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Abstract
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic
bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook,
drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution
function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect
of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope
decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag
collisions alone.

(Some figures may appear in colour only in the online journal)

1. Introduction

Driven kinetic systems arise naturally far away from
thermodynamic equilibrium, and magnetically confined
plasmas typically exhibit a wide variety of instabilities that
need to be treated kinetically [1]. For example, in externally
heated plasmas, fast ions often excite Alfvénic waves capable
of degrading energetic ion confinement [2, 3]. The role of
dissipation in such systems is far from trivial. Away from the
instability threshold, the nonlinear mode evolution consists of
an initial saturation followed by a gradual decay [4]. The near-
threshold regime, however, exhibits spontaneous formation
of coherent phase space structures (holes and clumps) in
the fast particle distribution function, which corresponds
to the transformation from unstable plasma eigenmodes to
energetic particle modes (EPMs) [5] with time dependent
mode frequencies [6, 7]. These commonly observed frequency
sweeping events [8–11] reflect the tendency for experimental
plasmas to persist in near-threshold configurations.

Near the instability threshold, fast particle sources
and collisions, which act to restore the unstable fast
particle distribution function, compete with the distortion
of the distribution function due to the wave field. This
interplay results in a nonlinear mode behaviour which differs
significantly from the evolution in the collisionless limit.
Initial studies revealed a tendency for Krook type collisions
[12] and velocity space diffusion [13] to suppress holes and
clumps, leading to the conception that frequency sweeping
events should not be observed at ‘high collisionality’. Recent

work [14], however, has shown that the presence of drag
(dynamical friction for fast particles) allows holes and clumps
to form even in the collisional regime. This has been
demonstrated in nonlinear 1D simulations of the bump-on-
tail instability [15], which capture the essential features of
resonant particle physics in more general multidimensional
problems, since particle motion is known to be effectively
one dimensional in the vicinity of an isolated nonlinear
resonance [13, 16].

The simulations also revealed that the presence of drag
in the collisional relaxation of the resonant particles gives
rise to asymmetric frequency sweeping, with e.g. steady state
and hooked hole behaviours [15]. These features resemble
observations from several experiments (see e.g. [17]), which
emphasizes the importance of drag for the understanding of
frequency sweeping modes. The aforementioned simulations
are however limited to short range frequency sweeping, during
which the linear mode structure is preserved. In contrast,
long range frequency sweeping involves significant changes in
the mode structure, which affect the observed sweeping rates
[9, 11, 18]. Long range frequency sweeping in the absence of
fast particle collisions was recently described in [19].

In this article, we develop a framework that generalizes the
formalism of [19] to include fast particle sources and collisions,
and to allow for a general shape of the fast particle equilibrium
distribution function. As will be shown, the latter modification
provides an extension of the analysis in [19] to the case of
upsweeping holes, for which the presence of drag in the fast
particle collision operator naturally causes hooked frequency
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sweeping. The article is organized in the following way:
in section 2, we present the bump-on-tail model considered
throughout this article, and in section 3 we trim the model
to focus on long range sweeping. Section 4 is devoted to
the special case of non-diffusive fast particle collisions, and
a simple and efficient top-hat model is developed, for which
numerical results are presented in section 6. In section 5, we
analyse the effect of particle trapping on the wave evolution.
Finally, section 7 contains a discussion of the model itself and
the presented results.

2. Bump-on-tail model

Motivated by observations of frequency sweeping events
in toroidal plasmas, we investigate a perturbation with a
prescribed spatial period λ. We consider an electrostatic wave
in a 1D plasma with the following three particle species:
(1) static ions; (2) cold background electrons with density
ne and perturbed fluid velocity ve; (3) a small population
of fast electrons, which are treated kinetically. The cold
electrons respond linearly to the wave field and are subject
to weak collisions with collision frequency 2γd. The model
also includes fast particle sources and collisional relaxation
processes, acting to establish a spatially uniform equilibrium
distribution function F0(v), whose velocity gradient provides
a linear instability drive with growth rate γL.

The starting set of equations is then given by the linearized
fluid and continuity equations for the cold electrons, i.e.

∂ve

∂t
= − 1

me

∂U

∂x
− 2γdve (1a)

and
∂δne

∂t
= −ne0

∂ve

∂x
, (1b)

where ne = ne0 + δne, the Poisson equation

∂2U

∂x2
= −e2

ε0
[δne + δnf ], (1c)

and a kinetic equation,

∂f

∂t
+ v

∂f

∂x
− 1

me

∂U

∂x

∂f

∂v
= C (f ) , (1d)

describing the evolution of the fast electron distribution
function f . Here, the electrostatic potential φ of the wave
is represented by the potential energy U ≡ −|e|φ, and the
perturbed fast electron density is given by

δnf =
∫

(f − F0) dv. (2)

Note that, due to conservation of the total number of particles
in the separate fast and cold electron species, we must have

〈δnf〉λ = 〈δne〉λ = 0, (3)

where 〈. . .〉λ denotes an average over the wavelength λ.
Finally, the appropriate fast electron collision operator (cf [14])
is written as

C (f ) = −β (f − F0) +
α2

k

∂

∂v
(f − F0)

+
ν3

k2

∂2

∂v2
(f − F0) , (4)

where k ≡ 2π/λ is the wavenumber. In (4), Coulomb
collisions are modelled by a combination of velocity space
diffusion (third term) and a drag/slowing down operator
(second term), with effective collision rates ν(v) and α(v),
respectively. The first term is the Krook operator. It annihilates
f − F0 at the rate β(v), and can serve as a convenient tool
for mocking up the effect of the more demanding velocity
space diffusion operator. It should also be pointed out that
in (4), particle sources and sinks are expressed in terms of the
equilibrium distribution function F0(v).

