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Abstract

This paper describes the theory and particle simulations of ultrarelativistic

particle acceleration caused by shock waves in a collisionless magnetized plasma.

Since knowledge of field strengths and structures is necessary for the analysis of

particle motions, theories of magnetosonic waves are reviewed first: (1) linear and

nonlinear magnetosonic waves in a single-ion-species plasma, (2) those in a two-ion-

species plasma, (3) those in an electron-positron-ion (EPI) plasma, and (4) parallel

electric field. The first topic contains a general introduction to the magnetosonic

wave. The second and third topics are concerned with three-component plasmas,

in which the magnetosonic wave is split into two modes; the plasma behavior

can thus be considerably different from that in a single-ion-species plasma. The

fourth topic is the electric field parallel to the magnetic field, E‖, in a nonlinear

magnetosonic wave. It is shown that E‖ can be strong even in low frequency,

magnetohydrodynamic phenomena.

Next, nonstochastic particle acceleration caused by the intense electric and

magnetic fields formed in a shock wave is studied with theory and with fully kinetic,

fully relativistic, electromagnetic, particle simulations. The subjects include (1)

electron trapping and acceleration, (2) energization of thermal and relativistic ions,

(3) heavy-ion acceleration and resultant damping of nonlinear pulses in a multi-

ion-species plasma, and (4) positron acceleration due to E‖ in the shock transition

region in an EPI plasma. In addition to these processes near a shock front, (5)

the evolution of large-amplitude Alfvén waves generated behind a shock front and

acceleration of electrons in the Alfvén wave region are examined.

Simulations demonstrate particle acceleration caused by these nonlinear magne-

tohydrodynamic waves to ultrarelativistic energies much higher than those of solar

energetic particles. The acceleration theory based on the investigation of nonlinear

waves quantitatively accounts for these simulation results.
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Chapter 1

Introduction

Cosmic rays have been investigated for nearly a century and are still attracting

increasing attention from plasma, particle, and astrophysics communities [1]- [13].

Their acceleration mechanism, however, remains unresolved. Unlike the studies

of plasma-based accelerators initiated by John Dawson et al. in the late 1970’s

[14, 15], in which detailed comparisons between the experiments, theories, and

simulations are possible, it is quite difficult to directly observe the acceleration

processes of cosmic rays produced in the distance, although we have a huge amount

of experimental data, such as time variations of x-ray and gamma-ray emission

associated with solar flares [3].

Because of the rapid increase in the power of computers, however, we can now

perform simulations that solve large-scale plasma behavior and individual relativis-

tic particle motions in a self-consistent manner. Their precise information about

particle motions and electromagnetic fields would enable us to create new theo-

ries for particle acceleration and to test existing theories. With use of relativistic

particle simulations, in fact, several distinct nonstochastic particle acceleration

mechanisms caused by shock waves in a magnetized collisionless plasma have been

found and analyzed in the past few decades [16]- [30]. Furthermore, to account

for the field structures that lead to energization of particles, nonlinear wave theory

has been developed [31]- [36]: A coherent theory for nonlinear waves and parti-

cle acceleration mechanisms has thus been constructed. This paper reviews these

studies.
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Before looking at detailed theories, however, we briefly describe in this chapter

some fundamental properties of cosmic rays for the readers who are not familiar

with them and then outline the structure of this paper.

1.1 Cosmic rays

The origin of the research of cosmic rays may date far back to 1912, when Hess

revealed that radiation causing ionization in the atmosphere comes from the sky.

In 1930’s, it was recognized that the main component of the cosmic radiation is

high-energy particles. For several decades since then, their observations were the

major experimental way to analyze elementary particles. For instance, mesons pre-

dicted by Yukawa and positrons predicted by Dirac were both discovered through

observations of cosmic rays. We now know that cosmic rays contain protons, heavy

ions such as He, C, and Fe, neutrons, electrons, and positrons.

Although cosmic rays are still investigated from the viewpoint of particle physics,

the main concern has shifted to the mechanism of cosmic-ray acceleration: How

and where do they gain energies, and what is their highest energy?

To explore cosmic rays, we analyze the data of particles and photons arriving

at the earth from the space. High-energy particles emit electromagnetic waves (or

photons) with a wide range of frequencies: from radio to gamma rays generated by

bremsstrahlung, synchrotron radiation, and various nuclear reactions such as

p+ p → p+ p+ π0, (1.1)

π0 → 2γ, (1.2)

i.e., a neutral pion (π0) with a rest mass energy of 135 MeV produced by a collision

of two protons (p) quickly decays into two photons (γ). Besides these processes,

by scattering low-energy photons such as cosmic microwave background, energetic

particles can also create high-energy photons; this process is called the inverse

Compton scattering. These radiations, as well as particles, give information con-

cerning cosmic rays [1]- [13]. For instance, comparison of the time variations of
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photon fluxes with several different energy levels has revealed that the solar ener-

getic particles are promptly accelerated, within a few seconds [1]- [4], which was a

surprise because many people had believed that acceleration of solar energetic par-

ticle was a slow stochastic process in a turbulent plasma. Another simpler example

is that we can determine the locations (or directions) of the sources of cosmic rays

from photons, which, unlike charged particles, propagate straight even in the pres-

ence of magnetic fields. (Extremely high-energy particles have gyroradii greater

than the size of our Galaxy [13]. Their orbits can be viewed as nearly straight

within our Galaxy.)

1.1.1 Sources and energies of cosmic rays

The sun is the nearest cosmic-ray source. In association with solar flares, in which

the energy of coronal magnetic tubes is rapidly released, shock waves are generated,

electromagnetic waves from radio waves to gamma rays are emitted, and solar

energetic particles are promptly produced. Protons reach energy 1 − 10 GeV (in

terms of the Lorentz factor, γ ! 10), and electrons several tens of MeV (γ ∼ 100)

[1]- [4]. Energetic heavy ions are also detected near the earth; their elemental

compositions are, on average, nearly the same as that of the solar corona, i.e., the

background plasma of the acceleration site [5, 6].

Supernova explosions create shock waves that expand in the interstellar medium,

producing a vast high-temperature plasma region inside the spherical shock front.

These shock waves are one of the sources of cosmic rays: From the observations of

x rays (due to synchrotron radiation) and gamma rays (due to inverse Compton

scattering), high-energy electrons with ∼ 1014 eV have been found near the shock

fronts of supernova remnants [37–39].

Pulsars are rapidly rotating neutron stars with spin periods ! 1 s, having ex-

tremely intense magnetic fields (∼ 1012 G) [40,41]. Because of their strong electro-

magnetic fields, pulsars are thought to be an origin of cosmic rays [42]; indeed, TeV

gamma rays from the directions of pulsars have been detected [43]. Another pecu-
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liar point of pulsars is that they could create positrons in their magnetospheres [44].

1.1.2 Extremely high energy cosmic rays

The observed energy spectrum of cosmic rays extends up to ∼ 1019 eV with nearly

a power law distribution. However, it shows a sharp suppression at an energy of

∼ 6 × 1019 eV, which is consistent with the GZK cutoff, a theoretical prediction

made by Greisen, Zatsepin, and Kuz’min: Particles with energies higher than this

cutoff traveling over distances greater than ∼160 million year length should not

be detected on the earth because they continue to lose their energies through in-

teractions with the cosmic microwave background radiation until their energies go

down below this threshold. The observed spectrum thus implies that the sources

of extremely high energy cosmic rays are extragalactic [7–10].

Furthermore, recent experiments have revealed that the arrival directions of

cosmic rays with energies above 6 × 1019 eV are anisotropic and correlated with

the locations of active galactic nuclei, where massive black holes are supposed to

exist [12, 13].

1.2 Acceleration models

1.2.1 Stochastic acceleration models

The Fermi acceleration model, in which particles are assumed to be energized

through collisions with “magnetic clouds,” was proposed in 1949 [45]; its modified

models such as “diffusive shock acceleration” were also presented later [46]. As

far as the author knows, however, the verification of these models with particle

simulations has not been made yet.

Counter-streaming instabilities [47–50] could possibly be a cause of cosmic rays:

Turbulent electromagnetic fields arising from those instabilities might boost en-

ergies of some particles. Despite a great number of such simulations, however,

ultrarelativistic acceleration such that γ > 100 has not been demonstrated. For

example, in the simulations in Ref. [49] to investigate cosmic-ray acceleration in the
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vicinity of a supernova remnant shock wave, instabilities due to two proton beams

perpendicular to a magnetic field were examined. Even with a large relative speed

of the two beams, 12 vTe where vTe is the electron thermal velocity, the observed

highest speed of accelerated electrons was nonrelativistic, ∼ 20vTe.

1.2.2 Nonstochastic acceleration due to shock waves

Collisionless magnetosonic shock waves are frequently observed in space plasmas in

association with strong disturbances such as solar flares and supernova explosions;

these disturbances are often accompanied also by the production of high-energy

particles [1–4,37–39]. Shock waves are thought to be related to particle acceleration

as well as to plasma heating in these phenomena.

Indeed, particle simulations have clearly demonstrated that shock waves cause

ultrarelativistic acceleration of particles to energies γ > 100, which are comparable

to or higher than the level of solar energetic particles [16, 17, 22–30]. The strong

electric and magnetic fields formed in a shock wave directly and promptly accelerate

some fraction of particles to high energies with nonstochastic mechanisms. Various

kinds of particles have been found to suffer such processes: protons, electrons,

heavy ions, and positrons.

These studies have the following features:

1) The acceleration mechanisms are nonstochastic.

2) The theories for particle acceleration and for nonlinear waves have been devel-

oped from the first principles. These theories are consistent each other.

3) The acceleration and wave theories have been verified with fully kinetic, rela-

tivistic, electromagnetic simulations.

It is expected that extremely intense electric and magnetic fields are gener-

ated around pulsars, in the sites of supernova explosions, and in active galactic

nuclei. The results of the above studies suggest that rapid, nonstochastic particle

acceleration would take place in those rather small, localized regions, as well as in

solar flares and in interstellar shock waves. Observations of gamma-ray emission
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with fine time (or space) resolution are therefore desirable: They would provide us

with important information on the acceleration mechanisms as they did for solar

flares [3].

This type of acceleration is intriguing also from the viewpoint of energy dissipa-

tion in collisionless shock waves. There has been a widely accepted view on it [47]

that “some instabilities grow in collisionless shock waves, and resultant turbulent

electromagnetic fluctuations randomly scatter particles; thereby wave energies are

converted to thermal energies.” The nonstochastic acceleration, in which part of

the wave energy is directly converted to rather a small number of particles, is an

energy dissipation mechanism that is obviously different from those processes.

1.3 Structure of this paper

Theory and particle simulations of shock waves and nonstochastic particle acceler-

ation are described in this article, which consists of seven chapters including this

one for introduction.

Chapter 2 is devoted to the theory of nonlinear magnetosonic waves [31]- [36].

We first outline linear and nonlinear magnetosonic waves in a two-component

plasma consisting of electrons and ions. Field structures and strengths in soli-

tary waves and in shock waves are discussed. The next subject is the effect of the

presence of multiple ion species. In a two-ion-species plasma, the magnetosonic

wave is split into two modes; we derive their nonlinear evolution equations and

investigate the wave properties of the two modes. Similarly, we have two magne-

tosonic modes in an electron-positron-ion (EPI) plasma. Their wave properties,

such as the dependence of the linear dispersion relation on the positron density,

are examined. The final section of Chap. 2 shows that the electric field parallel to

the magnetic field can be much stronger in nonlinear magnetosonic waves than was

generally thought.

These studies provide a basis for the development of particle acceleration theory.

The readers who are not very interested in the details of the wave theory, however,
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could skip Chap. 2 and proceed to the subsequent chapters on particle acceleration.

Chapter 3 describes ultrarelativistic acceleration of electrons to energies γ > 100

[16, 17]. Some electrons are trapped near a shock front and then absorb a great

amount of energy there. This acceleration is strong in a rather intense external

magnetic field B0 such that |Ωe| " ωpe, where Ωe (< 0) and ωpe are the electron

gyrofrequency and plasma frequency, respectively.

Chapter 4 presents three types of ion acceleration [18]- [23]: energization due

to one reflection from the shock front, surfatron acceleration caused by multiple

reflections, and incessant acceleration of relativistic ions. The third one can occur

in relativistic particles if the shock speed vsh is close to c cos θ, where c is the

speed of light and θ is the angle between the wave normal and B0; in this situation

particles with their speeds close to c can move with the shock wave for long periods

of time and repeatedly gain energy from the transverse electric field of the shock

wave in association with their gyromotions. An example will be shown that the

Lorentz factor of an ion goes up stepwise to γ ∼ 160.

Chapter 5 shows that all the heavy ions that pass through a shock front are

accelerated by the transverse electric field in a multi-ion-species plasma with pro-

tons being the major ion constituent. Furthermore, their final speeds are nearly

the same, independent of particle species [24]. This surprisingly simple result is

consistent with the observations that the elemental compositions of energetic heavy

ions are similar to that of the background plasma of the acceleration site [5, 6].

Chapter 6 treats positron acceleration [25–27]. In an EPI plasma, positrons

can be persistently accelerated along the magnetic field near the shock transition

region. We will show a simulation in which positron γ’s reach ∼ 104 by the end of

the run (ωpet = 7000). Since the acceleration is not saturated, γ’s would further

rise if one carries out a longer simulation with a larger system size.

Unlike Chapters 2–6, which focus on the phenomena near a shock front, the

theme of Chapter 7 is wave evolution and particle acceleration behind a shock front

[28–30]. A strong explosion in a plasma creates forward and backward shock waves.
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Furthermore, large-amplitude Alfvén waves are generated behind them. In the

Alfvén wave region, three types of electron acceleration have been observed. They

occur in weak magnetic fields (|Ωe| ! ωpe) as well as in strong ones. These processes

could therefore be found in shock waves in interstellar space with B0 ∼ 10−6 G and

in coronal magnetic flux tubes with ∼ 103 G.

In these chapters, calculations that are too lengthy for the main text are omit-

ted. Important ones are, however, given in Appendices.
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Chapter 2

Structure of nonlinear
magnetosonic waves

For the analysis of the motion of charged particles in a wave, information of the

electric and magnetic fields is needed. This chapter therefore describes some funda-

mental properties of low-frequency waves such that ω ! Ωi in magnetized plasmas

and examine their field structures, where ω is the wave frequency and Ωi is the ion

gyrofrequency.

First, we give an introductory outline of linear and nonlinear magnetohydrody-

namic (MHD) waves in a single-ion-species plasma [1]- [20]. The field structures of

nonlinear magnetosonic waves are discussed based on the theory of finite-amplitude,

stationary, perpendicular waves and on the Korteweg-de Vries (KdV) equation that

is applicable to small-amplitude waves with arbitrary angles θ between the wave

normal and the external magnetic field B0. Besides, we obtain the field strengths

in a large-amplitude shock wave in a heuristic way.

Second, effects of multiple ion species are studied. In a two-ion-species plasma,

the magnetosonic wave is split into two modes [21, 22], which are referred to as

the high- and low-frequency modes in this paper. Although the former has a finite

cutoff frequency of the order of Ωi, the KdV equation is derived for each mode

[23–25]. Furthermore, simulations show that a long-wavelength, large-amplitude,

low-frequency-mode pulse quickly steepens and emits many short-wavelength, high-

frequency-mode solitons; the original low-frequency-mode pulse is thus damped.
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Third, the theory is extended to an EPI plasma, which also has the high- and

low-frequency modes. Their frequency domains, nonlinear evolution equations, and

field structures are examined [26,27].

Fourth, the electric field parallel to the magnetic field, E‖ = E ·B/B, is studied.

Although it was generally thought that E‖ was quite weak in low-frequency, long-

wavelength phenomena in a high-temperature plasma, it is shown that E‖ can be

strong in nonlinear magnetosonic waves [28, 29].

2.1 Linear magnetosonic and Alfvén waves

This section gives an introduction to the theory of low-frequency, long-wavelength

waves in one- and two-fluid models.

