poloidal
harmonics of the n = 8 sideband. The curves show the n = 4 and
n = 8 Alfvén continua. The lower panel illustrates continuum
damping for the n = 8 sideband.

because continuum damping is independent of the dissipation
coefficients.
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