Equations (1a)–(1d) describe the system in full generality,
including e.g. the process of hole and clump formation
(cf [6, 7, 15]). The present investigation, however, is focused
on long range frequency sweeping of already established phase
space structures, which occurs on a time scale much longer
than the bounce period τB of resonant electrons trapped in
the wave field. The perturbation of interest is then a single
travelling wave with spatial period λ and slowly evolving
structure. Following the formalism of [19], we represent the
perturbed potential energy as

U = U (x − s (t) ; t) , (5)

where the wave phase velocity ṡ(t) changes slowly in time.
Here, U is periodic in its first argument, describing fast
oscillations at the frequency ω ≡ kṡ of the dominant Fourier
harmonic, and slowly varying with respect to its second
argument, describing the evolution of the mode amplitude and
structure. More formally, we invoke the adiabatic ordering[

d ln ωB

dt
,

d ln ṡ

dt

]
� ωB ∼ γL ∼ γd � ω, (6)

where the bounce frequency ωB = 2π/τB serves as a measure
of the wave amplitude. In this limit, U corresponds to a
slowly evolving BGK wave [20], and the description of the
fast particles simplifies considerably due to the phase mixed
nature of their distribution function.

3. Adiabatic approximation

In the presence of the wave field, the electron motion is
governed by the lab frame Hamiltonian

H = p2

2me
+ U (x − s (t) ; t) , (7)

which contains the fast time scale associated with the wave
frequency through the potential U . It is natural, however, to
use a coordinate system moving with the phase velocity of the
wave, thus removing the fast time scale from consideration.
The canonical transformation to the wave frame coordinates

z = x − s (t) , pz = p, (8)

is achieved by means of the generating function

1 (x, pz; t) = [x − s (t)] pz +
me

2

∫ t (
ṡ
(
t ′
))2

dt ′. (9)

At any given moment, the contours of the transformed
Hamiltonian (cf [19])

Hz = [p − meṡ (t)]2

2me
+ U (z; t) (10)
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Normalized wave frame position, ξ = λ–1z
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Figure 1. Phase space plot of trapped and passing electron orbits in
the wave frame. Each line shows a constant energy trajectory, and
the areas of the two shaded regions represent examples of trapped
(dark area) and passing (bright area) electron adiabatic invariants.

defines a separatrix in (z, p) phase space centred around
p = meṡ, which separates passing electrons (with wave
frame energy Ez > Umax) from trapped electrons (satisfying
Ez < Umax). As seen from (10), Hz is a function of time, so
Ez is not a conserved quantity. However, there are convenient
adiabatic invariants for the trapped and passing electrons, given
by the phase space areas bounded by the instantaneous contours
of the wave frame Hamiltonian Hz (see figure 1).

Physically, the separatrix can be viewed as a rigid
boundary. As the phase velocity of the wave changes, the
trapped electrons are convected along in phase space while
the passing electrons flow around the moving separatrix.
The coherent motion of the trapped electrons results from
the conservation of their adiabatic invariant, whereas the
passing electrons are forced to skim the separatrix due to
incompressibility of phase space. In total, the process results
in (1) a discontinuity in the fast electron distribution function
at the separatrix; (2) a release of fast electron kinetic energy.
In the presence of fast electron collisions or when the mode
structure is evolving slowly, however, the picture is somewhat
altered. The separatrix is then more like a porous membrane
that allows particles to enter and leave the trapping region,
so that the trapped electron distribution function will evolve
over time.

In general, all fast electron trajectories are perturbed by
the wave field, and so contribute to the perturbed density.
However, due to the steep gradient of the distribution function
near the separatrix as compared with the ambient distribution
(which remains close to the equilibrium slope), the largest part
of the perturbed density derives from the trapped particles.
When calculating the fast electron perturbed density, we
therefore approximate the perturbed distribution function as
vanishing outside the separatrix. The effect of the passing
electrons then enters as a boundary condition on the trapped
electron distribution function, ensuring that f = F0 at the
separatrix. On the other hand, all fast electrons contribute to
conserve the total number of particles, so we must always make
sure to impose 〈δnf〉λ = 0.

In sections 3.1–3.3, we show how the adiabatic ordering
(6) simplifies the treatments of the fast electron distribution

function, the wave field and the mode frequency sweeping,
respectively.

3.1. Fast electron dynamics

For the purpose of describing the trapped electrons, we adopt
the lowest order trapped electron adiabatic invariant (cf [21])

J (Ez; t) ≡
√

2me

π

∫ λ−z∗

z∗

√
Ez − U (z; t) dz (11)

as an action variable. Here, the integration limits are the
trapped electron turning points, found by solving Ez =
U(z∗; t). The corresponding canonical transformation is
defined by the generating function (cf [22])

2 (z, J ; t) = meṡz +
√

2me

∫ z

z∗

√
Ez (J ; t) − U (z′; t) dz′,

(12)

where Ez(J ; t) is defined implicitly by (11). In terms of 2,
the canonical angle becomes

θ = ∂2

∂J
= 2π

τB

√
me

2

∫ z

z∗

dz′
√

Ez (J ; t) − U (z′; t)
, (13)

where the instantaneous trapped electron bounce period is

τB (J ; t) = 2π
∂J

∂Ez

=
√

2me

∫ λ−z∗

z∗

dz√
Ez (J ; t) − U (z; t)

,

(14)

and the Hamiltonian transforms into

Hnew (θ, J ; t) = Ez (J ; t) +
∂2

∂t
, (15)

where only the latter part on the right-hand side depends on
the angle. Then

J̇ = −∂Hnew

∂θ
= − ∂

∂θ

∂2

∂t
(16)

and

θ̇ = ∂Hnew

∂J
= ωB +

∂

∂J

∂2

∂t
, (17)

so that the trapped electron kinetic equation reads

∂f

∂t
+ ωB

∂f

∂θ
+

∂f

∂θ

∂

∂J

∂2

∂t
− ∂f

∂J

∂

∂θ

∂2

∂t
= C(f ). (18)