2.1.1 One-fluid MHD theory

z

x

B0

θ

vsh

Fig. 1

Figure 2.1: Schematic diagram of wave propagation and external magnetic field.
The waves are supposed to propagate in the x direction in an external magnetic
field B0 in the (x, z) plane. The propagation speed of a shock wave is denoted by
vsh.

　
In the ideal MHD, there are three kinds of waves in a homogeneous plasma:

Alfvén wave, and fast and slow magnetosonic waves [1–3]. The Alfvén wave is an
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incompressible mode, propagating along the magnetic field. If we assume that the

external magnetic field is in the (x, z) plane, as shown in Fig. 2.1,

B0 = B0(cos θ, 0, sin θ) = (Bx0, 0, Bz0), (2.1)

(for definiteness, both Bx0 and Bz0 are taken to be positive), and that infinitely

small-amplitude waves propagate in the x direction, such that

B = B0 +B1 exp[i(kx− ωt)], (2.2)

then the linear dispersion relation of the Alfvén wave is given as

ω = kvA cos θ, (2.3)

where vA is the Alfvén speed

vA =
B0

(4πρ0)1/2
, (2.4)

with ρ0 being the equilibrium mass density. With use of vA and the sound speed

cs =

(
Γp0
ρ0

)1/2

, (2.5)

where Γ is the specific heat ratio and p0 is the thermal pressure, the dispersion

relation of the magnetosonic waves is given as

ω2/k2 = (1/2)
{
(v2A + c2s)±

[
(v2A + c2s)

2 − 4v2Ac
2
s cos

2 θ
]1/2}

, (2.6)

where the upper (plus) and lower (minus) signs, respectively, correspond to the

fast and slow waves. The linear slow wave is usually heavily damped [4]. In the

following, the term “magnetosonic wave” indicates the fast wave, unless otherwise

stated.

In the MHD theory, the three modes have no dispersion: The frequency ω is

proportional to the wavenumber k. As shown below, however, dispersion appears

in the two-fluid model.
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2.1.2 Two-fluid theory

The basic equations for the two-fluid model may read as

∂nj

∂t
+∇ · (njvj) = 0, (2.7)

mj

(
∂

∂t
+ (vj · ∇)

)
vj = qjE +

qj
c
vj ×B − ∇pj

nj
, (2.8)

(
∂

∂t
+ (vj · ∇)

)
pj = −Γjpj∇ · vj, (2.9)

1

c

∂B

∂t
= −∇×E, (2.10)

1

c

∂E

∂t
= ∇×B − 4π

c

∑

j

njqjvj, (2.11)

∇ ·E = 4π
∑

j

njqj, (2.12)

∇ ·B = 0, (2.13)

where the subscript j refers to ions (j = i) or electrons (j = e), mj is the mass, qj

is the charge, nj is the number density, vj is the velocity, pj is the pressure, and

Γj is the specific heat ratio.

From the cold (pj = 0), two-fluid model with no displacement current, one

obtains the dispersion relation for waves with propagation angle θ as [5]

c2k2[c2k2 sin2 θ + ω2
p(1 + cos2 θ)]

∑

j

ω2
pjω

2

ω2 − Ω2
j

+(c2k2 sin2 θ + ω2
p)

(
∑

j

ω2
pj

ω − Ωj

)(
∑

j

ω2
pj

ω + Ωj

)
ω2 + c4k4ω2

p cos
2 θ = 0, (2.14)

where Ωj is the gyrofrequency,

Ωj = qjB0/(mjc), (2.15)

(Ωj includes the sign of the charge qj), ωpj is the plasma frequency,

ωpj = (4πnj0q
2
j/mj)

1/2, (2.16)
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Figure 2.2: Linear dispersion relations of magnetosonic and Alfvén waves for var-
ious propagation angles θ. Because the cold plasma model is used, the slow mag-
netosonic wave does not appear. The displacement current is ignored.
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and ω2
p is the sum of ω2

pj,

ω2
p =

∑

j

ω2
pj. (2.17)

Figure 2.2 displays the dispersion curves of the modes in the frequency regime

ω<∼|Ωe|, for which we have magnetosonic and Alfvén waves. Since the cold plasma

model is used, the slow magnetosonic wave is not present. The frequencies of the

perpendicular magnetosonic wave are given as

ω2

k2
=

v2A
1 + c2k2/ω2

pe

, (2.18)

where c/ωpe is the electron skin depth. In the limit of k → ∞, the perpendicular

magnetosonic wave has the lower-hybrid-resonance frequency,

ωLH = (Ωi|Ωe|)1/2. (2.19)

At θ = 0, the Alfvén and magnetosonic waves become left- and right-circularly

polarized, respectively, with the dispersion relation

c2k2 = −
ω2
piω

ω ∓ Ωi
−

ω2
peω

ω ∓ Ωe
. (2.20)

Here, the upper and lower signs, respectively, correspond to the left- and right-

circularly polarized waves. The rotation sense of the latter is the same as that of

the electron gyromotion.

With use of the quantity χ defined as [6]

χ =
cos θ

1 + (c2k2/ω2
p) sin

2 θ

[(
c2k2 +

∑

j

ω2
pjω

2

ω2 − Ω2
j

) / ∑

j

ω2
pjΩjω

ω2 − Ω2
j

]
, (2.21)

the perturbed transverse fields are related through

Ez1 = iχEy1, (2.22)

By1 = −iχBz1, (2.23)

with

Bz1 =
ck

ω
Ey1. (2.24)
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The longitudinal electric field and density perturbation can be written as

Ex1 = −i

(
1 +

c2k2

ω2
p

)
sin θ

cos θ
χEy1, (2.25)

nj1

nj0
=

[(
Ωjω

ω2 − Ω2
j

+
Ωj

ω

c2k2

ω2
p

· cos2 θ

1 + (c2k2/ω2
p) sin

2 θ

)

×
(
c2k2 +

∑

j′

ω2
pj′ω

2

ω2 − Ω2
j′

) / (
∑

j′

ω2
pj′Ωj′ω

ω2 − Ω2
j′

)
−

Ω2
j

ω2 − Ω2
j

]
k sin θ

ω

cEy1

B0
. (2.26)

In the parallel propagation (θ = 0), Ex1 = 0, nj1 = 0, and χ = ±1; the waves with

χ = 1 are right circularly polarized, while the ones with χ = −1 are left circularly

polarized. In the oblique and perpendicular propagation (0 < θ ≤ 90◦), Ex1 and

nj1 are finite.
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





Figure 2.3: Magnitudes of χ for L- and R-modes as functions of k. Here, χ =
−iEz1/Ey1 = iBy1/Bz1. The rotation sense of the transverse fields of the R-mode
is the same as electron gyromotion. In the long-wavelength regime, |χ| ) 1 or
|χ| * 1, while in the short-wavelength regime, |χ| ∼ 1.

Figure 2.3 shows the magnitudes of χ for R-mode [magnetosonic (or whistler)

wave with χ > 0, with its transverse fields with right-handed rotation] and for

L-mode (Alfvén wave with χ < 0) as functions of the normalized wavenumber

kvA/Ωi for θ = 30◦ (thick lines) and for θ = 60◦ (dashed lines). In the long-

wavelength regime, the R- and L-modes, respectively, are close to the magnetosonic
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and Alfvén waves described in the MHD; i.e., Ey1 and Bz1 are the dominant field

components in the R-mode while Ez1 and By1 are dominant in the L-mode. In

short-wavelength waves with kvA/Ωi ∼ O(1), however, Ey1 and Ez1 are of the

same order of magnitude, and so are By1 and Bz1.

2.1.3 Long-wavelength magnetosonic wave

In the long-wavelength regime, the dispersion of the magnetosonic wave is weak

and the relation between ω and k can be written in the form [7–11]

ω/k = vp0(1 + µk2). (2.27)

Here, the phase velocity vp0 in the limit of k = 0 is given by Eq. (2.6) with the

upper (plus) sign, with cs now defined as

cs =

(∑
j Γjpj0∑
j nj0mj

)1/2

, (2.28)

and the dispersion coefficient µ is

µ = − c2

4ω2
pe

(v2p0 − c2s)

[v2p0 − (v2A + c2s)/2]

(
1− (mi −me)2v2A cos2 θ

mime(v2p0 − v2A cos2 θ)

)
. (2.29)

This coefficient strongly depends on the propagation angle θ. Let θc designate

the critical angle at which µ becomes zero [9–11]:

1− (mi −me)2v2A cos2 θc
mime(v2p0 − v2A cos2 θc)

= 0, (2.30)

from which one sees that θc is close to 90◦,

cos θc + (me/mi)
1/2. (2.31)

For the angles θc < θ ≤ 90◦, the dispersion coefficient is negative, ∂2ω/∂k2 < 0,

and approximated as

µ ∼ −c2/ω2
pe, (2.32)

while for the angles θ < θc, the coefficient is positive, ∂2ω/∂k2 > 0, and much

larger:

µ ∼ c2/ω2
pi. (2.33)
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The ion inertial length c/ωpi is identical to the quantity vA/Ωi.

If the displacement current is included and the pressures are ignored in the

two-fluid model, the phase velocity of the linear magnetosonic wave in the long-

wavelength limit becomes equal to the modified Alfvén speed [26, 27],

ṽA =
vA

[1 + (vA/c)2]1/2
. (2.34)

For a high density plasma in a weak magnetic field, the Alfvén speed vA is much

lower than the speed of light, and thus ṽA + vA; in which the displacement current

is unimportant in the magnetosonic wave.

2.2 Nonlinear waves

Nonlinear magnetosonic waves have been extensively investigated by many authors

since the early days of plasma physics, and these studies, mainly for a single-ion-

species plasma, have been reviewed in several textbooks [12–14]. The subjects of

this section are related to the central part of such studies: field structures in a

finite-amplitude, stationary, perpendicular magnetosonic wave; KdV equation for

small-amplitude waves; and field strengths in a large-amplitude shock wave.

2.2.1 Finite-amplitude stationary waves

With use of the cold two-fluid model, finite-amplitude-wave solutions were obtained

in 1958 for magnetosonic waves steadily propagating perpendicular to a magnetic

field [15, 16]; later, this theory was extended to a weakly relativistic case [17]. We

here describe some important results of this theory, giving its detailed calculations

in Appendix A.

Basic properties

These solutions contain wavetrains and solitary waves. The solitary wave solutions

exist in the range of Alfvén Mach numbers

1 ≤ M ≤ 2, (2.35)
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with the maximum value of the magnetic field

Bm = (2M − 1)B0. (2.36)

The plasma density, transverse electric field Ey, and electric potential φ are pro-

portional to (Bz − B0), with Ez = 0 and By = 0.

The electron skin depth c/ωpe gives a measure of the characteristic soliton width,

D ∼ c

ωpe(M − 1)1/2
. (2.37)

Charge neutrality, which is assumed in the theory, makes the ion and electron

velocities in the x direction equal, vix = vex = vx. Then, from the fluid equation of

motion (2.8) with pj = 0, it follows that

miviy +mevey = constant, (2.38)

along the characteristics of the plasma, indicating that the change in vey is mi/me

times as large as that of viy. As a result, the magnetic structure of a perpendicular

magnetosonic wave is determined by the electron current, although this wave is a

low frequency phenomenon.

Electric potential

The longitudinal electric field Ex arises from charge separation. The magnitude of

the electric potential (Ex = −∂φ/∂x) is

eφ = 2miv
2
A(M − 1), (2.39)

which is of the same order of magnitude as the ion kinetic energy: In the wave

frame, where the y component of the electric field is constant, Ey = Ey0 (< 0)

(see Sec. 2.2.3), the plasma flows in the negative x direction; its velocity is vx =

−MvA = cEy0/B0 in the upstream region. If there is a region where the magnetic

field Bz sharply rises, then the speed of electrons, which move with the E×B drift

velocity cEy0/Bz(x), would slow down there, while the ions with a much greater

gyroradius would penetrate there nearly keeping the same speed vx = −MvA.
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This difference produces the electric potential (2.39) that is comparable to the ion

kinetic energy mi(MvA)2/2; the ions are then substantially decelerated to maintain

charge neutrality ni + ne. The potential, however, remains smaller than the kinetic

energy,
eφ

mi(MvA)2/2
=

4(M − 1)

M2
≤ 1. (2.40)

Thus, the ions with the fluid speed vx = −MvA are not reflected by the electric

potential [18].

Charge neutrality and pulse width in a strong magnetic field

If the magnetic field is rather strong,

|Ωe|
ωpe

" 1, (2.41)

charge neutrality (|ni −ne|/n0 * 1) breaks down in large-amplitude magnetosonic

waves with M − 1 ∼ O(1). In fact, from Gauss’s law, it follows that

eφ

meD2
∼ ω2

pe

(ni − ne)

n0
. (2.42)

Substituting Eqs. (2.37) and (2.39) in Eq. (2.42) yields

(ni − ne)

n0
∼ 2

(
Ωe

ωpe
(M − 1)

)2

, (2.43)

indicating that (ni − ne)/n0 ∼ O(1).

Furthermore, relativistic effects become important under these circumstances.

With the help of Eqs. (2.37) and (2.39), one can estimate the E×B drift velocity

as
vey
c

+ −Ex

B
+ − φ

DB
∼ −|Ωe|

ωpe
(M − 1)3/2. (2.44)

This nonrelativistic estimate suggests that the electron fluid velocity in the pulse

region becomes relativistic if |Ωe|/ωpe " 1 and (M − 1) " 1. In such a case, the

pulse width is given as

D ∼ c

ωpe

|Ωe|
ωpe

(M − 1), (2.45)

29



which we find from Ampère’s law, ∂Bz/∂x = (4π/c)neevey, by noting that the

current is approximately estimated as neec because vey ∼ −c and that (Bm −

B0)/B0 ∼ (M−1), which is obtained from Eq. (2.36). The relativistic pulse width,

in contrast to the nonrelativistic one (2.37), increases with the wave amplitude [17].

2.2.2 KdV equation for small-amplitude waves

For the magnetosonic waves with small-but-finite amplitudes, one can derive from

the original set of equations, (2.7)–(2.13), a single nonlinear evolution equation:

KdV equation for arbitrary propagation angles θ [7–11,19,20]. The reductive per-

turbation method developed by Taniuti et al. [8,30,31] enables us to do this without

mathematical ambiguities for weakly dispersive waves with their frequencies given

by Eq. (2.27).

This method considers wave evolution in the stretched coordinates

ξ = ε1/2(x− vp0t), (2.46)

τ = ε3/2t, (2.47)

where ε is the smallness parameter representing the wave amplitude. This trans-

formation can be related to the phase of a linear monochromatic wave with weak

dispersion of the form (2.27) with the following equation:

kx− ωt = k(x− vp0t)− vp0µk
3t. (2.48)

If k ∼ ε1/2, the first and the second terms on the right-hand side of Eq. (2.48) are,

respectively, of the same forms as Eqs. (2.46) and (2.47). The time variation of the

wave profile with small k would be quite slow in the frame moving with the velocity

vp0. The relation k ∼ ε1/2, where k is now viewed as the characteristic wavenumber

of nonlinear pulses in the KdV equation, may be expected from Eq. (2.37) and will

be directly shown below by Eqs. (2.56) and (2.57).

Physical quantities are then expanded as, for instance,

Bz1 = Bz0 + εBz1 + ε2Bz2 + · · · , (2.49)
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Ex = ε3/2Ex1 + ε5/2Ex2 + · · · . (2.50)

Charge neutrality ni + ne is assumed; hence, from the continuity equation it follows

that

vix = vex = vx. (2.51)

Applying the above transformation, (2.46) and (2.47), and expansion to the

two-fluid model, (2.7)–(2.13), we obtain, after some algebra (see Appendix B), the

KdV equation as

∂Bz1

∂τ
+ vp0α

Bz1

B0

∂Bz1

∂ξ
− vp0µ

∂3Bz1

∂ξ3
= 0, (2.52)

where µ is the dispersion coefficient (2.29) and α is given by

α =
v2A sin θ

[
3v2A(v

2
p0 − c2s cos

2 θ) + (c2s + Γic2i + Γec2e) (v
2
p0 − v2A cos2 θ)

]

4v2p0(v
2
p0 − c2s)[v

2
p0 − (v2A + c2s)/2]

, (2.53)

where c2j = Γjpj0/[n0(mi +me)] with j = i or e [11]. The second and third terms

in Eq. (2.52), respectively, represent nonlinear and dispersion effects.