With the adiabatic ordering, we expect the wave to evolve on
a slow time scale τs, much longer than the bounce period τB.
We can then expand f in powers of the small parameter

ε ≡ τB/τs, (19)

and to lowest order we find that (18) becomes

∂f0

∂θ
= 0. (20)

To lowest order, f is then a function of merely J and t . That
is, f0 = 〈f 〉B, where the bounce average is defined as

〈 . . .〉B ≡ 1

2π

∫ 2π

0
· · · dθ. (21)

3
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To next order in ε, the trapped electron kinetic equation reads

∂f0

∂t
+ ωB

∂f

∂θ
− ∂f0

∂J

∂

∂θ

∂2

∂t
= C (f0) . (22)

Since f and 2 are both periodic in θ , the second and third
terms on the left-hand side of (22) vanish upon application of
the bounce average (21), while the first term becomes

∂f0

∂t
= ∂δf

∂t
+

dF0 (ṡ)

dt
. (23)

Here,
δf ≡ f0 − 〈F0〉B, (24)

which by assumption vanishes outside the separatrix. Also,
we have assumed that F0 varies slowly enough with v to be
regarded as linear throughout the narrow separatrix region, so
that 〈F0〉B = F0(ṡ) for the trapped fast electrons. The bounce
average of the collision operator on the right-hand side of (22)
is derived in appendix A. The resulting kinetic equation for
the trapped fast electrons reads

∂ δf

∂t
= −dF0

dt
− β δf

− α2

k

dF0

dv

∣∣∣∣
v=ṡ

+ me
ν3

k2

∂

∂J

[
J

dJ

dEz

∂ δf

∂J

]
. (25)

Note that in applying the bounce average to the collision
operator on the right-hand side of (22), the collision
frequencies β, α and ν have been assumed to vary slowly with
v, so that they can be evaluated at v = ṡ.

3.2. Wave structure

The adiabatic ordering allows us to simplify the relations (1a)
and (1b). To lowest order, we neglect the effect of the friction
force Ffr = −2γdmeve on the background electrons, as well as
the slow time variation of U , ve and δne, as compared with the
mode frequency ω. We then find that ve and δne are linearly
related to U as (cf [19])

ve = U

meṡ
, (26a)

δne = ne0
U

meṡ2
. (26b)

In order to arrive at (26a) and (26b), we have used (3), assumed
that 〈ve〉λ = 0, and we have chosen the gauge so that

〈U〉λ = 0. (27)

The Poisson equation (1c) can then be written as

∂2U

∂z2
+

ω2
p

ṡ2
U = −e2

ε0

[∫
δf dv −

〈 ∫
δf dv

〉
λ

]
, (28)

where we have transformed to the wave frame and δf , as
defined by (24), is determined by (25). The average on the
right-hand side of (28) is subtracted in order to conserve the
total number of fast electrons, effectively taking into account
the small deviation of f from F0 outside the separatrix. Note
that due to the periodicity of U , equation (28) shows that any
change in the phase velocity ṡ must necessarily be associated
with a change in δf . Moreover, as ṡ shifts from ṡ0 at the initial

resonance, the potential U develops a structure different from
the cosine obtained in the limit δf → 0.

3.3. Frequency sweeping

In the adiabatic regime, the wave lasts much longer than the
resistive damping time γ −1

d . The power dissipated in the cold
electron background due to the friction force, i.e.

Q = 2γdmene0

∫ λ

0
v2

e dz = 2γdne0

meṡ2
〈U 2〉λ, (29)

must then be balanced by the power released from the fast
electrons during the slow mode evolution. This power
balance condition allows the phase velocity of the wave to be
determined as a function of time in the following way: if the
separatrix is narrow, the lowest order change in fast electron
kinetic energy density due to the flow of passing fast electrons
around the separatrix can be calculated as

δEp = −me ṡ δṡ 〈F0〉B
∫ vs

−vs

dv, (30)

where vs labels the fast electron velocity at the separatrix.
Note that 〈F0〉B should be evaluated using a passing electron
trajectory rather than a trapped one, but at the separatrix the
results are identical. Similarly, the lowest order change in
kinetic energy density among the trapped electrons as the wave
changes its phase velocity is

δEt = me ṡ δṡ

∫ vs

−vs

f0 dv. (31)

The total change in fast electron kinetic energy over one
wavelength is then

δEk =
∫ λ

0
[ δEp + δEt ] dz = me ṡ δṡ

∫ λ

0

∫
δf dv dz, (32)

and the power released by the fast particles as the separatrix
travels in phase space becomes

− δEk

δt
= −me ṡ

dṡ

dt

∫ λ

0

∫
δf dv dz. (33)

A similar calculation can be carried out to account for the flow
of passing particles around the separatrix due to drag [15].
Effectively, drag modifies the sweeping rate, and the total
power balance condition becomes

me ṡ

(
dṡ

dt
+

α2

k

) ∫ λ

0

∫
δf dv dz = 2γdne0λ

meṡ2
〈U 2〉λ. (34)

3.4. Dimensionless variables

In the subsequent analysis we use dimensionless phase space
coordinates

ξ ≡ λ−1z, (35a)

u ≡ φ−1 (v − ṡ) , (35b)

and dimensionless time

τ ≡ 8

3π
φ2 ṡ−2

0 γL0t. (35c)

4
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We also define the dimensionless quantities

U ≡ m−1
e φ−2U, (35d)

E ≡ m−1
e φ−2Ez = u2

2
+ U, (35e)

J ≡ π2

4
m−1

e φ−1λ−1J, (35f)

and

δF ≡
[
ṡ0

dF0

dv

∣∣∣∣
v=ṡ0

]−1

δf, (35g)

ρ ≡
[

dF0

dv

∣∣∣∣
v=ṡ0

]−1
dF0

dv

∣∣∣∣
v=ṡ

. (35h)

In these expressions, ṡ0 ≡ ṡ(t = 0) is the initial phase velocity,
ωp = kṡ0 is the plasma frequency,

γL0 = ωp
π

2ne0
ṡ2

0
dF0

dv

∣∣∣∣
v=ṡ0

(36)

is the initial linear growth rate, and the dimensionless collision
rates are given by

β̃ ≡ 2

π
φ−3 ṡ3

0
β

ωp
, (37a)

α̃2 ≡ 2

π
φ−3 ṡ3

0
α2

ω2
p

, (37b)

ν̃3 ≡ 3π

8

(
3π2

16

)2

φ−2 ṡ2
0

ν3

γ 3
L0

, (37c)

where

φ ≡ 16

3π2
ṡ0

γL0

ωp
. (38)

The trapped electron kinetic equation then reads

∂ δF
∂τ

+ β̃ δF = −ρ

[
d

dτ

(
ṡ

ṡ0

)
+ α̃2

]
+̃ν3 ∂

∂J

[
J

∂J
∂E

∂ δF
∂J

]
, (39)

accompanied by the boundary condition

δF (JS) = 0, (40)

where

JS = π

2
√

2

∫ 1

0

√
Umax − U dξ (41)

is the value of J that labels the separatrix. The Poisson
equation (28) takes the form

∂2U
∂ξ 2

+ 4π2

(
ṡ0

ṡ

)2

U = −3π3

2

[ ∫
δF du −

〈 ∫
δF du

〉
λ

]
,

(42)

and the power balance condition becomes

d

dτ

(
ṡ

ṡ0

)
+ α̃2 = −2

γd

γL0

(
ṡ0

ṡ

)3 〈 ∫
δF du

〉−1

λ

∫ 1

0
U2dξ.

(43)

Since δF = δF(J ; τ), with J = J (Ez; τ), is symmetric
around u = 0, we can furthermore rewrite the integral
appearing in (42) and (43) as∫

δF du = −2
√

2
∫ ∞

J (E=U)

√
E (J ) − U

∂ δF
∂J

dJ , (44)

where an integration by parts has been performed.
Thus, in the adiabatic approximation, evolving hole/clump

BGK modes are described self-consistently by the kinetic
equation (39), the Poisson equation (42) and the power balance
(43), which are to be solved for δF , U and ṡ/ṡ0.

4. Top-hat model

Holes and clumps are formed within a narrow region of phase
space centred at the phase velocity ṡ0 of the linear wave, and the
frequency sweeping begins after the trapped fast electrons have
become well phase mixed [6]. We can therefore approximate
δF as initially flat inside the separatrix. Moreover, in the
absence of diffusion, the kinetic equation (39) contains no
derivatives with respect to J , so δF will remain flat unless
the separatrix grows. In this case, we model δF by taking

δF (J ; τ) = h (τ) [� (J ) − � (J − JS (τ ))], (45)

which describes a column in J -space, whose width decreases
as the separatrix shrinks and whose height can be found by
integrating the kinetic equation

dh

dτ
+ β̃h = −ρ

[
d

dτ

(
ṡ

ṡ0

)
+ α̃2

]
. (46)

Thus, h varies in time as the phase velocity changes or due
to Krook and drag collisions (which preserve the flatness of
the distribution inside the separatrix). Moreover, the top-hat
distribution (45) permits the integral in (42) and (43) to be
evaluated analytically as∫

δF du = 2
√

2 h
√

Umax − U, (47)

which in turn enables an analytical solution of the Poisson
equation in terms of ṡ. Following the method outlined in [19],
we obtain

U = π2

2

(ṡ/ṡ0)
4 h2

cos2 η

{
1 + 2 cos2 η

2

−3

4

sin 2η

η
− [cos η − cos (η (2ξ − 1))]2

}
, (48)

where η ≡ πṡ0/2ṡ. For the maximum value of the potential
we find

Umax = π2

4

(ṡ/ṡ0)
4 h2

cos2 η

{
sin2 η + 3 cos2 η

[
1 − sin η

η cos η

]}
,

(49)

and the value of the action at the separatrix becomes

JS = π

2
(ṡ/ṡ0)

3 h[η − tan η]. (50)

Substitution of these results into the power balance condition
(43) gives the frequency sweeping rate

d

dτ

(
ṡ

ṡ0

)
= γd

γL0

π4

25

M1

M2
h2

(
ṡ

ṡ0

)2

− α̃2, (51)

5
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with

M1 = 1

2
+

11 sin 4η

24η
+ 8 cos2 η −

(
3 sin 2η

2η

)2

− 2 sin 2η

3η
,

(52a)

M2 = cos3 η[sin η − η cos η]. (52b)

Thus, with a top-hat distribution of the form (45), the wave
evolution is found by simply integrating the system of ordinary
differential equations (46) and (51) to determine h and ṡ.
This model was previously analysed in [19] for the case
of a collisionless clump. The generalization presented here
describes the evolution and long range frequency sweeping
of holes and clumps in the presence of fast electron sources
and collisions. Note, however, that as the phase velocity
of clumps approaches ṡ0/2, the potential (48) develops new
minima centred at ξ = 0 and ξ = 1. This is not accounted
for in the approximation (45), so the model breaks down at
approximately ṡ = ṡ0/2.