If the phase velocity given by Eq. (2.6) with the upper (plus) sign is used for

vp0 in these equations, then Eq. (2.52) represents the KdV equation for the fast

magnetosonic waves. On the other hand, the phase velocity with the lower (minus)

sign gives the KdV equation for slow magnetosonic waves. Each KdV equation

with these coefficients is valid for finite pressure plasmas and for arbitrary angles

0 < θ ≤ 90◦. In a cold plasma model with θ = 90◦, in which the slow wave does not

propagate, these coefficients reduce to α = 3/2 and µ = −c2/(2ω2
pe), with vp0 = vA.

Equation (2.52) also has a stationary, solitary wave solution:

Bz1

B0
= σBn sech2

(
ξ − σαBnτ/3

D

)
, (2.54)

where σ = 1 for µ < 0 and σ = −1 for µ > 0, Bn (> 0) is the normalized amplitude,

and D is the soliton width given by

D =

(
12|µ|
αBn

)1/2

. (2.55)

The profile of a solitary wave is symmetric.
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The initial value problem for the KdV equation was solved numerically [32] and

analytically [33]. These studies have shown that the solitary waves are stable and

keep their identities in their space-time evolution, like individual particles; they are

therefore called solitons.

We now again restrict ourselves to the fast magnetosonic wave.

Because the dispersion coefficient µ strongly depends on the propagation angle

θ, the structure of the solitary wave also has strong dependence on θ. Quasi-

perpendicular pulses in the angles θc < θ ≤ 90◦, for which µ ∼ −c2/ω2
pe, are

compressive (they have high plasma densities and magnetic fields), with their char-

acteristic pulse width D ∼ (c/ωpe)/B
1/2
n . For the angles θ < θc, on the other hand,

µ ∼ c2/ω2
pi, and thus the coefficient of the third term in Eq. (2.52), −vp0µ, becomes

negative. The solitary waves are rarefactive (low plasma densities and magnetic

fields), with D ∼ (c/ωpi)/B
1/2
n .

The longitudinal electric field Ex (∼ φ/D) is thus much weaker in oblique waves

than in quasi-perpendicular ones (the dependence of the potential φ on θ is rather

weak [11]). The Ex ×Bz drift of electrons along a nonlinear pulse is thus slower in

the oblique case.

Since ε ∼ Bn and the characteristic wavenumber k is related to D as k ∼ 1/D,

we have
ck

ωpi
∼ ε1/2, (2.56)

for oblique waves and
ck

ωpe
∼ ε1/2, (2.57)

for quasi-perpendicular waves.

2.2.3 Shock waves

Field profiles

In large-amplitude pulses with ε ∼ O(1), energy dissipation can occur even in a

collisionless plasma: Part of the wave energy is transferred to particles owing to

instabilities and particle acceleration. Such large-amplitude magnetosonic pulses
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Figure 2.4: Field profiles of an oblique shock wave with θ = 45◦ obtained from a
particle simulation. The fields Bz, Ey, φ, and F have similar profiles, while By

is approximately proportional to ∂Bz/∂x. The quantity F in the bottom panel is
defined as F = −

∫
E‖ds.

have asymmetric field profiles and are called collisionless shock waves. Their profile

could be approximated by a train of solitons of decreasing amplitude [12].

Figure 2.4 displays the field profiles of an oblique shock wave with a propagation

angle θ = 45◦ obtained by a particle simulation [34] (the method of shock simula-

tion is described in Sec. 3.1.1). It clearly shows that Bz, Ey, and φ have similar

profiles, while By is nearly proportional to ∂Bz/∂x; Ex and Ez, which are not shown

here, are also proportional to ∂Bz/∂x. These relations are mathematically proved

for small-amplitude waves [8–11] [perturbations are expressed in terms of Bz1 in

Eqs. (B.28)–(B.37) in Appendix B], and simulations show that these relations ap-

proximately hold also in large-amplitude magnetosonic waves. The quantity F in

the bottom panel is the integral of the parallel electric field, E‖ = (E ·B)/B, along

the magnetic field, F = −
∫
E‖ds, which will be examined in Sec. 2.5.1.
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Quantities in the wave frame

The profiles of the electric fields Ewy and Ewz, where the subscript w refers to

quantities in the wave frame, are completely different from those in the laboratory

frame: In this paper, the term “laboratory frame” means the system where the

upstream plasma is at rest: The wave frame moves with the shock speed vsh in

the x direction relative to the laboratory frame. Since the time derivatives in the

fluid equations are zero in the wave frame, ∂/∂t = 0, it follows from Faraday’s

law that both Ewy and Ewz are constant in time and space. Because the plasma

velocity in the upstream region is vw0 = (−vsh, 0, 0), from the macroscopic relation

Ew + vw × Bw/c = 0 and the assumption for the external magnetic field that

Bw0 = (Bwx0, 0, Bwz0), we find that

Ewy = Ewy0 = − vshBwz0

c
, (2.58)

Ewz = 0. (2.59)

For one-dimensional propagation with ∂/∂y = ∂/∂z = 0, the x component of the

magnetic field is constant,

Bwx = Bwx0 = Blx0, (2.60)

where the subscript l denotes the laboratory frame. Also, we have the relation

Bwz0 = γshBlz0, (2.61)

where γsh is the Lorentz factor corresponding to the shock speed vsh,

γsh =
(
1− v2sh/c

2
)−1/2

. (2.62)

Field strengths in a large-amplitude shock wave

We here compute field strengths in a large-amplitude shock wave such that M > 2.

In this calculation, we make use of the fact that the plasma density, magnetic field

Bz, and electric potential φ sharply rise in the shock transition region and take their

maximum values at the same point, say x = xm, while the fields Ex and By become
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zero there. This analysis was first made for perpendicular waves [35]. Then, since

its theoretical predictions were confirmed to be consistent with simulation results,

this investigation has been extended to oblique waves [36], as described below.

We start from the cold, two-fluid model, Eqs. (2.7)–(2.13) with pj = 0. Instead

of Eq. (2.8) though, we adopt a relativistic equation of motion:

mj

(
∂

∂t
+ (vj · ∇)

)
(γjvj) = qjE +

qj
c
vj ×B, (2.63)

where γj is the Lorentz factor for the fluid velocity vj, i.e., γj = (1 − v2j/c
2)−1/2.

This allows us to treat high-speed fluids: The Alfvén speed can be of the order of

c in a strong magnetic field.

Since the time derivatives are zero in the wave frame, the continuity equation,

(2.7), gives

nwj(xw)vwjx(xw) = −nwj0vsh, (2.64)

where nwj0 is the upstream density. We multiply the x component of Eq. (2.63) by

nwj and sum over particle species to have

∑

j

mjnwjvwjx
d(γwjvwjx)

dx
=
∑

j

qjnwj

(
Ewx +

vwjy

c
Bwz −

vwjz

c
Bwy

)
. (2.65)

Combining Eqs. (2.11), (2.64), (2.65), and Gauss’s law, we find that

d

dx

(
−
∑

j

mjnw0vshγwjvwjx +
B2

wy +B2
wz − E2

wx

8π

)
= 0, (2.66)

which is integrated to give

B2
wy +B2

wz −B2
wz0 − E2

wx

8π
=
∑

j

mjnw0vsh(γshvsh + γwjvwjx). (2.67)

As mentioned above, both Bwy and Ewx are small near xwm. Furthermore, vwjx is

small in magnitude compared with the far upstream speed vsh, because the plasma

density is high at xw = xwm in a large-amplitude shock wave. Hence we obtain the

maximum value of Bwz as

Bwzm

Bwz0
=

(
1 +

minw0γshv2sh
B2

wz0/(8π)

)1/2

, (2.68)
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Figure 2.5: Field strengths versus Alfvén Mach number for θ = 90◦ and for θ = 80◦.
Theory (solid lines) and simulations (dots) for Bz, Ey, and φ are shown.
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Figure 2.6: Field strengths versus Alfvén Mach number for θ = 60◦ and for θ = 45◦.
The dotted lines show φlCmd, the potential due to the E ×B drift motion.
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where the electron term in Eq. (2.67) has been ignored.

We can then calculate field strengths in the laboratory frame. From Eqs. (2.58),

(2.61), and the relation

Blz = γsh[Bwz + (vsh/c)Ewy0], (2.69)

it follows that
Blzm

Blz0
= 1 + γ2

sh

(
Bwzm

Bwz0
− 1

)
. (2.70)

Substituting Eq. (2.68) in Eq. (2.70) and then using Eq. (2.61) and the relation

nw0 = γshnl0, we find the maximum value of Blz as

Blzm

Blz0
= 1 + γ2

sh

[(
1 +

2v2sh
v2A sin2 θ

)1/2

− 1

]
, (2.71)

where vA and θ are the quantities defined in the laboratory frame. The maximum

value of the transverse electric field Ely is related to the magnetic field through

Elym = (vsh/c)(Blzm −Blz0). (2.72)

Substitution of Eq. (2.71) in (2.72) yields

Elym

Blz0
=

γ2
shvsh
c

[(
1 +

2v2sh
v2A sin2 θ

)1/2

− 1

]
. (2.73)

Although the calculation for the electric potential is more lengthy, one obtains

its maximum value in a similar way under the assumption that Bwz0/Bwx0 " 1

(θ " 45◦) [36]:

eφlCm = miv
2
A

(
sin2 θ +

sin θ cos θ

γsh(1 + γ2
sh tan

2 θ)1/2

)[(
1 +

2v2sh
v2A sin2 θ

)1/2

− 1

]
, (2.74)

where the subscript C indicates that the potential is expressed in the Coulomb

gauge. The term proportional to 1/(1 + γ2
sh tan

2 θ)1/2 in Eq. (2.74) arises from the

electron motion parallel to the magnetic field. The rest is due to the E ×B drift,

eφlCmd = miv
2
A sin2 θ

[(
1 +

2v2sh
v2A sin2 θ

)1/2

− 1

]
, (2.75)
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which is the main part of the potential. In the limit of θ = 90◦, Eqs. (2.71), (2.73),

and (2.74) reduce to the results for perpendicular waves obtained in Ref. [35].

Figures 2.5 and 2.6 compare the theory (solid lines) and particle simulations

(dots) with mi/me = 100 and |Ωe|/ωpe = 3 for four different propagation an-

gles [36]: θ = 90◦, 80◦, 60◦, and 45◦. The dotted lines in the bottom panels show

the contribution from the drift motions, Eq. (2.75). The theory and simulations

have quite close values, particularly for large angles and for large Mach numbers.

(In addition to the assumption Bwz0/Bwx0 " 1 in the theory, we note the simulation

result that wavetrains with noticeable amplitudes appear in front of a shock wave

in the case that θ is small, in which short-wavelength waves have higher propaga-

tion speeds than long-wavelength waves.) The contribution of the parallel particle

motion to the potential becomes appreciable [the difference (φ− φlCmd) increases]

as the propagation angle θ decreases.

2.3 Waves in a multi-ion-species plasma

Although the above wave theories have been constructed for single-ion-species plas-

mas, ionized gases usually contain multiple ion species. In space plasmas, there

are a small fraction of heavy ions, such as He, C, O, and Fe, in addition to the

major ion constituent H. The density ratio of He and H is nHe/nH + 0.1, with the

densities of other heavy ions much lower than nHe. Fusion plasmas will contain

D, T, and fusion products He (neutrons will quickly go out of the plasma region).

This section concerns wave properties in multi-ion-species plasmas. For simplicity,

we use a cold plasma model, Tj = 0.

2.3.1 Perpendicular waves in a two-ion-species plasma

Linear dispersion relation

In a two-ion-species plasma, the magnetosonic wave is split into two modes: high-

and low-frequency modes [21–24]. Figure 2.7 shows the dispersion curves for these

modes in a H-He plasma. As in space plasmas, the density ratio is nHe/nH = 0.1;
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Figure 2.7: Linear dispersion curves of perpendicular magnetosonic waves in a H-
He plasma. In a two-ion-species plasma, there is a frequency domain near the ion
gyrofrequencies where the magnetosonic wave cannot propagate.

this ratio is used in all the figures for H-He plasmas in this section. The dispersion

curves of these two modes have large curvatures near the wavenumber k = kc,

which is quantitatively given below by Eq. (2.91).

Let “a” and “b” designate two different ion species with Ωa > Ωb. Then, for

a plasma consisting of electrons and these ions, the cutoff frequency ωhf0 of the

high-frequency mode is given as

ω2
hf0 =

(
ω2
pa

Ω2
a

+
ω2
pb

Ω2
b

)2
Ω2

aΩ
2
bΩ

2
e

ω4
pe

, (2.76)

and the resonance frequency ωhfr at k = ∞ is

ω2
hfr = (ω2

pa + ω2
pb)Ω

2
e/ω

2
pe. (2.77)

The frequency of the low-frequency mode approaches the ion-ion hybrid resonance

frequency ωlfr as k → ∞ [21, 22],

ω2
lfr =

(
ω2
pa

Ω2
a

+
ω2
pb

Ω2
b

)
Ω2

aΩ
2
b

(ω2
pa + ω2

pb)
. (2.78)

The following relation holds among these frequencies:

Ωb < ωlfr < ωhf0 < Ωa. (2.79)
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The magnetosonic wave cannot propagate in the frequency range ωlfr < ω < ωhf0.

The expressions for the resonance frequencies are valid for ωpe/|Ωe| " 1. If

the plasma density is quite low, ωpe/|Ωe| * 1, one must include the effect of

the displacement current in Maxwell’s equations. In the low density limit, i.e.,

ωpe/|Ωe| * (me/mi)1/2, these resonance frequencies are given by ωhfr = Ωa and

ωlfr = Ωb [21]. Here, we are concerned with the case in which the plasma densities

are not too low, ωpe/|Ωe| > (me/mi)1/2.

The dispersion relation for the high- and low-frequency modes reads as

k2

ω2
=

ω2
pe(ω

2 − ω2
hf0)

c2(ω2
hfrω

2 − ω2
hfrω

2
lfr − ω4)

. (2.80)

In the long-wavelength region such that

c2k2/ω2
pe * me/mi, (2.81)

the low-frequency mode is approximated as [23]

ω + vAk (1 + µk2), (2.82)

with

µ = − c3

2vA

(
ω2
pa

Ω2
a

+
ω2
pb

Ω2
b

+
ω2
pe

Ω2
e

)−7/2
[
ω2
paω

2
pb

Ω2
aΩ

2
b

(
1

Ωa
− 1

Ωb

)2

+
ω2
pbω

2
pe

Ω2
bΩ

2
e

(
1

Ωb
− 1

Ωe

)2

+
ω2
peω

2
pa

Ω2
eΩ

2
a

(
1

Ωe
− 1

Ωa

)2
]
, (2.83)

where the Alfvén speed, vA = B0/(4πρ0)1/2, is defined with use of the average mass

density,

ρ0 = na0ma + nb0mb. (2.84)

For a two-ion-species plasma, the first term in the square brackets, which is pro-

portional to (Ω−1
a − Ω−1

b )2, is the dominant term, and µ is approximated as

µ + − c2

2ωpaωpb

(
na0manb0mb

ρ20

)3/2 (Ωa − Ωb)2

ΩaΩb
∼ − c2

ωpaωpb
. (2.85)
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For a single-ion-species plasma, however, this term vanishes, and Eq. (2.83) reduces

to Eq. (2.32), i.e., µ + −c2/ω2
pe. The dispersion in a two-ion-species plasma is

∼ mi/me times as large as that in a single-ion-species plasma.