Formally, the top-hat model applies to holes and clumps
whose separatrices do not expand. To determine whether the
separatrix will initially shrink or grow, we expand JS as given
by (50) in the initially small quantity δ ≡ (ṡ−ṡ0)/ṡ0. To second
order in δ, the effect of Krook collisions can be neglected in
(46). Drag, however, can not be neglected, and we find that

h = −δ

[
1 +

(
K

2
+

4

π

γL0

γd
α̃2

)
δ

]
+ O

(
δ3

)
, (53)

where

K ≡
[
ṡ0

dF0

dv

∣∣∣∣
v=ṡ0

]−1

ṡ2
0

d2F0

dv2

∣∣∣∣
v=ṡ0

. (54)

Using (53) in (50), JS can be expanded as

JS = 1 +

[
4 −

(π

2

)2
+

K

2
+

4

π

γL0

γd
α̃2

]
δ + O

(
δ2

)
, (55)

meaning that the initial separatrix evolution is sensitive to the
second derivative of the equilibrium distribution function and
the rate of drag. From (55), it is seen that the separatrix shrinks
initially for upsweeping phase space holes when

K � Kc ≡ −2

[
4 −

(π

2

)2
+

4

π

γL0

γd
α̃2

]
, (56)

and for downsweeping phase space clumps when K � Kc,
so the top-hat model applies to holes in the former case and
clumps in the latter case. Moreover, when the equilibrium
distribution function is fine tuned so that K = Kc, neither
holes nor clumps will initially grow.

In fact, (50) can be solved for the critical column height
needed to keep JS constant throughout the entire evolution.
This height is given by

hc = 2

π (ṡ/ṡ0)
3 [η − tan η]−1, (57)

where JS(τ = 0) = 1 has been substituted, and it has
been plotted as a function of ṡ/ṡ0 in figure 2. Note that
without fast electron collisions, i.e. in the limit β̃ = α̃ = ν̃ = 0,

5.0 1 5.1 2 5.2 3 5.3 4 5.4 5
1–

5.0–

0

5.0

1

5.1

2

Figure 2. Critical height of hole/clump needed to keep the value of
the action at the separatrix constant throughout the evolution. A
necessary condition for a non-expanding separatrix is that h is
always bounded to the shaded region. For large phase velocities, hc

approaches the asymptotic value −3(2/π)4.

this critical height corresponds to having an equilibrium
distribution function on the form

F0 (ṡ) = F0 (ṡ0) − ṡ0
dF0

dv

∣∣∣∣
v=ṡ0

hc, (58)

with

ρ = −ṡ0
dhc

dṡ
. (59)

In the presence of Krook and drag collisions, there is no
simple connection between h and F0, so in general one has to
evolve the mode to see whether or not the separatrix expands.
However, since the effect of Krook in (46) is to decrease |h|, any
F0 that results in a non-expanding separatrix in the collisionless
limit will yield a sub-critical evolution of h in the presence of
Krook as well (including e.g. the critical distribution given in
(58)). Drag, on the other hand, acts to reduce clump heights
and deepen holes at the rate ρ α̃2. Hence, in the presence of
drag, any F0 that results in a non-expanding separatrix in the
collisionless limit will yield a sub-critical evolution of h for
clumps, but not necessarily for holes.

5. Particle trapping

As previously discussed, the shape of the equilibrium
distribution function will in general force either holes or
clumps to initially expand. When this happens, new particles
are captured from the ambient equilibrium slope and brought
inside the separatrix, so that the trapped electron distribution
function develops a gradient in the proximity of the separatrix.
Thus, as in the presence of diffusive fast electron collisions,
the top-hat approximation breaks down, and a new procedure
is needed to solve the kinetic equation (39) for the trapped
electron distribution function.

A less demanding (but still instructive) step is to
investigate the wave evolution in the presence of a ring (see
figure 3) that extends inwards from the separatrix, and on
which the trapped electron distribution takes on the value of the

6
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0

 

 

Figure 3. Hole/clump structure with ring. The hole/clump has the
height h in the dark, central region, i.e. from 0 to Jκ . In the brighter
ring, i.e. the subregion from Jκ to JS, it has vanishing height.

ambient distribution function. For this purpose, we develop a
perturbative approach described in appendix B, which we use
to calculate Umax during the early evolution stage when the
mode structure is approximately sinusoidal. In figure 4, the
initial amplitude U0

max ≡ Umax(τ = 0) is plotted as a function
of fractional ring area κJ , defined as

κJ ≡ JS − Jκ

JS
, (60)

with Jκ the value of the action at the inner ring boundary. This
curve reproduces an earlier result obtained in [23] by a different
method. It is noteworthy thatU0

max is non-monotonic: it initially
increases with κJ and then passes through a maximum. So, as
JS increases due to finite δ in (55), the effect of particle trapping
tends to accelerate the growth even further. In appendix B we
also calculate the initial frequency sweeping as a function of
κJ . In physical units, one finds (cf (B.16))

ω = ωp ± 16

3π2

√
2

3
C (κJ ) γL0

√
γdt, (61)

where C(κJ ) has been plotted alongside U0
max in figure 4. For

a ringless top-hat structure we have C(κJ = 0) = 1, which
reproduces the previously obtained square root frequency
sweeping [6]. As seen from figure 4 and (61), the initial
sweeping rate has non-monotonic dependence on κJ , with a
maximum when C ≈ 1.5 at κJ � 0.4.

In an attempt to mimic the effect of particle trapping,
we can use the perturbative model to evolve a hole from a
ringless state (with a completely empty separatrix region) at
the resonant frequency ωp, to a configuration with larger JS

(and hence a ring) at a slightly larger frequency ω = ωp(1 + δ)

with δ � 1. Requiring the system to evolve adiabatically, we
demand that as the separatrix expands in accordance with (55)
and a ring emerges, Jκ must always remain at the value of
JS(τ = 0) = 1. Thus, setting Jκ = 1 in the expression (B.9)
for Jκ , and substituting the expression for the initial amplitude

0 0.2 0.4 0.6 0.8 1
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0.4
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0.8

1
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1.4
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Figure 4. With larger and larger fractional ring areas, the initial
amplitude of holes and clumps first increases, then reaches a
maximum, and finally decreases. The frequency sweeping
coefficient C behaves in a similar manner.