In the range of wavenumbers

(me/mi)
1/2 * c2k2/ω2

pe * 1, (2.86)

the high-frequency mode is given by

ω = vhk [1− c2k2/(2ω2
pe)], (2.87)

where vh is the characteristic phase velocity of this mode in the wavenumber range

(2.86),

vh =
(ω2

pa + ω2
pb)

1/2|Ωe|c
ω2
pe

= vA

[
1 +

ω2
paω

2
pb

ω4
pe

Ω2
e

(
1

Ωa
− 1

Ωb

)2
]1/2

. (2.88)

The speed vh is slightly higher than the Alfvén speed vA, and in a single-ion-species

plasma it reduces to vA.

Noting the relation

vA = c

(
ω2
pa

Ω2
a

+
ω2
pb

Ω2
b

)−1/2

, (2.89)

one can show the identity

ωhf0/vh = ωlfr/vA. (2.90)

Around the wavenumber kc defined by

kc = ωlfr/vA, (2.91)

the dispersion curves of the high- and low-frequency modes both have large curva-

tures (Fig. 2.7). Furthermore, the following relation holds:

(2|µ|)1/2kc = (1− v2A/v
2
h)

1/2, (2.92)

where the terms proportional to ωpe/Ωe in µ, Eq.(2.83), have been ignored.
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KdV equation for the low-frequency mode

As expected from the dispersion relation (2.82), the KdV equation for the low-

frequency mode [22, 23] is obtained with the conventional reductive perturbation

method [8–11]; it has the same form as Eq. (2.52) with vp0 = vA, α = 3/2, and µ

given by (2.83). The soliton width D is now

D = (8|µ|/Bn)
1/2 . (2.93)

The characteristic wavenumber k and the amplitude ε have a relation similar to

Eq. (2.57),

(|µ|)1/2k ∼ ε1/2. (2.94)

Since the magnitude of the dispersion coefficient µ is large, its characteristic soliton

width (∼ c/ωpi) is ∼ (mi/me)1/2 times as large as that of perpendicular pulses

(∼ c/ωpe) in a single-ion-species plasma.

KdV equation for the high-frequency mode

Even though the high-frequency mode has a finite cutoff frequency, one can derive

the KdV equation for this mode [5, 23] as shown in Appendix C, with an expan-

sion scheme slightly different from the conventional reductive perturbation scheme.

Noting that the relation between ω and k of the high-frequency mode is approx-

imated by a weak dispersion type, Eq. (2.87), in a large frequency domain [the

resonance frequency of the low-frequency mode is nearly (me/mi)1/2 times as small

as that of the high-frequency mode], we suppose that

ck/ωpe ∼ ε1/2, (2.95)

and that the wave amplitude is in the range

(me/mi)
1/2 * ε * 1. (2.96)

This ordering avoids the frequency domain of the low-frequency mode and focuses

on the wavenumber range (2.86) of the high-frequency mode, for which the dis-

persion relation (2.87) takes the same form as that of the magnetosonic wave in a
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single-ion-species plasma. The KdV equation obtained in this way has the same

form as Eq. (2.52) with vp0 = vh, µ = −c2/(2ω2
pe), and

α =
3

2

(
1 +

ω2
paω

2
pb(Ωa − Ωb)2

(ω2
pa + ω2

pb)
2ΩaΩb

)
. (2.97)

The characteristic soliton width of the high-frequency mode is given by the electron

skin depth c/ωpe, which is ∼ (me/mi)1/2 times as small as that of the low-frequency

mode. The nonlinear properties of the high-frequency mode resemble those of the

magnetosonic wave in a single-ion-species plasma.

Three-fluid simulation

Figure 2.8: Evolution of nonlinear magnetosonic wave. The low-frequency-mode
pulse with a width ∼ c/ωpi with rather a large initial amplitude, ε = 0.2, quickly
steepens and emits short-wavelength (∼ c/ωpe) pulses of the high-frequency mode.
This occurs if the initial amplitude of the low-frequency mode is large.

Nonlinear evolution of the magnetosonic wave has also been investigated with

one-dimensional, three-fluid simulations with full Maxwell equations [5, 23, 24, 26].

If small-amplitude, solitary wave solutions are used for initial wave profiles, these
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pulses propagate steadily as the theory predicts. If their amplitudes are large,

however, the high- and low-frequency modes are coupled.

Figure 2.8 shows the evolution of a perpendicular solitary wave of the low-

frequency mode, with its initial amplitude being rather large, ε = Bz1/B0 = 0.2,

where Bz1 is the perturbed magnetic field [23]. Other simulation parameters are

as follows: ma/me = 1000, mb/ma = 4, qa/qe = −1, qb/qa = 2, and nb0/na0 = 0.1.

The magnetic-field strength is |Ωe|/ωpe = 0.5, so that c/vA = 68.3 and vA/vh =

0.967. The pulse quickly steepens, despite the fact that its initial profile is a solitary

wave solution of the low-frequency mode with a width ∼ c/ωpi. Short-wavelength

(∼ c/ωpe) pulses are then generated and go ahead of the original long-wavelength

pulse. Measurements of their propagation speeds and amplitudes indicate that

these short-wavelength pulses are solitary waves of the high-frequency mode.

This result shows that if a large-amplitude, low-frequency-mode pulse (or peri-

odic wave) is generated in a plasma, then large part of its energy is converted to

the high-frequency mode. Although linear magnetosonic waves cannot propagate

in the frequency domain ωlfr < ω < ωhf0, steepening of the low-frequency-mode

pulse produces higher harmonics with ω > ωhf0 along the dispersion line of the

high-frequency mode.

The condition for the nonlinear coupling is related to the amplitude ε and

the frequency gap (ωhf0 − ωlfr). The weak-dispersion approximation of the low-

frequency mode, Eq. (2.82), is valid in the long-wavelength regime, k < kc; if the

characteristic wavenumber of the pulse satisfies this, it will propagate steadily. By

virtue of Eqs. (2.90)-(2.92) and (2.94), one can prove [23, 25] that the inequality

k < kc is equivalent to the relation ε < 2∆ω, where ∆ω is the normalized frequency

gap,

∆ω ≡ ωhf0 − ωlfr

ωhf0

= 1− [1 + nb0qb/(na0qa)]

[Ωb/Ωa + nb0qb/(na0qa)]1/2[Ωa/Ωb + nb0qb/(na0qa)]1/2
. (2.98)

If the pulse amplitude of the low-frequency mode is greater than the normalized
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Figure 2.9: Dispersion curves for the high- and low-frequency modes and Alfvén
wave for θ = 84◦ in a H-He plasma with nHe/nH = 0.1.

frequency gap,

ε > 2∆ω, (2.99)

the perturbation scheme for the KdV equation breaks down. In this case, the

nonlinear coupling can occur; for the simulation parameters of Fig. 2.8, ∆ω + 0.03,

and thus ε (= 0.2) is much greater than 2∆ω.

2.3.2 Oblique waves in a two-ion-species plasma

In addition to the high- and low-frequency modes, we have the Alfvén wave in

the oblique case 0 < θ < 90◦. Their linear dispersion relations in a cold plasma

can be obtained from Eqs. (2.14)–(2.17), which are applicable also to multi-ion-

species plasmas if the summation
∑

j is taken over all particle species. We show in

Fig. 2.9 the dispersion curves of these three modes for propagation angle θ = 84◦

in a H-He plasma with the density ratio nHe/nH = 0.1, where the lines H, L, and A

represent the high- and low-frequency modes and Alfvén wave, respectively [5]. The

gyrofrequencies are taken to be ΩH/ΩHe = 2 and |Ωe|/ΩH = 1836. The resonance

frequency of the Alfvén wave is equal to the gyrofrequency of the heavier ions: ΩHe

in the present case.
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Oblique low-frequency mode

In the low-frequency region, ω * Ωj, the low-frequency mode is approximated as

ω + vAk(1 + µlk
2), (2.100)

with

µl = − v2A
2



v2A
c2

∑

j

ω2
pj

Ω4
j

− v4A
c4 sin2 θ

(
∑

j

ω2
pj

Ω3
j

)2


 . (2.101)

At the critical angle θcl,

θcl = arcsin



vA
c

(
∑

j

ω2
pj

Ω3
j

)/(
∑

j

ω2
pj

Ω4
j

)1/2


 , (2.102)

µl vanishes. The dispersion coefficient µl is negative for θcl < θ < 90◦ and is positive

for 0 < θ < θcl. The critical angle θcl in a multi-ion-species plasma is considerably

smaller than θc in a single-ion-species plasma. It is θcl + 70◦ in a H-He plasma.

Nonlinear behavior of the low-frequency mode is governed by the KdV equa-

tion (2.52) with vp0 = vA, α = (3/2) sin θ, and µ = µl. Figure 2.10 shows the

soliton width D normalized to (c/ωpe)/B
1/2
n , where Bn is the normalized amplitude

|Bz1|/B0 [5]. The solid and dotted lines, respectively, the soliton widths in H-He

and in single-ion-species plasmas. As mentioned above, θcl < θc. Furthermore, the
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normalized soliton width DB1/2
n /(c/ωpe) is ∼ 40 even at θ = 90◦ in a H-He plasma,

while it is order unity in a single-ion-species plasma.

Oblique high-frequency mode

The linear dispersion relation of quasi-perpendicular high-frequency waves for the

range of wavenumbers

me/mi * c2k2/ω2
pe * 1, (2.103)

(the corresponding frequency range is Ω2
i * ω2 * |Ωe|Ωi) is approximated as

ω = vhk(1 + µhk
2 + µ̄hk

−2), (2.104)

where µh and µ̄h are defined to be

µh = − c2

2ω2
pe

(
1− cos2 θ

η2

)
, (2.105)

µ̄h =
ω2
peη

2

2c2

(
1− 2

∑

i

ω2
piΩi

ω2
pe|Ωe|η4

+
∑

i

ω2
piΩ

2
i

ω2
peΩ

2
eη

6

)
, (2.106)

with η being the small quantity [∼ (me/mi)1/2] given by

η =
(∑

i

ω2
pi

)1/2 /
ωpe. (2.107)

Here,
∑

i denotes the summation over ion species. We obtain Eq. (2.104) from

Eq. (2.14) ignoring small terms of the order of me/mi compared with the others.

Equation (2.105) indicates that at the critical angle θch defined by

cos θch = η, (2.108)

the dispersion is extremely weak. Numerical calculations show that θch + 89◦ for

a H-He plasma; θch is close to θc of a single-ion-species plasma and considerably

greater than θcl of the low-frequency mode. Indeed, if we take cs to be zero and θ

to be close to 90◦ in Eq. (2.29), and if we apply Eq. (2.105) to a single-ion-species

plasma, then we find they are identical.

Figure 2.11 shows the dispersion coefficients µl and µh as functions of θ near

θ = 90◦ for a H-He plasma [5]. The solid and dotted lines indicate that the values
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are positive and negative, respectively. At θ = 90◦, |µh| is ∼ me/mi times as

small as |µl|. As θ decreases from 90◦, µh changes from negative to positive values

at the critical angle θch. The sign of µl also changes at the critical angle for the

low-frequency mode, θcl = 70◦, as was shown in Fig. 2.10.

The third term on the right-hand side of Eq. (2.104) is negligibly small for

η < c2k2/ω2
pe < 1. That is, for these wavenumbers, |µhk2| ) µ̄hk−2 except for the

vicinity of θ = θch.

For the wavenumbers such that

c2k2/ω2
pe ) (me/mi)

1/2, (2.109)

[i.e., for frequencies ω2 ) Ω2
i (mi/me)1/2], ignoring small terms of the order of

me/mi compared with the others, we can reduce the dispersion relation (2.14) to

ω = |Ωe|
(
η2

c2k2

c2k2 + ω2
pe

+
c4k4 cos2 θ

(c2k2 + ω2
pe)

2

)1/2

, (2.110)

which can be further approximated as

ω = |Ωe|(η2 + cos2 θ)1/2
(
1− 1

2

(η2 + 2 cos2 θ)

(η2 + cos2 θ)

ω2
pe

c2k2

)
, (2.111)

for large wavenumbers

c2k2/ω2
pe ) 1. (2.112)
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Figure 2.12: Wavenumber at the inflection point, kinf , as a function of θ for a H-He
plasma. The magnitude of kinf sharply changes near θ = θch.

The dispersion curve has an inflection point, the wavenumber of which is de-

noted by kinf . The second derivative ∂2ω/∂k2 is positive for k < kinf and is negative

for k > kinf . By applying the condition ∂2ω/∂k2 = 0 to Eq. (2.14), we can numer-

ically calculate kinf as a function of θ (Fig. 2.12). The wavenumber kinf sharply

changes around the critical angle θch; in other regions, kinf is almost constant.

We can analytically obtain kinf outside the small region around θ = θch. From

Eq. (2.104), one finds kinf as

ckinf
ωpe

+
(

µ̄h

3|µh|

)1/4 c

ωpe
∼
(
me

mi

)1/4

, (2.113)

for θch < θ ≤ 90◦. For θ < θch, Eq. (2.110) gives

ckinf
ωpe

+
(
(12η4 + 12η2 cos2 θ + cos4 θ)1/2 cos2 θ − (3η4 + 3η2 cos2 θ − cos4 θ)

3(η2 + cos2 θ)(η2 + 2 cos2 θ)

)1/2

,

(2.114)

which indicates that ckinf/ωpe ∼ O(1). If θ < θch, ∂2ω/∂k2 is positive in large part

of the wavenumber region (2.103), while, in the case θch < θ ≤ 90◦, it is negative

in most part of that region.

We can now show the wavenumber region in which the magnitude of µ̄hk−2 is

much smaller than that of µhk2 so that the dispersion relation (2.104) is written as

ω = vhk(1 + µhk
2). (2.115)
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Figure 2.13: Normalized soliton width DB1/2
n /(c/ωpe) for high-frequency mode in

a H-He plasma.

The relation |µhk2| = µ̄hk−2 holds at the wavenumber

ckmin

ωpe
=

(
µ̄h

|µh|

)1/4 c

ωpe
∼
(
me

mi

)1/4

. (2.116)

Hence, for 0 < θ < θch, where c2kinf
2/ω2

pe ∼ O(1), Eq. (2.115) is valid in the range

of wavenumbers

c2kmin
2/ω2

pe * c2k2/ω2
pe * c2kinf

2/ω2
pe. (2.117)

For θch < θ < 90◦, where c2kinf
2/ω2

pe ∼ (me/mi)1/2, we have Eq. (2.115) in the

wavenumber region

c2kinf
2/ω2

pe * c2k2/ω2
pe * 1. (2.118)

For the wavenumber regions (2.117) and (2.118), the dispersion form becomes sim-

ilar to that of long-wavelength magnetosonic waves in a single-ion-species plasma.

The KdV equation for the oblique high-frequency mode has therefore been

derived [5]. As shown in Appendix C, it is given by Eq. (2.52) with the coefficients

vp0 = vh, µ = µh, and

α = (3
∑

i

ω2
piΩi)/(2ω

2
pe|Ωe|η4). (2.119)

With use of the normalized amplitude Bn = Bz1/B0, the soliton width can be

written as D = [12|µh|/(αBn)]1/2. The normalized soliton width DB1/2
n /(c/ωpe)

is depicted in Fig. 2.13 as a function of θ for a H-He plasma [5]. The pulses are
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Figure 2.14: Dispersion relation of magnetohydrodynamic waves in a pure electron-
positron plasma. The lines M and A represent magnetosonic and Alfvén waves,
respectively. Here, θ = 60◦ and |Ωe|/ωpe = 3.

compressive with the characteristic width ∼ c/ωpe for θch < θ < 90◦, while they

are rarefactive with D ∼ c/ωpi for angles smaller than θch.

2.4 Waves in an EPI plasma

2.4.1 Waves in a pure electron-positron plasma

Before discussing electron-positron-ion (EPI) plasmas, we look at the linear dis-

persion relation in a pure electron-positron plasma, where there are waves similar

to magnetosonic and Alfvén waves in an ordinary electron-ion plasma. From the

cold, two-fluid model, Eqs. (2.7)–(2.13) with pj = 0 with the subscript j referring to

electrons (j = e) or positrons (j = p), one obtains linear dispersion relations [37]:

c2k2

ω2
= 1−

2ω2
pe

ω2 − Ω2
e

, (2.120)

c2k2

ω2
=

(ω2 − 2ω2
pe)(ω

2 − Ω2
e − 2ω2

pe)

(ω2 − 2ω2
pe)(ω

2 − Ω2
e)− 2ω2

peΩ
2
e sin

2 θ
. (2.121)

Figure 2.14 shows the dispersion relation of oblique waves with θ = 60◦ in the

frequency domain ω < |Ωe|.

Line M in Fig. 2.14 represents the magnetosonic wave obtained from Eq. (2.120),

which is independent of θ. This mode is linearly polarized, with its electric field
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parallel to the y direction, i.e., parallel to k×B0. Since the positrons and electrons

have the same mass, the longitudinal electric field is not created [38].

From Eq. (2.120), one finds the dispersion relation of the magnetosonic wave as

ω

k
= ṽA

(
1 +

ṽ4A
v4A

c2k2

ω2
pep

)−1/2

, (2.122)

where

ωpep = (ω2
pe + ω2

pp)
1/2, (2.123)

vA is the Alfvén speed in an electron-positron plasma,

vA =
B0

(8πne0me)1/2
=

c|Ωe|
ωpep

, (2.124)

and ṽA is defined by Eq. (2.34). In the long-wavelength regime such that ck/ωpe *

1, the dispersion relation is approximated as

ω

k
= ṽA

(
1− ṽ4A

2v4A

c2k2

ω2
pep

)
. (2.125)

The density perturbation nj1 is related to the magnetic perturbation Bz1 through

nj1 + nj0(Bz1/B0) sin θ, (2.126)

indicating that this wave is a compressional mode with nj1/nj0 being of the same

order of magnitude as Bz1/B0.

Line A in Fig. 2.14 represents the shear Alfvén wave, which disappears at θ =

90◦ and becomes linearly polarized at θ = 0◦. Both X and A are obtained from

Eq. (2.121), and their electric fields are in the (x, z) plane. The dispersion relation

of the Alfvén wave in the long-wavelength regime is given as

ω

k
= ṽA cos θ

(
1− [1 + (1 + v2A/c

2)(v2A/c
2) sin2 θ]

2(1 + v2A/c
2)2

c2k2

ω2
pep

)
. (2.127)

Its density perturbation is

nj1

nj0
+ i

Ω2
e

ω2
pep

ṽAk sin θ

Ωj

By1

B0
, (2.128)

from which one sees that nj1/nj0 ∼ (ω/Ωj)(By1/B0). The density perturbation of

the Alfvén wave is small in the low-frequency regime, ω/Ωj * 1.
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Figure 2.15: Dispersion relations of perpendicular magnetosonic waves in EPI plas-
mas. Lines H and L show, respectively, the high- and low-frequency modes. Here,
the mass ratio is mi/me = 1836. The definitions of kc and kinf are given by Eqs.
(2.140) and (2.146), respectively.

2.4.2 Perpendicular waves in an EPI plasma

If a plasma contains a single species of ions as well as electrons and positrons, the

magnetosonic wave is split into the high- and low-frequency modes. The linear

dispersion relation for perpendicular waves may be written as

(
∑

j

ω2
pj

ω2 − Ω2
j

)(
∑

j

ω2
pj

ω2 − Ω2
j

+
c2k2

ω2

)
−
(
∑

j

ω2
pj

(ω2 − Ω2
j)

Ωj

ω

)2

= 0, (2.129)

where the displacement current has been ignored, and the subscript j refers to

electrons (j = e), positrons (j = p), or ions (j = i). The details of the calculations

are found in Refs. [26, 27]. Inspection of Eq. (2.129) indicates that ω/Ωi does not

depend on magnetic-field strength; it is a function of k, densities, and particle

masses and charges.

The dispersion relation of the high- and low-frequency magnetosonic modes is

plotted in Fig. 2.15 for four different values of np0/ne0. Line M in Fig. 2.14 is split
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into lines H and L in Fig. 2.15: the high- and low-frequency modes. The structure

of the dispersion curves is similar to that of two-ion-species plasmas discussed in

Sec. 2.3, although there are some significant quantitative differences between them.

The frequency of the low-frequency mode goes from zero to the resonance fre-

quency

ωlfr =

(
rei + ν

1 + reiν

)1/2

ωLH, (2.130)

as the wavenumber k increases from zero to ∞, where

rei = me/mi, (2.131)

ν = ni0/(ne0 + np0), (2.132)

and ωLH is the lower hybrid frequency defined by Eq. (2.19). The high-frequency

mode has a cutoff frequency

ωhf0 =
rei + ν

1 + reiν
|Ωe| =

ω2
lfr

Ωi
, (2.133)

and, as k → ∞, approaches the resonance frequency

ωhfr = |Ωe|. (2.134)

The following relation holds among these frequencies and gyrofrequencies:

Ωi < ωlfr < ωhf0 < Ωp = |Ωe|. (2.135)

This relation resembles Eq. (2.79); note that the gyrofrequency of light ions, Ωa,

has been replaced by the positron gyrofrequency, which is equal to |Ωe| and much

greater than Ωi.

As the positron density np0 increases (namely, as ni0 and ν decrease), the dif-

ference (ωhf0 − ωlfr) decreases; i.e., ωhf0 goes down more rapidly than ωlfr. In addi-

tion, because ωhfr is unchanged, the frequency range of the high-frequency mode,

(ωhfr − ωhf0), expands. In the limit of ν → 1, i.e., np0 → 0 and ni0 → ne0, we have

ωlfr = ωLH, (2.136)
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ωhf0 = |Ωe|, (2.137)

while in the limit of ν → 0, i.e., ni0 = 0,

ωlfr = ωhf0 = Ωi. (2.138)

With use of the Alfvén speed in an EPI plasma,

vA =

(
B0

4π
∑

j nj0mj

)1/2

=
B0

(8πne0me)1/2

(
1 + ν

1 + ν/rei

)1/2

, (2.139)

the wavenumber kc appearing in Fig. 2.15 is given by

kc = ωlfr/vA, (2.140)

which is in terms of ν and rei

ckc
ωpep

=
rei + ν

(1 + reiν)1/2
. (2.141)

As in the case of two-ion-species plasmas, the dispersion curves of the low- and

high-frequency modes have large curvatures around kc.

Using these quantities, we can express approximate dispersion relations. In the

long-wavelength domain such that k * kc, the high-frequency mode can be given

as

ω2 = ω2
hf0

{
1 +

(
1− ω2

hf0

Ω2
e

)(
1− ω2

lfr

ω2
hf0

)
k2

k2
c

+

[
ω2
lfr

ω2
hf0

(
1− ω2

lfr

ω2
hf0

+
ω2
lfr

Ω2
e

)
− ω2

hf0

Ω2
e

(
1 +

ω2
lfr

Ω2
e

)]
k4

k4
c

}
, (2.142)

while the low-frequency mode is

ω

k
= vA

[
1− 1

2

(
1− ω2

lfr

ω2
hf0

+
ω2
lfr

Ω2
e

)
k2

k2
c

]
. (2.143)

If we ignore rei compared with unity, then, from Eqs. (2.130) and (2.133), we have

1− ω2
lfr

ω2
hf0

+
ω2
lfr

Ω2
e

=
ν

rei + ν
, (2.144)

for the case ν ) r3ei .
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In the short-wavelength region such that k ) kc, the high-frequency mode is

given as

ω2 = ω2
hf0

(
1 + k2/k2

c

1 + c2k2/ω2
pep

− (ω2
lfr/ω

2
hf0)(k

2/k2
c )

1 + k2/k2
c

)
, (2.145)

where we have used the relation rei * 1. The dispersion curve has an inflection

point (∂2ω/∂k2 = 0) at

kinf =
1

31/4

(
1− ω2

lfr

ω2
hf0

)1/4 ωpep

c
(rei + ν)1/2 =

(
ν

3(rei + ν)3

)1/4

kc, (2.146)

where we have assumed that c2k2/ω2
pep * 1. It is evident that kinf ) kc if ν * 1.

In the wavenumber domain such that k ) kinf , the high-frequency mode is given

by

ω =
vhk

(1 + c2k2/ω2
pep)

1/2
. (2.147)

Here, vh is defined as

vh = |Ωe|c/ωpep, (2.148)

giving a measure of the propagation speed of the high-frequency mode. The ratio

of vA to vh can be written as

vA
vh

=

(
rei

rei + ν

)1/2

, (2.149)

which indicates that vh is always greater than vA. By virtue of the relations ωhf0 =

ω2
lfr/Ωi and (2.149), kc given by Eq. (2.140) is found to be equal to ωhf0/vh if me/mi

is ignored. For the wavenumber domain

kinf * k * ωpep/c, (2.150)

the high-frequency mode can be approximated as

ω

k
= vh

(
1− c2k2

2ω2
pep

)
. (2.151)

Effects of the displacement current

The Alfvén speed vA can be quite fast if B0 is strong, the plasma density is low,

or np0/ne0 is close to unity, for which full Maxwell equations should be used. If
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the displacement current is included in Ampère’s law, then Eq. (2.129) for the

dispersion relation of perpendicular waves is modified as follows:

(
1−

∑

j

ω2
pj

ω2 − Ω2
j

)(
1−

∑

j

ω2
pj

ω2 − Ω2
j

− c2k2

ω2

)
−
(
∑

j

ω2
pj

(ω2 − Ω2
j)

Ωj

ω

)2

= 0.

(2.152)

In the long-wavelength regime k * kc, the low-frequency mode can be written as

ω

k
= ṽA(1 + µk2), (2.153)

with

µ = − 1

2

ṽ4A
c2




∑

j

ω2
pj

Ω4
j

− ṽ2A
c2

(
∑

j

ω2
pj

Ω3
j

)2




= − 1

2

(ṽA/vA)6

(rei + ν)3

[(
Ω2

e

2ω2
pe

+ 2rei − r3ei

)
ν2

+

(
1 +

Ω2
e

2ω2
pe

(1 + r3ei) + r2ei

)
ν +

(
1 +

Ω2
e

2ω2
pe

)
r3ei

]
c2

ω2
pep

. (2.154)

The high-frequency mode in the wavenumber region (2.150) is approximated as

ω

k
= ṽh

(
1− 1

2

ṽ4h
v4h

c2k2

ω2
pep

)
, (2.155)

with

ṽh =
vh

(1 + v2h/c
2)1/2

. (2.156)

In the rest of Sec. 2.4.2 and in Sec. 2.4.3, the displacement current is included.

Nonlinear perpendicular low-frequency mode

As expected from the dispersion relation, the KdV equation for the low-frequency

mode is derived [26] with the conventional reductive perturbation method [8,9]: It

takes the form of Eq. (2.52) with vp0 = ṽA, α = (3/2)(ṽA/vA)2, and µ given by

Eq. (2.154).

From Eq. (2.55), one obtains the soliton width Dlf , which is plotted in the

top panel of Fig. 2.16 as a function of ν = ni0/(ne0 + np0) for a Mach number

Mlf = 1.25 [26]. The width Dlf goes up as ν goes down from ν = 1 to ν ∼ me/mi.
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Figure 2.16: Soliton widths and speed ratio ṽA/ṽh as functions of ν = ni0/(ne0 +
np0). The Mach numbers are taken to be 1.25. The mass ratio is mi/me = 1836.
The top and second panels show the widths of the low- and high-frequency modes,
respectively.
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This is due to the fact that the current density parallel to the wave front decreases

with increasing positron density and thus the pulse width increases to keep the

same magnitude of magnetic perturbation. In the low-frequency mode in an EPI

plasma, electrons and positrons both move mainly with the E × B drift. Their

currents and the one due to the ion E × B drift cancel out. Consequently, the

current in a pulse region is created primarily by the ion polarization drift parallel

to the wave front. On the other hand, in a perpendicular nonlinear magnetosonic

wave in an electron-ion plasma, the electron current is much greater than the ion

current and determines the magnetic structure, as mentioned in Sec. 2.2.1.







  
 

 

  
     













Figure 2.17: Magnitude of potential as a function of ν = ni0/(ne0 + np0).

The magnitude of the potential formed in a solitary wave is given as

eφ = 2miṽ
2
A

(1− r2ei)ν

rei + ν
(Mlf − 1). (2.157)

In the limit of ν → 1 (no positrons), this reduces to

eφ = 2miṽ
2
A(Mlf − 1), (2.158)

which is identical to the potential in a cold, electron-ion plasma. Figure 2.17 shows

the magnitude of potential as a function of ν for Mlf = 1.25 [26]. It increases with

decreasing ion density, from ν = 1 to ν ∼ me/mi. This is a reflection of the fact

that the Alfvén speed rises as ν goes down. Because, for ν " me/mi, eφ is of the
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order of the ion kinetic energy measured in the wave frame, it increases with the

Alfvén speed. In a pure electron-positron plasma (ν = 0), however, φ = 0.

The normalized amplitude of the magnetic field is given as

Bn = 2(Mlf − 1)

(
vA
ṽA

)2

. (2.159)

This is identical to Eq. (2.36) if ṽA = vA.

Nonlinear perpendicular high-frequency mode

Although the high-frequency mode has a finite cutoff frequency, the dispersion

relation (2.151) in the wavenumber region kinf * k * ωpep/c suggests that this

mode is approximately governed by the KdV equation. Indeed, as in the case of the

high-frequency mode in a two-ion-species plasma in Sec. 2.3.1, we can derive the

KdV equation with the perturbation scheme focusing on this wavenumber region:

Under the assumptions that

[ν(rei + ν)]1/2 * ε * 1, (2.160)

and that

r1/2ei * ε, (2.161)

we obtain a nonlinear evolution equation for this mode [26]: Eq. (2.52) with vp0 =

ṽh, α = (3/2)(ṽh/vh)2, and µ = −[ṽ4h/(2v
4
h)](c

2/ω2
pep) [see Eq. (2.155)].

The soliton width, Dhf = 2(ṽh/vh)(c/ωpep)B
−1/2
n , is depicted in the middle panel

of Fig. 2.16 as a function of ν. [The Mach number Mhf is related to the normalized

pulse amplitude Bn through Mhf = 1+(ṽh/vh)2Bn/2.] The width Dhf is insensitive

to ν, close to c/ωpe for a wide range of ν.

The bottom panel of Fig. 2.16 shows the ratio of ṽA to ṽh. The speed ṽA is

always smaller than ṽh; in particular, for ν > 0.1, ṽA/ṽh is less than 0.1 for these

plasma parameters.

Another important feature of the high-frequency-mode soliton is that its po-

tential is negligibly small compared with that of the low-frequency mode: In the
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perturbation scheme for this mode, the longitudinal electric field is Ex = 0 in the

lowest order.

Nonlinear coupling of high- and low-frequency modes in an EPI plasma
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Figure 2.18: Snapshots of field profiles of high- and low-frequency-mode pulses.
The upper panel shows Bz (thin line) and potential φ (thick line). The lower panel
shows vpy (solid line) and vey (dotted line). Short-wavelength, high-frequency-mode
pulses are emitted from a long-wavelength, low-frequency-mode pulse.

Similarly to the case of two-ion-species plasmas, high-frequency-mode pulses

can be generated from a nonlinear, low-frequency-mode pulse. From the conditions

k * kc and ε ∼ µk2, we find the upper limit of the amplitude of low-frequency-

mode pulses as εmax ∼ µk2
c . As Fig. 2.15 shows, kc and the difference (ωhf0 − ωlfr)

decrease with increasing positron density. It is thus expected that their nonlinear

coupling becomes stronger as np0 rises.