(B.13), we arrive at the equation

2h
ṡ2

ṡ2 − ṡ2
0

{
κ − 1

2
K

(√
κ + 1

2

)
− κE

(√
κ + 1

2

)}

×
{

κ − 1

2
K

(√
κ + 1

2

)
+ E

(√
κ + 1

2

)}
= 1, (62)

which is to be solved for κ . Here, K and E are the complete
elliptic integrals of the first and second kind, respectively, and
κ labels the inner ring boundary in terms of particle energy (see
appendix B). Substituting ṡ = ṡ0(1+δ) and (53) for the height
in (62), we find κ = 0.8782 and κJ = 0.1005, which indicates
that the inital separatrix growth triggers a quick transition
into a state where the trapping region comprises a significant
ring. This observation is consistent with a conclusion made
in [23] about an instability during which the mode evolves
non-adiabatically. However, the work in [23] does not take
into account the full ṡ-dependence in the Poisson equation.
In particular, the multiplicative factor (ṡ2 − ṡ2

0 )/ṡ2 in (B.2)
is approximated by δ, which leads to shortcomings in the
analysis of the mode amplitude evolution. Note that the above
procedure can also be used to show that the initial, non-
adiabatic evolution can be avoided if the holes and clumps
are set up with initial rings.

6. Effect of collisions and equilibrium profile on
mode evolution

In this section we present spectrograms obtained by means
of the top-hat model presented in section 4. All calculations
are performed using γL0 = γd. Clumps are run with a linear
equilibrium distribution function F0, and for holes we model
F0 as a quadratic function of ṡ, with K = Kc as given by (56)
and α̃ = 0.8. The resulting equilibrium profile (see figure 5)
constitutes a non-monotonic bump-on-tail distribution, with a
maximum at ṡ = ṡ0(1 − 1/Kc) ≈ 1.2ṡ0.

Figure 6 displays the frequency sweeping of holes and
clumps in the collisionless limit β̃ = α̃ = 0. It is seen that
the top-hat model results deviate from the symmetric square

7



Nucl. Fusion 52 (2012) 094020 R.M. Nyqvist et al

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 5. Normalized fast electron equilibrium distribution
function. The vertical, dashed line marks the initial phase velocity
ṡ0 of holes and clumps.
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Top–hat model
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Figure 6. Frequency evolution for holes and clumps in the absence
of collisions.

root sweeping (61) predicted if the mode amplitudes are held
fixed. For the downsweeping clump, the deviation from the
square root derives from the evolution of the mode structure,
whereas the larger abberance in the hole frequency sweeping
is due to both the evolving mode structure and the nonlinear
equilibrium profile.

Krook and drag collisions enrich the observed behaviours
of holes and clumps. To separate the effects of Krook and
drag, we first show in figures 7 and 8 how finite β̃ affects the
frequency sweeping of holes and clumps and the evolution of
Umax for holes in the absence of drag (the effect of finite β̃ on
the evolution of Umax for clumps is very similar to the result
for holes presented in figure 8). For both holes and clumps,
it is seen that finite β̃ decreases the frequency sweeping rates,
and that these reductions correlate with the increased rates at
which the Krook collisions are abating Umax by diminishing the
depth/height of the holes and clumps, as previously discussed
at the end of section 4.

Drag, on the other hand, affects the evolution through
both (46) and (51). Hence, it imposes an additional frequency
sweeping rate −α̃2, but it also acts asymmetrically to deepen
holes and diminish clumps, thus tending to increase/decrease
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Figure 7. Frequency evolution of holes and clumps with α̃ = 0 and
β̃ ranging from 0 to 4.
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Figure 8. Amplitude evolution of hole with α̃ = 0 and β̃ ranging
from 0 to 4. The amplitude evolution of the corresponding clump
behaves in a qualitatively similar manner.
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Figure 9. Frequency evolution of holes and clumps with β̃ = 0 and
α̃ ranging from 0 to 0.8.

the respective hole/clump mode amplitudes. For holes, the
sweeping rate in figure 9 is seen to decrease with increasing α̃

even though the rate of decay of the amplitude is also lowered,
as seen in figure 10. The opposite applies for clumps, where the
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Figure 10. Amplitude evolution of hole with β̃ = 0 and α̃ ranging
from 0 to 0.8.
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Figure 11. Amplitude evolution of clump with β̃ = 0 and α̃ ranging
from 0 to 0.8.

frequency sweeping rate turns out to increase with α̃, and the
sweeping can become almost linear at low mode amplitudes,
as seen in figures 9 and 11. Note, however, that in the limit
τ → 0, all the curves in figures 7 and 9 tend to the square
root results, confirming the picture that neither collisions nor
the nonlinear equilibrium slope significantly alters the initial
frequency sweeping.

If run a little longer, it is evident that the hole frequency
sweeping in the presence of drag is non-monotonic (see
figure 12): these so called hooks sweep up in frequency, until
eventually reaching a maximum where the two terms on the
right-hand side of (51) balance and the frequency evolution is
reversed. As α̃ increases, the turning point is reached sooner
in the evolution and at lower frequency. The same type of
hooks are also found with a combination of Krook collisions
and drag (dashed line in figure 12), where the former act to
attenuate the mode quicker (see figure 13), so that the turning
point is reached sooner in the evolution and at lower frequency.

7. Discussion and conclusions

The present investigation is motivated by multiple observations
of long range frequency sweeping events in plasmas [9, 11, 18].
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Figure 12. Frequency evolution of hooking holes with α̃ = 0.4 and
β̃ ranging from 0 to 2.
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Figure 13. Amplitude evolution of hooking holes with α̃ = 0.4 and
β̃ ranging from 0 to 2.