Three-fluid simulations for the investigation of nonlinear wave evolution in an

EPI plasma have been performed, and a result quite similar to Fig. 2.8 has been

reported [26]; i.e., many short-wavelength, high-frequency-mode pulses are gener-

ated from a large-amplitude, long-wavelength, low-frequency-mode pulse. This is
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shown by Fig. 2.18. At the same time, however, this figure reveals properties of

the high-frequency mode that are different from those in a two-ion-species plasma.

The high-frequency-mode pulses here have virtually no electric potential φ, which

we see by comparing the profiles of Bz and φ. In addition, these short-wavelength

pulses have vy perturbations with vpy = −vey. Here, the initial amplitude of the

low-frequency-mode pulse is ε = Bz1/B0 = 0.1, which is greater than εmax = 0.024;

other parameters are mi/me = 100, ni0/ne0 = 0.001, and |Ωe|/ωpe = 1. In another

simulation with the initial amplitude ε = 0.01 (< εmax), emission of high-frequency-

mode pulses was not observed until the end of the run (ωpet = 14, 400). These

features are in accord with the theoretical predictions.

2.4.3 Oblique waves in an EPI plasma

From the cold, three-fluid model with full Maxwell equations, one obtains the linear

dispersion relation of oblique waves as [27]

(
1−

∑

j

ω2
pj

ω2 − Ω2
j

− c2k2

ω2

)[(
1−

∑

j

ω2
pj

ω2

)(
1−

∑

j

ω2
pj

ω2 − Ω2
j

− c2k2

ω2

)

+

(
∑

j

ω2
pj

(ω2 − Ω2
j)

Ω2
j

ω2

)
c2k2

ω2
sin2 θ

]

−
(
∑

j

ω2
pj

(ω2 − Ω2
j)

Ωj

ω

)2(
1−

∑

j

ω2
pj

ω2
− c2k2

ω2
sin2 θ

)
= 0. (2.162)

Equation (2.162) gives six oblique waves as shown in Fig. 2.19 for np0/ne0 = 0.02

and Fig. 2.20 for np0/ne0 = 0.9, where the ion-to-electron mass ratio is taken to be

mi/me = 1836. These pictures indicate that in the low frequency regime such that

ω<∼|Ωe|, we have three modes: Line A represents the Alfvén wave, while lines H

and L, respectively, show the high- and low-frequency modes of the magnetosonic

wave.

In the limit of k → ∞, these waves have resonance frequencies:

ωhfr = |Ωe|, (2.163)
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Figure 2.19: Dispersion curves of oblique magnetohydrodynamic waves for four
different propagation angles in a cold EPI plasma with np0/ne0 = 0.02. In the
frequency regime lower than |Ωe|, there are three modes: high-frequency mode (line
H), low-frequency mode (line L), and Alfvén mode (line A). The high-frequency
mode is in the region ω/Ωi " 100 for these parameters.
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Figure 2.20: Dispersion curves for np0/ne0 = 0.9.
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for the high-frequency mode,

ωlfr + |Ωe| cos θ, (2.164)

for the low-frequency mode (except for the vicinity of θ = 90◦), and

ωAr + Ωi, (2.165)

for the Alfvén mode. At θ = 90◦, ωlfr is given by Eq. (2.130), and the Alfvén wave

disappears. At k = 0, the high-frequency mode has a cutoff frequency ωhf0 nearly

equal to Eq. (2.133). Although ωhf0 decreases with increasing positron density, it

is much higher than the ion gyrofrequency even at np0/ne0 = 0.9. Furthermore,

ωlfr is much higher than Ωi at any angles and density ratios, so that the low-

frequency mode is less affected, particularly in the situation that np0/ne0 is low, by

the presence of high-frequency mode than in the case of two-ion-species plasmas.

In the long-wavelength region, the dispersion relation of the low-frequency mode

is given as ω/k = ṽA(1 + µk2) with the dispersion coefficient being

µ = − ṽ4A
2c2




∑

j

ω2
pj

Ω4
j

− ṽ2A
c2 sin2 θ

(
∑

j

ω2
pj

Ω3
j

)2


 , (2.166)

which resembles µl in a two-ion-species plasma, Eq. (2.101). This mode is governed

by the KdV equation of the form (2.52) with vp0 = ṽA, α = (3/2)(ṽA/vA)2 sin θ,

and µ given by Eq. (2.166) [27]. The soliton width is ∼ c/ωpi except for the vicinity

of θ = 90◦.

The critical angle θc, at which µ becomes zero, is given as

sin θc =
(ṽA/c)

(∑
j ω

2
pj/Ω

3
j

)

(∑
j ω

2
pj/Ω

4
j

)1/2
. (2.167)

We see from Eqs. (2.166) and (2.167) that µ > 0 for 0 < θ < θc, and µ < 0 for

θc < θ ≤ 90◦. Figure 2.21 shows the dependence of θc on the positron-to-electron

density ratio for the case withmi/me = 1836 and |Ωe|/ωpe = 1. As np0/ne0 increases

from zero to unity, θc goes down from 88.1◦ to 0◦. The decrease is particularly rapid
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Figure 2.21: Critical angle θc as a function of np0/ne0. The mass ratio is mi/me =
1836. If the angle θ is taken to be 89◦, for instance, it is greater than θc for any
values of np0/ne0. If the angle is 85◦, it is smaller than θc for np0/ne0 < 0.8007.

for np0/ne0 " 0.8. The propagation angle θ = 89◦, for instance, is greater than θc

at any values of np0/ne0; thus the solitary waves with this propagation angle are

always compressive. On the other hand, the angle θ = 85◦ is lower than θc for

0 < np0/ne0 < 0.8, for which we have rarefactive solitons, and is higher than θc for

0.8 < np0/ne0 < 1, for which we have compressive solitons.

In an EPI plasma, in contrast to a pure electron-positron plasma, the mag-

netosonic wave can have a large electric potential, the magnitude of which in a

low-frequency-mode solitary wave is given as [27]

eφ = 2miṽ
2
A

(1− r2ei)ν

(ν + rei)

(Mlf − 1)

sin2 θ
. (2.168)

For ni0/ne0 ∼ 10−2, the potential is ∼ 102 times as large as that in an ordinary

electron-ion plasma, ∼ 2miv2A(M − 1).

To this point of this section, we have considered the cold plasma model. Finally,

we summarize the result of finite-temperature theory for nonlinear magnetosonic

waves in an EPI plasma [28, 29]. This theory will be used in the next section to

investigate the electric field parallel to the magnetic field, E‖ = (E ·B)/B.

From the set of three-fluid equations with finite temperatures coupled with full
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Maxwell equations, we derive the linear dispersion relation, which, in the limit of

ω → 0, becomes

c2

ṽ2A
− c2

v2p0
− sin2θ

v2p0

∑

j

ω2
pjc

2
j/Ω

2
j

1− c2jcos
2θ/v2p0

+tan2θ

(
∑

j

ω2
pj/Ω

2
j

1− c2jcos
2θ/v2p0

)2 / (
∑

j

ω2
pj

1− c2jcos
2θ/v2p0

)
= 0, (2.169)

where cj is the speed related to the thermal speed,

c2j = ΓjvTj
2 = Γj

pj0
nj0mj

, (2.170)

(for the details, see Ref. [29]). Assuming that the temperatures are low,

c2j
v2p0

* 1, (2.171)

and therefore ignoring higher order terms of c2j/v
2
p0, we obtain

v2p0 =
v2A + c2s sin

2 θ

1 + v2A/c
2

, (2.172)

where cs is the sound speed

cs =

(
ni0ΓiTi0 + np0ΓpTp0 + ne0ΓeTe0

ni0mi + np0mp + ne0me

)1/2

. (2.173)

Calculating the phase velocity up to the terms of order k2, ω/k = vp0(1+µk2),

we find the dispersion coefficient µ as

µ =−
v2p0ṽ

2
A

2c2




(
∑

j

ω2
pj

Ω4
j

)
− ṽ2A

c2 sin2 θ

(
∑

j

ω2
pj

Ω3
j

)2




+
ṽ2A
c2

sin2 θ
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∑

j
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pj

Ω4
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c2j

)
− ṽ2A

c2 sin2 θ

(
∑

j

ω2
pj

Ω3
j

)(
∑

j

ω2
pj

Ω3
j

c2j
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+
ṽ2A
c2ω2

p

cos2 θ

(
∑

j

ω2
pj

Ω3
j

)(
∑

j

ω2
pj

Ωj
c2j

)
− ṽ6Ac

2
s

2c4v2A tan2 θ

(
∑

j

ω2
pj

Ω3
j

)2

,

(2.174)

which, in the limit of Tj = 0, reduces to Eq. (2.166). We have the KdV equation for

this mode in a warm plasma of the form (2.52) with vp0 and µ given by Eqs. (2.172)

and (2.174), respectively; α is

α =
ṽ2A sin θ

2v2A

[
3 +

c2s
ṽ2A

(−5 sin2 θ + 3) +
v2A sin2 θ

ṽ2Ac
2

(
∑

j

ω2
pj

Ω2
j

c2jΓj

)]
. (2.175)
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2.5 Parallel electric field

The electric field parallel to the magnetic field plays a crucial role in some particle

acceleration mechanisms: Examples are found in electron acceleration in Chap. 3

and in positron acceleration in Chap. 6. This section examine the strength of the

parallel electric field in nonlinear magnetosonic waves.

In the ideal MHD, perfect conductivity is assumed:

E +
v ×B

c
= 0, (2.176)

from which it follows that the electric field parallel to the magnetic field is zero,

E‖ =
E ·B
B

= 0. (2.177)

The parallel electric field was generally thought to be quite weak in MHD phe-

nomena in high-temperature plasmas. In fact, for instance, this is one of the main

reasons for the difficulty in explaining the heating of the solar corona [39,40].

Recently, however, it has been found that the parallel electric field can be strong

in nonlinear magnetosonic waves in collisionless plasmas [28,29].

2.5.1 Parallel pseudo potential

In the analysis of parallel electric field and particle acceleration in one-dimensional

waves, the integral of the parallel electric field along the magnetic field,

F = −
∫

E‖ds, (2.178)

is a useful quantity [34, 41–43]. Since E‖ can contain both longitudinal and trans-

verse electric fields, F is not an ordinary electric potential; we call F the parallel

pseudo potential. The bottom panel of Fig. 2.4 shows F in a shock wave. With

use of the relation ds/B = dx/Bx0, Eq. (2.178) can be put into the following form:

F (x, t) = −
∫ x E(x, t) ·B(x, t)

Bx0
dx. (2.179)

In many cases, the integral F is easier to measure than E‖.
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For a stationary wave, Eq. (2.179) becomes

F (x) = −
∫

ExBx0 + Ey0By

Bx0
dx, (2.180)

in the wave frame, where, as shown by Eqs. (2.58) and (2.59), Ey = Ey0 and Ez = 0.

(In the following, the subscript w for the wave frame is used only when necessary.)

By virtue of the second relation of Eq. (2.58), Eq. (2.180) can be written as

F = −
∫ (

Ex −
vshBz0By

cBx0

)
dx, (2.181)

where vsh is the wave speed. Using the electric potential φ and the z component of

the vector potential A (By = −∂Az/∂x), we can express F as

F = φ− vsh
c

Bz0

Bx0
Az. (2.182)

As mentioned in Sec. 2.2.3, φ and Bz have similar profiles in magnetosonic waves,

while By is proportional to ∂Bz/∂x. Hence, F has a profile similar to φ and Az,

unless the two terms on the right-hand side of Eq. (2.182 ) nearly cancel.

Since (E ·B) is Lorentz invariant, we find from Eq. (2.179) the relation between

the quantities in the wave and laboratory frames as

Fw = γshFl. (2.183)

2.5.2 Parallel electric field and parallel pseudo potential in
nonlinear magnetosonic waves

Perturbation theory for E‖ and F in an electron-ion plasma

As described in Sec. 2.2.2 and in Appendix B, the KdV equation is derived for

nonlinear magnetosonic waves with the reductive perturbation method. In the

finite beta theory [11], where beta is the ratio of the plasma to magnetic pressures,

the perturbation of electric potential is related to magnetic perturbation Bz1 as

eφ1 = mi

(
(Ωe + Ωi)(v2p0 − c2s)v

2
p0

Ωe(v2p0 − v2A cos2 θ)
+

Γepe0
n0(mi +me)

− meΓipi0
min0(mi +me)

)

× v2A sin θ

(v2p0 − c2s)

Bz1

B0
, (2.184)
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[see Eq. (B.34) in Appendix B]. The first term on the right-hand side of Eq. (2.184)

is mainly due to magnetic pressure, while the second and third terms are, respec-

tively, due to electron and ion thermal pressures; the third term is ∼ me/mi times

as small as the second one. Equation (2.184) reduces to

eφ1 + mi

(
v2A +

Γepe0
n0(mi +me)

)
Bz1

B0
, (2.185)

in quasi-perpendicular waves with sin θ + 1, which clearly shows the contributions

of magnetic field and electron pressure.

In this perturbation scheme, the parallel electric field is proportional to the

electron temperature Te. As shown in Appendix B, the longitudinal electric field

Ex1 and the z component of the transverse electric field Ez1 are given as

Ex1

B0
= −v2A sin θ

ΩiΩec

[
(Ωe + Ωi)v2p0

(v2p0 − v2A cos2 θ)
+

c2s(ΩeΓepe0 + ΩiΓipi0)

(v2p0 − c2s)(Γepe0 + Γipi0)

]
∂

∂ξ

Bz1

B0
, (2.186)

Ez1

B0
=

(Ωe + Ωi)v2p0v
2
A cos θ

ΩiΩec(v2p0 − v2A cos2 θ)

∂

∂ξ

Bz1

B0
. (2.187)

The first term on the right-hand side of Eq. (2.186) and the field Ez1 are mainly

due to magnetic pressure. These terms cancel in the lowest order calculation of E‖,

E‖1 = Ex1 cos θ + Ez1 sin θ. (2.188)

With the aid of the relation between the magnetic perturbation Bz1 and density

perturbation n1

Bz1

B0
=

(v2p0 − c2s)

v2A sin θ

n1

n0
, (2.189)

we can express the parallel electric field as

E‖ = −ΓeTe

e

∂

∂s

(
n1

n0

)
, (2.190)

where s is the length along the magnetic field [28]. Integration of Eq. (2.190) along

the magnetic field yields the parallel pseudo potential

eF = eFT = ΓeTe
n1

n0
, (2.191)
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which resembles the electric potential in the ion-acoustic wave. We use the symbol

FT when emphasizing that F scales as Te. The magnitude of F is determined by

the electron temperature, eF <∼Te. Comparison of Eqs. (2.184) and (2.191) shows

that the parallel pseudo potential F is smaller than the electric potential φ; their

difference is especially significant in low beta plasmas.

In some particle simulations [34,42], however, the magnitude of eF far exceeds

the electron temperature (Fig. 2.4), suggesting that, other than thermal pressure,

there is a mechanism enhancing E‖ and thus F . We therefore consider a cold

plasma, Te = Ti = 0, and carry out higher order calculations [28]. Since they are

lengthy, we present only important results to show the outline of the calculation.

Let us look at the parallel electric field up to the second-order terms:

E‖ =
E ·B
B

=
E1 ·B0

B0

(
1− B1 ·B0

B2
0

)
+

E1 ·B1

B0
+

E2 ·B0

B0
. (2.192)

The lowest order term E1 ·B0/B0 is finite (proportional to Te) in warm plasmas

and is zero in cold plasmas, as shown by Eq. (2.190). The term E1 ·B1 = Ey1By1+

Ez1Bz1 vanishes in both warm and cold plasmas: E1 and B1 are perpendicular.

The term E2 · B0/B0 is found to be expressed with lowest order quantities if

Te = Ti = 0. That is, E‖ appears in the second order in a cold plasma.