The corresponding theoretical concept is that wave excitation
in the near-threshold regime leads to spontaneous formation
of phase space structures, i.e. groups of fast particles moving
coherently in phase space and capable of producing a signal
with frequency deviating from that of the linearly excited
mode. For such structures to survive in the presence of
dissipation, they need to travel in fast particle phase space,
which produces a frequency sweep in the observed signal. This
mechanism has been thoroughly investigated for the 1D bump-
on-tail model (including the present work), and the results are
conceptually applicable to more general systems, provided that
the wave-particle resonances are well separated in phase space.

In tokamak plasmas, toroidal Alfvén eigenmodes (TAEs)
commonly serve as seeds for long range frequency sweeping,
when such modes are excited by energetic particles. The
observed evolution of TAEs range from steady saturation to
pitchfork splitting [24], spectral broadening [25] and frequency
sweeping events [8–11], sometimes with significant deviation
from the excitation frequency towards or even into the Alfvén
continuum. The relation ω ∝ √

t predicted by 1D bump-on-
tail theory (cf (61)) has been successfully applied to frequency
sweeping TAEs within the Alfvén gap [8]. In a more recent
effort to model the mode sweeping beyond the Alfvén gap [26],

9
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continuum damping effectively enhances the dissipation rate,
which gives rise to accelerated sweeping. However, a truly
consistent description of long range sweeping TAEs has not
yet been developed. The challenge is to capture the effect of
the resonant particles on the TAE mode structure.

In the light of the above discussion, the presented
adiabatic bump-on-tail model constitutes a logical step towards
predictive modeling of nonlinear mode evolution in three
dimensional experimental configurations. By ignoring the
complex hole/clump formation stage, the adiabatic model
enables an efficient description of initially prescribed coherent
phase space structures on time scales larger than the trapped
electron bounce period, and it allows for significant frequency
sweeping (on the order of the mode frequency itself) during
which the mode structure evolves considerably. In this work,
two essential features have been added to the earlier analysis
in [19]. First, fast electron sources and collisions (Krook,
drag and velocity space diffusion) are introduced through a
proper bounce average of the collision operators. Second,
the model is designed to allow for a nonlinear slope in the
equilibrium distribution function. In particular, the latter
property permits an adiabatic description of upward sweeping
holes within a simple top-hat model, in cases where the shape of
the equilibrium distribution function keeps the mode separatrix
from expanding.

The top-hat model results presented in section 6 reveal a
new feature of non-monotonic (hooked) frequency sweeping.
Hooked frequency sweeping was previously observed for holes
during short range frequency sweeping in a linear equilibrium
slope, as a result of the interplay between drag and velocity
space diffusion [15]. During long range frequency sweeping,
however, variation in the slope of the equilibrium distribution
function can, in the presence of drag, also produce hooks, as
shown in figure 12.

The tendency for fast and sudden growth of the mode
amplitude due to particle trapping is an interesting feature
where the mode automatically traps extra particles in such
a way that the initial state is modified to comprise a
ring. This trend was first reported in [23], where adiabatic
frequency sweeping was found to terminate for some initial
configurations. The presence of this instability and its
connection to trapping of passing particles sheds some light
on a mysterious numerical enhancement of the frequency
sweeping rate obtained in earlier work [15]. It has since then
been observed that significant particle trapping was occurring
in these investigations, without an obvious physics reason. It is
indeed intriguing that the observed numerical enhancement of
about 1.4 is attainable with an initial ring, and actually roughly
corresponds to the fractional ring area yielding the maximum
initial mode amplitude. Further investigations are however
necessary to be more conclusive.

Implementation of the physically more relevant situation
with diffusive fast electron collisions necessitates solving
(39) numerically, which is the aim of future work. Such
a fully numerical, kinetic scheme would constitute a more
realistic approach, enabling the complete description of
particle trapping, and potentially resolve the breakdown due to
the formation of new potential minima in the evolving spatial
profile of the nonlinear wave.
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Appendix A. Bounce averaged collision operator

In this section we present derivations of the bounce averages
of the Krook, drag and diffusion terms in the lowest order
collision operator for the trapped electrons in (25). The
calculations are performed by transforming to the action-angle
variables defined by (11) and (13). The resulting expressions
are then averaged over θ as prescribed by (21), and under the
assumption that F0 and the collision rates β, α and ν are smooth
functions of v. Since the trapped electron velocity in the wave
frame,

vz ≡ v − ṡ, (A.1)

satisfies vz � ṡ, this assumption means that we can regard F0,
β, α and ν as linear throughout the trapping region.

A.1. Krook operator

The Krook term,

CK(f0) = −β(f0 − F0), (A.2)

is easily bounce averaged by direct application of (21). One
obtains

〈CK(f0)〉B = −βδf, (A.3)

where

δf ≡ f0 − 〈F0〉B = f0 − F0(ṡ). (A.4)

A.2. Drag operator

The drag, or slowing down, collision operator is given by

CSD(f0) = −α2

k

∂

∂v
(f0 − F0)

= −α2

k

[
∂J

∂vz

∂f0

∂J
− dF0

dv

∣∣∣∣
v=ṡ

]
. (A.5)

Here,
∂J

∂vz

= ∂Ez

∂vz

∂J

∂Ez

= mevz

∂J

∂Ez

, (A.6)

where J = J (Ez; t), so we obtain

〈CSD(f0)〉B = −α2

k

[
me〈vz〉B

∂J

∂Ez

∂f0

∂J
− dF0

dv

∣∣∣∣
v=ṡ

]
. (A.7)

For trapped electrons we have 〈vz〉B = 0. Hence,

〈CSD(f0)〉B = −α2

k

dF0

dv

∣∣∣∣
v=ṡ

. (A.8)
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A.3. Diffusion operator

We first use repeatedly equation (A.6) to transform the velocity
derivatives in the diffusion operator. We then obtain

CD(f0) = ν3

k2

∂2

∂v2
(f0 − F0)

= ν3

k2

∂

∂vz

[
mevz

∂J

∂Ez

∂f0

∂J

]
= ν3

k2

{
me

∂J

∂Ez

∂f0

∂J
+ m2

ev
2
z

∂J

∂Ez

∂

∂J

[
∂J

∂Ez

∂f0

∂J

]}
,

(A.9)

where only the factor v2
z needs to be bounce averaged. For

trapped electrons,

〈v2
z 〉B = ωB

me
J, (A.10)

with ωB = (∂J/∂Ez)
−1. We can then combine the two terms

on the right-hand side of (A.9) into

〈CD(f0)〉B = me
ν3

k2

∂

∂J

[
J

∂J

∂Ez

∂f0

∂J

]
. (A.11)

Finally, by noting that for trapped electrons

∂

∂v
〈F0〉B = ∂

∂v
F0(ṡ) = 0, (A.12)

we arrive at

〈CD(f0)〉B = me
ν3

k2

∂

∂J

[
J

∂J

∂Ez

∂ δf

∂J

]
. (A.13)

Appendix B. Perturbative approach

In this section, we present a perturbative description of the
mode evolution during the early phase, when the phase
velocity of the wave is close to ṡ0 and the mode structure is
approximately sinusoidal. For this purpose, we rewrite the
Poisson equation (42) as

∂2U
∂ξ 2

+ 4π2 U = �(U; ṡ), (B.1)

where

�(U; r) ≡ 4π2 ṡ2 − ṡ2
0

ṡ2
U +

3π3

2

{∫
δF du −

〈 ∫
δF du

〉
λ

}
(B.2)

is initially small compared with each of the two terms on the
left-hand side of (B.1). Defining

U0 = A cos 2πξ (B.3)

to be the solution to the equation obtained by setting � = 0
in (B.1), the self-adjointness of the linear operator on the left-
hand side of (B.1) requires � to be orthogonal to U0, i.e.∫ 1

0
U0 � (U; ṡ) dξ = 0. (B.4)

Early in the mode evolution, the smallness of � allows us to
set U ≈ U0 in the solvability condition (B.4), which results in
an equation for the linear mode amplitude A, namely,

2A + 3
√

2π
ṡ2

ṡ2 − ṡ2
0

∫ 1

0
cos 2πξ

×
∫ ∞

J (E=U0)

√
E(J ) − A cos 2πξ

∂δF
∂J

dJ dξ = 0. (B.5)

This formula can be used together with the kinetic equation
(39) and the power balance condition (43) to efficiently
evolve holes and clumps during the early stage when U
is approximately sinusoidal, thus replacing the Poisson
equation (42).

In particular, equation (B.5) is very convenient for
analysing the top-hat model from section 4, since all involved
integrals can then be evaluated analytically. It also helps
to analyse the case when the trapping region comprises a
subregion (a so called ring), extending inward from the
separatrix, on which the trapped electron distribution function
takes on the ambient (passing electron) value. We then have
(cf (45))

δF (J ; τ) = h (τ) [� (J ) − � (J − (1 − κJ (τ )) JS (τ ))],

(B.6)

where the fractional ring area is defined as

κJ ≡ JS − Jκ

JS
. (B.7)

In these expressions, the action at the separatrix can be
evaluated as

JS = π

2
√

2

√
A

∫ 1

0

√
1 − cos 2πξ dξ =

√
A, (B.8)

and Jκ is the action at the inner boundary of the ring, i.e.

Jκ = π

2
√

2

√
A

∫ 1− 1
2π

arccos κ

1
2π

arccos κ

√
κ − cos 2πξ dξ

=
√

A

{
κ − 1

2
K

(√
κ + 1

2

)
+ E

(√
κ + 1

2

)}
. (B.9)

Here, K and E are the complete elliptic integrals of the first
and second kind, respectively, and κ ∈ [−1, 1] is defined as

κ ≡ Eκ/A, (B.10)

where Eκ is the instantaneous energy at the inner ring boundary.
A completely empty top-hat structure with κJ = 0, i.e. one
whose interior takes on the value h on the entire trapping
region, is represented by κ = 1, whereas a completely filled
top-hat structure with κJ = 1 and δF = 0 has κ = −1. In
terms of κ , the fractional ring area reads

κJ = 1 +
1 − κ

2
K

(√
κ + 1

2

)
− E

(√
κ + 1

2

)
. (B.11)

With (B.6), we can actually solve explicitly for A. We find that∫ ∞

J (E=U0)

√
E(J ) − A cos 2πξ

∂δF
∂J

dJ

= −h
√

A
√

κ − cos 2πξ, (B.12)
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so that

√
A = 3π√

2
h

ṡ2

ṡ2 − ṡ2
0

∫ 1− 1
2π

arccos κ

1
2π

arccos κ

cos 2πξ
√

κ − cos 2πξ dξ

= 2h
ṡ2

ṡ2 − ṡ2
0

{
κ − 1

2
K

(√
κ + 1

2

)
− κE

(√
κ + 1

2

)}
(B.13)

Furthermore, (B.13) may be substituted into the power balance
condition and used to calculate the initial frequency sweeping.
Doing so yields

d

dτ

(
ṡ

ṡ0

)
+ α̃2 = π

γd

γL0

(ṡ/ṡ0)
3 h2(

(ṡ/ṡ0)
2 − 1

)3 C2 (κ) , (B.14)

where

C2 (κ) ≡

[
1 − κ

2
K

(√
κ + 1

2

)
+ κE

(√
κ + 1

2

)]3

κ − 1

2
K

(√
κ + 1

2

)
+ E

(√
κ + 1

2

) .

(B.15)
During the early evolution stage, h can be approximated using
(53). To lowest order in δ = (ṡ − ṡ0)/ṡ0, we then find

ṡ

ṡ0
= 1 ±

√
π

4

γd

γL0
C (κ)

√
τ . (B.16)

In figure 4 of section 5,
√

A andC are plotted as functions ofκJ .
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