We obtain E‖ and F for quasi-perpendicular waves as

eE‖ =
miv2A
tan θ

(
c

ωpe

)2 ∂3

∂ξ3
Bz1

B0
, (2.193)

eF = eFB = −miv2A
sin θ

(
c

ωpe

)2 ∂2

∂ξ2
Bz1

B0
, (2.194)

which are proportional to B2
0 for a fixed normalized amplitude Bz1/B0; Bz1 obeys

the KdV equation as described in Sec. 2.2.2. The subscript B is used to stress that

F is determined primarily by the magnetic field. The fact that F is proportional

to ∂2Bz1/∂ξ2 indicates that F has a profile different from Bz1 [In the conventional,

lower order theory for a warm plasma, they have similar profiles, as shown by

Eqs. (2.189) and (2.191)]. Furthermore, because ∂2/∂ξ2 ∼ ε in the perturbation

scheme, F in Eq. (2.194) is of the order of ε2: eF ∼ ε2miv2A.
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Figure 2.22: Magnitude of F as a function of pulse amplitude. The dots and the
lines FT and FB show simulation results, warm-plasma theory, and higher-order
cold-plasma theory, respectively. Here, the plasma beta value is of order unity, and
the simulation results are explained by the warm-plasma theory FT .

Simulations for F in an electron-ion plasma

These theoretical predictions have been verified with particle simulations, through

the observation of magnetosonic solitary pulses [28]. In the simulations, initial

profiles of fields, densities, and velocities are given according to the soliton theory.

Because ni and ne are taken to be exactly the same at t = 0, the longitudinal electric

field Ex is initially zero. In a self-consistent simulation, however, Ex is created in

the evolution of the wave. The profiles of other physical quantities including E‖ are

also adjusted to their most stable forms. After the pulse propagation has become

stationary, the field strengths are measured.

Figure 2.22 shows the magnitude of F obtained in this way as a function of the

pulse amplitude Bz1/B0 for a warm plasma, where the closed circles, dashed line,

and solid line, respectively, represent the simulation result, warm-plasma theory

(2.191) (denoted by FT ), and higher order cold-plasma theory (2.194) (denoted by

FB). Here, the propagation angle is θ = 88◦, the speed of light is c/(ωpe∆g) = 10,

where ∆g is the grid spacing, the electron thermal velocity vTe = (Te/me)1/2 is

vTe/(ωpe∆g) = 2.0, and the strength of the external magnetic field is |Ωe|/ωpe = 0.5,

71



10-5

10-4

10-3

10-2

10-1

 0.1

eF
/m

ec
2

Bz1/B0

0.02 0.05

FB

FT

vTe/c = 0.026,  |Ωe|/ωpe = 1
θ = 88o,  mi/me = 400

Figure 2.23: F versus pulse amplitude. Here, |Ωe|/ωpe is higher, and vTe is lower
than those in Fig. 2.22. The simulation results (dots) are consistent with the higher
order cold-plasma theory FB.

which gives the Alfvén speed as vA/(ωpe∆g) = 0.25. For the present parameters,

FT is much greater than FB, and the simulation results are close to FT .

Figure 2.23 shows the parallel pseudo potential in a low beta plasma, with a

lower Te [vTe/(ωpe∆g) = 0.26] and a higherB0 (|Ωe|/ωpe = 1.0) [hence, vA/(ωpe∆g) =

0.5 and mec2 = miv2A], with other parameters kept unchanged. Here, FB is much

greater than FT , and the simulation results agree with FB much better than with

FT .

In both Figs. 2.22 and 2.23, the propagation angle θ (= 88◦) is greater than

the critical angle θc, and thus the dispersion coefficient µ is negative; accordingly,

pulses are compressive. Rarefactive pulses with θ < θc were also investigated; the

theory was confirmed to be consistent with simulation results [28].

F in shock waves

The above theories and simulations are for small-amplitude (ε * 1) waves. We

now examine F in large-amplitude (ε " 1) shock waves. Figure 2.24 shows the

values of F (closed circles and triangles) and φ (open circles and triangles) formed

in shock waves at θ = 60◦ with the amplitudes 2<∼Bz1/B0
<∼10 in warm plasmas:
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Figure 2.24: Magnitudes of F and φ in shock waves at θ = 60◦. The upper and lower
dotted lines show extrapolated |FB| for |Ωe|/ωpe = 0.5 and 0.2, respectively. The
solid line represents the relation (2.195), which is consistent with the simulation
results.

|Ωe|/ωpe = 0.5 (circles) and 0.2 (triangles), and the electron temperature is the

same as that in Fig. 2.22. The dotted lines represent |FB|, which we have drawn

by merely extrapolating F for small-amplitude pulses, Eq. (2.194), to a larger

amplitude regime, while the solid line represents a phenomenological relation

eF ∼ (miv
2
A + ΓeTe)

Bz1

B0
, (2.195)

to which the simulation values of F fit fairly well. Here, the dependence of eF on

the external magnetic-field strength has changed from eF ∼ miv2Aε
2 in the small-

amplitude regime to eF ∼ miv2Aε in the large-amplitude regime. In addition to

these studies, the low beta case has also been examined, and it has been found

that Eq. (2.195) is also consistent with simulation results.

These investigations confirm that Eq. (2.195) is applicable to both low and high

beta cases. Furthermore, as long as the shock wave has a steep profile near the

shock front, simulation results fit to Eq. (2.195) even if θ < θc. Another important

feature is that F is always smaller than φ, although their ratio F/φ is larger than

those in small-amplitude waves.

The results of the theory and simulations for F may be summarized as follows:
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Figure 2.25: Magnitude of F/ε of small-amplitude pulse as a function of np0/ne0

for the case FT ) FB. Here, F/ε is normalized to its value at np0/ne0 = 0, i.e,
(F/ε)np0=0. The theory (solid line) and simulation result (dots) both show that F
decreases with increasing np0/ne0.

In small-amplitude pulses, the magnitude of F is

eF ∼ ΓeTeε, (2.196)

in warm plasmas and

eF ∼ miv
2
Aε

2, (2.197)

in cold plasmas. In large-amplitude waves [ε ∼ O(1)], i.e., in shock waves, the

relation

eF ∼ (miv
2
A + ΓeTe)ε, (2.198)

explains the simulation results for both warm and cold plasmas. This indicates

that strong parallel electric field can form in nonlinear magnetosonic waves.

Theory and simulations for E‖ and F in an EPI plasma

Next, we consider the low-frequency mode of the magnetosonic wave in an EPI

plasma. As proved in Chapter 6, a shock wave of this mode can accelerate positrons

to ultrarelativistic energies with its parallel electric field; thus, to obtain E‖ is

crucial to understand this mechanism. Since even the linear theory requires a large
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Figure 2.26: Dependence of F/ε2 on np0/ne0 for the case FB ) FT . Here, the
propagation angle is 85◦ and becomes equal to θc at np0/ne0 = 0.26, around which
F is quite large.

amount of calculations for oblique magnetosonic waves in finite beta plasmas, this

section shows only results of calculations; the details are found in Ref. [29].

Positrons act to reduce the magnitude of F . For warm plasmas, E‖ and F are

given as

eE‖ = −
(
ω2
pe

ω2
p

ΓeTe −
ω2
pp

ω2
p

ΓpTp −
ω2
pi

ω2
p

ΓiTi

Z

)
sin θ cos θ

∂

∂ξ

(
Bz1

B0

)
, (2.199)

eFT =

(
ω2
pe

ω2
p

ΓeTe −
ω2
pp

ω2
p

ΓpTp −
ω2
pi

ω2
p

ΓiTi

Z

)
sin θ

Bz1

B0
, (2.200)

where Z is the ionic charge state, qi = Ze, and ω2
p =

∑
j ω

2
pj. Equations (2.199)

and (2.200) indicate that the terms proportional to the ion temperature Ti are

∼ me/mi times as small as the terms proportional to Te and to Tp and that E‖

and F decrease with increasing positron density np0 and become zero in a pure

electron-positron plasma (ni0 = 0). As shown in Fig. 2.25, simulations verify the

theoretical prediction that F decreases with increasing np0. Here, a solitary wave

was generated in each particle simulation, and its field values were measured.

The parallel pseudo potential F given by Eq. (2.200) goes to zero as Tj → 0.

As in the case of electron-ion plasmas, we need higher order calculations to obtain
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E‖ and F in a cold plasma (Tj = 0); they are given as

E‖ =
4πṽ4A

B2
0 tan θ

(
∑

j

nj0m2
j

qj

)(
c

ωp

)2 ∂3

∂ξ3

(
Bz1

B0

)
, (2.201)

FB = − 4πṽ4A
B2

0 sin θ

(
∑

j

nj0m2
j

qj

)(
c

ωp

)2 ∂2

∂ξ2

(
Bz1

B0

)
. (2.202)

Here, Maxwell’s equations with the displacement current have been used, and there-

fore the modified Alfvén speed ṽA, which was defined by Eq. (2.34), appears. In the

cold plasma approximation, F is proportional to ε2 and, if v2A * c2, proportional

to B2
0 . If ni0mi ) ne0me, Eqs. (2.201) and (2.202) can be approximated as

eE‖ =
miṽ2A

tan θ (1 + v2A/c
2)

(
c

ωp

)2 ∂3

∂ξ3

(
Bz1

B0

)
, (2.203)

eFB = − miṽ2A
sin θ (1 + v2A/c

2)

(
c

ωp

)2 ∂2

∂ξ2

(
Bz1

B0

)
. (2.204)

In the limit of np0 = 0, for which ωp + ωpe, Eq. (2.204) reduces to F in the cold,

two-fluid model, Eq. (2.194). Figure 2.26 shows F for θ = 85◦ in a low beta EPI

plasma. In the vicinity of the np0/ne0 at which the critical angle θc is equal to θ,

F becomes quite large. We recall that, as shown in Fig. 2.21, θc decreases with

increasing np0/ne0; thus, if np0/ne0 varies from zero to unity with θ fixed at a value

not too close to 90◦, θc becomes equal to θ at some value of np0/ne0. Around this

density ratio, F has large values. The critical angle θc is smaller in Fig. 2.26 than

in Fig. 2.21 because the mass ratio of the former, mi/me = 400, is smaller than

that of the latter, mi/me = 1836.

At np0/ne0 = 1, both E‖ and F are zero, which we see from Eqs. (2.201) and

(2.202). In pure electron-positron plasmas, the relation E‖ = 0 holds for both high

and low beta cases.

With regard to large-amplitude waves (shock waves) with ε ∼ O(1), the phe-

nomenological equation for the parallel pseudo potential

ne0eF ∼
(
ρv2A + Γepe0

) ni0

ne0

Bz1

B0
, (2.205)
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Figure 2.27: Parallel pseudo potential F versus positron density in shock waves.
The propagation angle is θ = 60◦ and the amplitudes are Bz1/B0 ∼ 3, with other
parameters being the same as those in Fig. 2.23; a low beta case.

is consistent with the simulation results of both high and low beta cases. We plot

in Fig. 2.27 the dependence of F on the density ratio np0/ne0 in the low beta case.

The effect of the critical angle θc was not observed in shock waves with sharp field

profiles in the shock transition region. As np0 → 0, Eq. (2.205) reduces to the

equation for electron-ion plasmas, Eq. (2.195).
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Chapter 3

Trapping and ultrarelativistic
acceleration of electrons

We now proceed to study particle acceleration. The first subject is electron ener-

gization triggered by reflection.

Shock waves can reflect electrons near the end of the main pulse. Here, the

“main pulse” designates the first large pulse in a shock wave (Fig. 2.4): The front

part of the main pulse is the shock transition region. As can be seen from Fig. 2.4,

the parallel pseudo potential F takes small values near its end. Reflection occurs

near the end of the main pulse when F becomes particularly small there in nonsta-

tionary shock evolution. The reflected electrons are rapidly accelerated and then

trapped in the main pulse region [1–3]. Simulations have demonstrated electron

acceleration to energies γ > 100 due to this mechanism. This indicates that the

strong electric and magnetic fields formed in a shock wave can promptly accel-

erate electrons with a nonstochastic mechanism to energies higher than those of

solar energetic electrons: Their highest energy is several tens of megaelectronvolts

(γ ∼ 100) [4,5]. Chapter 3 describes the theory and simulations of this mechanism:

reflection, acceleration, and trapping.

This process takes place in a shock wave propagating obliquely to an external

magnetic field. (Large-amplitude pulses such as quasi shock waves can also give

rise to the same type of particle acceleration. The term “shock wave” includes

these waves in this paper.) In an oblique shock wave, the electric and magnetic
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fields both have three components, so that the analyses of their structures and

of particle motions in them are rather complicated. To have a picture of the

acceleration process, we first look at simulation results. We will then consider its

physical mechanism and quantitative theory.

3.1 Particle simulation of shock waves

Collective and individual-particle motions are both important in plasma phenom-

ena. This is particularly true for particle acceleration. The electromagnetic fields

that energize some particles are created by collective plasma motions, and the

accelerated particles can also affect the electromagnetic fields.

Particle simulations enable us to analyze these strongly nonlinear and highly

relativistic phenomena in a self-consistent manner. Most of the simulation results

that are shown here have been obtained by use of one-dimensional, fully kinetic,

relativistic, electromagnetic codes. This section briefly describes this method [1,6]

and then shows simulation results. More general and detailed descriptions on

particle simulation methods are found in Refs. [7]- [13].

3.1.1 Simulation method

To simulate collisionless plasmas, we use finite-size particles. Their sizes are usually

of the order of the Debye length λD, which is taken to be comparable to the grid

spacing ∆g (numerical instabilities can grow if λD < ∆g). In the one-dimensional

code, spatial variations are allowed only in the x direction, with the y and z direc-

tions being ignorable coordinates. The simulation particles, however, have three

velocity components (vx, vy, vz). The trajectories of finite-size simulation particles

are advanced by the following relativistic equation of motion:

dpj

dt
= qj

∫
dxS(x− xj)

(
E(x, t) +

vj ×B(x, t)

c

)
, (3.1)

dxj

dt
= vjx, (3.2)
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where pj, vj, and xj are, respectively, the relativistic momentum, velocity, and x

position of the j-th simulation particle; S(x − xj) is the form factor showing the

spatial distribution of the charge and mass of a finite-size particle with a Gaussian

shape,

S(x− xj) =
1

(2π)1/2a
exp

(
−(x− xj)2

2a2

)
, (3.3)

with a (∼ λD) giving a measure of the particle size. The plasma current and charge

associated with each grid point are calculated from the positions and velocities of

the simulated particles. These are then considered to be sources that generate the

electric and magnetic fields. Fast Fourier transforms are used to calculate the field

quantities from Maxwell’s equations:

ikEln(k, t) = 4πρ(k, t), (3.4)

∂Et

∂t
= ick ×Bt(k, t)− 4πJ t(k, t), (3.5)

∂Bt

∂t
= ick ×Et(k, t). (3.6)

Here, k is the wave vector in the x direction, ρ(k, t) is the Fourier component of the

charge density at time t, and the subscripts “ln” and “t” refer to the longitudinal

and transverse components, respectively; the transverse current J t(k, t) is given by

J t = J(k, t)− [k · J(k, t)]k/k2. (3.7)

The time integration is performed with a centered finite-difference scheme, the

leap-frog method.

As in the theory in Chap. 2, waves propagate in the x direction in an external

magnetic field in the (x, z) plane (Fig. 2.1): B0 = B0(cos θ, 0, sin θ) = (Bx0, 0, Bz0).

The transverse (y and z) components ofB can be created in electromagnetic waves;

however, the x component is constant, Bx = Bx0, owing to the equation ∇·B = 0.

Figure 3.1 shows a schematic diagram of the initial density profile. The high-

density plasma (exploding plasma) has an initial velocity v0, while the low-density

plasma (surrounding plasma) is at rest at t = 0. The exploding plasma pushes the

surrounding plasma and creates a forward (right-going) shock wave. [In a large-size
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Figure 3.1: Schematic representation of initial density profile and velocity. The
plasma in the high-density region (exploding plasma) has a velocity v0, while that
in the low-density region (surrounding plasma) is at rest at t = 0. Both B0 and
v0 are in the (x, z) plane.

simulation, a backward (left-going) shock wave is also observed, which is discussed

in Chap. 7. We are concerned with the phenomena near the forward shock front

in Chapters 3 through 6.] Both B0 and v0 are in the (x, z) plane. We usually take

the angle between them to be θv = 90◦ to prevent fast particles with v ∼ |v0| from

moving along the field lines.

The plasma is isolated with the vacuum outside: the bounded plasma model

[11]. The simulation particles are confined in the region xL < x < xR, being

specularly reflected at x = xL and x = xR. The equation for the longitudinal

electric fields is solved under the assumption that there is no charge in the regions

x < xL and x > xR. For the transverse fields, an absorbing boundary condition is

used: Electromagnetic fields leaving the plasma region is absorbed in the vacuum

regions [6].

The ion-to-electron mass ratio is taken to be mi/me = 100 in this chapter.

The speed of light is c/(ωpe∆g) = 4, where ωpe is the electron plasma frequency

calculated with use of the electron density averaged over the entire plasma region

xL < x < xR. The electron thermal speed vTe = (Te/me)1/2 is vTe/(ωpe∆g) =

0.4 with Te = Ti; |Ωe|/ωpe = 3; hence, the Alfvén speed becomes vA/(ωpe∆g) =

1.2. [Figure 3.4 has different simulation parameters, such as mi/me = 400 and

c/(ωpe∆g) = 10.]
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3.1.2 Simulation results: Creation of ultrarelativistic elec-
trons in the main pulse

0

100
pex
mec

0

100
pey
mec

0

100
pez
mec

0

100

685 695 705

γe

xm
x/(c/ωpe)

Figure 3.2: Electron phase space plots. The solid line in the bottom panel shows
the profile of φ. We find ultrarelativistic electrons with γ > 100 in the main pulse
region.

　This section outlines the phenomenon of ultrarelativistic electron acceleration

in an oblique shock wave, with use of simulation results.

Field profiles in an oblique shock wave observed in a particle simulation have

been shown in Fig. 2.4. As mentioned there, the quantities Bz, Ey, φ, and plasma

density have similar profiles, while By, Ex, and Ez are approximately proportional

to ∂Bz/∂x near the shock front. The magnetic field Bz is particularly strong near

the shock transition region, the width of which is ∼ c/ωpi.

The electron acceleration discussed here takes place in the main pulse, which

is in 695<∼x/(c/ωpe)<∼705 in Fig. 2.4. Some electrons are reflected near the end of

the main pulse region and then accelerated and trapped in the main pulse.

Figure 3.2 displays electron phase spaces (x, px), (x, py), (x, pz), and (x, γ),

where p = meγv, and each point represents an electron in the phase space at the
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same instant as that of Fig. 2.4 [2]. There are many ultrarelativistic electrons with

γ " 100 in the main pulse region. The highest energy electrons are found near the

position of the strongest magnetic field, x = xm, at which the electric potential φ

also peaks.
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Figure 3.3: Time variations of positions (x − vsht) and y and energy γ of an ac-
celerated electron. After entering the shock wave from the upstream region, this
particle is reflected near the end of the main pulse region at time t = tr1, acceler-
ated to γ ∼ 100 in the main pulse, and reflected again at t = tr2. This particle is
trapped by the shock wave and oscillates in the main pulse region.

　 Plotted in Fig. 3.3 are the time variations of the positions (x − vsht) and y

and energy γ of an accelerated electron. The top panel indicates that this particle

coming from the upstream region begins to move with the shock wave after the

reflection at t = tr1 near the end of the main pulse region. After moving forward

for a short period, it returns to the end part of the main pulse and suffer the second

reflection there at t = tr2. That is, this particle is trapped by the shock wave in

the main pulse region. The oscillation periods of y and γ, ωpet ∼ 400, are the same

as that of (x− vsht). Simulations show that this oscillation period becomes longer

as the particle energy rises. In addition to this long-period oscillation, we observe

a short-period oscillation due to relativistic gyromotion, with a period ωpet + 30

around the time of the highest energy of this particle, ωpet + 780.
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Figure 3.4: Trajectories of an accelerated electron (thick line) and a test electron
(thin line) in the (x, y) plane. Although these two particles have the same initial
positions and velocities, reflection does not occur in the test electron calculated
without parallel electric field.

　The parallel electric field, E‖ = (E ·B)B/B2, plays an essential role in this

mechanism. The thick line in Fig. 3.4 represents the trajectory of an accelerated

electron by a shock wave with θ = 60◦: This is a result of another simulation with

mi/me = 400 and c/(ωpe∆g) = 10 [14]. After reflected near the end of the main

pulse, this particle oscillates, as the one in Fig. 3.3. Its energy becomes the highest

near the maxima of y; around which, therefore, its gyromotion is appreciable. On

the other hand, the thin line shows the trajectory of a test particle, which does not

affect either other particles or fields. The test particle orbit has been obtained from

the relativistic equation of motion with perpendicular electric field, E⊥ = E−E‖:

dp

dt
= −e

(
E⊥ +

v ×B

c

)
, (3.8)

where we use the electric and magnetic fields in the particle simulation. The test

particle passes through the shock wave without suffering acceleration. Although the

initial positions and velocities of the two particles are the same, neither reflection
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nor acceleration occurs in the test particle calculated with no parallel electric field.

3.2 Theoretical analysis

3.2.1 Mechanism of electron acceleration

AB

C

D

E

x
y

xm

Figure 3.5: Schematic representation of guiding-center motions projected on the
(x, y) plane. Here, φ and Bz take their maximum values at x = xm. Many of the
electrons flowing from the upstream region pass through the shock wave (dotted
line), while some are reflected near the end of the main pulse region (solid line:
D→E). When electrons move from points A to D, their kinetic energies do not
change much, whereas the electrons reflected at point D have great energies at
point E.

　
We now consider the physical mechanism of the electron acceleration in the

wave frame. Detailed calculations to derive the highest energy of these electrons,

Eq. (3.24), are given in Appendix D.

Trajectories of passing and reflected electrons

Figure 3.5 shows schematic orbits of electron guiding centers projected on the (x, y)

plane in the wave frame, where the line x = xm represents the ridge of Bz and φ,

point A is a guiding-center position in the far upstream region, point B is the edge

of the shock wave (the position at which Bz and φ begin to rise), points C and E
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are the positions at x = xm, and point D is the end of the main pulse region. In

the upstream region (path A→B), the plasma moves with the velocity

vx = −vsh = cEy0/Bz0 (< 0). (3.9)

After entering the shock wave, electrons drift in the negative y direction (B→C)

owing to the rising electric potential (the Ex × Bz drift is in the negative y direc-

tion). After passing the potential peak, the guiding centers move in the positive y

direction (C→D) because the sign of Ex becomes negative. Whereas many of the

electrons continue to move to the downstream region (dotted line), some electrons

are reflected near the end of the main pulse and then trapped by the shock wave

(D→E); they oscillate around the line x = xm.

Energy gain from potential φ and constant electric field Ey0

Electron kinetic energies do not change much as they drift along the trajectory

A→D; after passing the main pulse region, their energies remain low. The electrons

that are reflected at point D, however, have great energies at point E.

From the relativistic equation of motion for an electron in the wave frame,

me
d(γv)

dt
= −e

(
E +

v ×B

c

)
, (3.10)

one obtains a differential equation for particle energy,

d

dt
(mec

2γ) = −e(Exvx + eEy0vy), (3.11)

which can be integrated to give

mec
2(γ − γ0) = e(φ− φ0)− eEy0

∫
vydt, (3.12)

where the subscript 0 refers to the quantities in the far upstream region. As

electrons drift from points A to C, they gain energy from the electric potential

φ by an amount

∆E1 = eφ(xC)− eφ(xA) (> 0), (3.13)
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where xC denotes the x position at point C. As stated in Chap. 2, eφ is of the order

of 2miv2A(M − 1); hence, ∆E1 can be much greater the electron rest mass energy

mec2. At the same time, however, they lose energy owing to the constant electric

field Ey0 (< 0),

∆E2 = −eEy0(yC − yA) (< 0). (3.14)

The net energy change along the path A→C is thus

∆E = ∆E1 +∆E2. (3.15)

Although the magnitudes of ∆E1 and ∆E2 are both great, they almost cancel [15],

∆E + 0. This is also the case with the trajectory C→D. The energies of passing

electrons thus remain low.

If, however, electrons are reflected at point D and move to point E, then they

would absorb energy from both φ and Ey0. The energy gain from Ey0 is

∆E3 = −eEy0(yE − yD) (> 0), (3.16)

and that from the potential, eφ(xE) − eφ(xD), is nearly equal to ∆E1. Because

∆E1 and ∆E3 are both positive, the increment of kinetic energy at point E

∆E = ∆E1 +∆E3, (3.17)

is quite large.

Small relative velocity between reflected electrons and shock wave

There is another important effect that enhances the energization of reflected elec-

trons: It takes long periods of time for reflected electrons to reach point E from

point D, so that the distance yE − yD =
∫ E

D vydt becomes quite long.

This can be seen as follows. With use of the drift velocity vd and the velocity

component parallel to the magnetic field, v‖, one may write the guiding-center

velocity as

vg + vd + v‖B/B. (3.18)
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In a shock wave, the drift velocity is approximately given by the E ×B drift,

vd + cE ×B/B2, (3.19)

unless the gyration speed is extremely high. The x, y, and z components of the

guiding-center velocity can therefore be written as

vgx =
cEy0Bz

B2
+ v‖

Bx0

B
, (3.20)

vgy = −cExBz

B2
+ v‖

By

B
, (3.21)

vgz = c
ExBy − Ey0Bx0

B2
+ v‖

Bz

B
. (3.22)

The first term on the right-hand side of Eq. (3.20) is always negative because

Ey0 < 0, while the second term can be positive. Even though many of the incident

particles have negative v‖ in the upstream region, reflection makes v‖ positive. The

sign of vgx is then reversed, and reflected electrons move from points D to E. The

values of vgx of these particles would be quite small if

cEy0Bz

B2
+ c

Bx0

B
∼ 0, (3.23)

where the left-hand side is equivalent to the right-hand side of Eq. (3.20) if v‖ ∼ c.

Under these circumstances, it takes long periods of time for reflected particles to

move from points D to E, during which they absorb a great amount of energy from

Ey0. Indeed, in the time between tr1 and tr2 in the top panel of Fig. 3.3, the time

period in which (x− vsht) rises is much longer than the period in which (x− vsht)

goes down immediately before tr2: The former corresponds to the path D→E→B

in Fig. 3.5, while the latter to B→C→D.

　By integrating the term −eEy0

∫
vydt along the orbit from points B to E in

Eq. (3.12), one finds the energy increment as

mec
2(γ − γ0) =

eφE

1− (vsh/c)(Bz0/Bx0)
, (3.24)

in terms of the quantities in the wave frame [2] (for the details, see Appendix D).

Since the magnitude of the potential is eφ ∼ 2miv2A(M − 1), the Lorentz factor

91



0

10

20

0.2 0.3
vsh/c

0

100

200

0.4 0.6

γ

vsh/c

m

(a) (b)

Figure 3.6: Highest electron energy versus shock propagation speed vsh. The
strength of the external magnetic field and the propagation angle are |Ωe|/ωpe = 3
and θ = 45◦ in the left panel and are |Ωe|/ωpe = 1 and θ = 66◦ in the right panel.
The relation vsh ∼ c cos θ holds at vsh/c = 0.71 in the left panel and at vsh/c = 0.41
in the right panel, around which γ is high in both theory (solid lines) and simulation
(dots) results.

can be quite large and increases with the magnetic-field strength. Furthermore,

Eq. (3.24) indicates that γ is particularly large if its denominator is close to zero,

(vsh/c)(Bz0/Bx0) ∼ 1, which, with the aid of Eqs. (2.58) and (2.61), can be put

into the following form:

vsh ∼ c cos θ, (3.25)

where θ is the angle in the laboratory frame. It is interesting to note that c cos θ

is the relativistic (v‖ ∼ c) particle velocity 〈vx〉 averaged over a gyroperiod in an

external magnetic field.

Because the Alfvén speed and thus the shock speed vsh decrease with increasing

ion mass, the angle θ that satisfies Eq. (3.25) becomes closer to 90◦ as mi goes up.

In low beta plasmas, where the shock speed is approximately given by vsh = MvA,

Eq. (3.25) can be rewritten as

M

(
me

mi

)1/2 |Ωe|
ωpe

∼ cos θ. (3.26)

Hence, the angle is θ = 45◦ for the parameters M = 10, mi/me = 100, and
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|Ωe|/ωpe = 1, while for the real mass ratio mi/me = 1836, θ is 77◦.

Figure 3.6 shows the highest energy of electrons as a function of the shock

propagation speed vsh for the cases with |Ωe|/ωpe = 3 and θ = 45◦ (left panel)

and with |Ωe|/ωpe = 1 and θ = 66◦ (right panel). In both panels, the simulation

results (dots) are consistent with the theoretical values (lines). The Lorentz factor

becomes particularly large near the shock speed given by Eq. (3.25). Furthermore,

as predicted by the theory, the stronger the magnetic field is, the higher the electron

energy is.

Since the length along the field line from the end of the main pulse to the

location of x = xm is ∼ (c/ωpi)(Bz/Bx0), the acceleration time is estimated to

be ∼ N(1/ωpi)(Bz/Bx0), where N is a numerical factor much greater than unity.

If this ultrarelativistic acceleration takes place in large-amplitude magnetosonic

waves created by a solar flare, electron γ’s would reach 100 in time periods much

shorter than one second, even if N is as great as 10 or 100.

3.2.2 Reflection and parallel pseudo potential

We have seen that reflected electrons gain a great amount of energy. This sec-

tion describes the mechanism of electron reflection. Since the shock wave has a

positive electric potential, it is understandable that positively charged ions can be

reflected from the shock front, which will be discussed in Chap. 4. On the other

hand, electrons coming from the upstream region usually tend to be pulled into the

shock wave. The electron reflection takes place in the end part of the main pulse

when the parallel pseudo potential F becomes small there; nonstationarity of wave

propagation is related to this phenomenon.

Nonrelativistic description

First, we make a nonrelativistic analysis for physical processes involved in the

reflection [3]. In the drift approximation,

v = v‖
B

B
+ c

E ×B

B2
+ ṽ, (3.27)
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where ṽ is the gyration velocity, we have

E · v =
E ·B
B

v‖ +E · ṽ. (3.28)

The treatment here can be either in the wave frame or in the laboratory frame.

In association with gyromotion, the kinetic energy meṽ
2/2 can vary with time

owing to the rotational electric field [16]:

−e〈E · ṽ〉 = d

dt
(µmB), (3.29)

where the brackets denote the time average over the gyroperiod and µm is the

magnetic moment,

µm =
meṽ2

2B
. (3.30)

Equation (3.28) thus gives a time-averaged energy equation as

d

dt

(
1

2
mev

2 − µmB

)
= −e

E ·B
B

v‖. (3.31)

We may write the kinetic energy as

mev
2/2 = me(v

2
‖ + v2d)/2 + µmB. (3.32)

Since mev2d is usually smaller than mev2‖, the quantity in the parentheses on the

left-hand side of Eq. (3.31) is approximately the kinetic energy of the parallel

velocity,

mev
2/2− µmB + mev

2
‖/2. (3.33)

Integration of Eq. (3.31) from time t0 to time t1 yields the increment of the energy

(mev2/2− µmB) as
(
1

2
mev(t1)

2 − µmB(t1)

)
−
(
1

2
mev(t0)

2 − µmB(t0)

)
= −e

∫ t1

t0

E‖(t)v‖(t)dt,

(3.34)

where B(t) is the magnetic-field strength at the position of the particle.

Eliminating ṽ in Eq. (3.27) through time averaging, we obtain the x component

of the guiding-center velocity,

dx

dt
=

Bx0

B
v‖ + vdx. (3.35)
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In the wave frame, this equation is identical to Eq. (3.20).

Substituting v‖ given by Eq. (3.35) in Eq. (3.31), and using the relations

∂F (x, t)

∂x
= −E(x, t) ·B(x, t)

Bx0
, (3.36)

dF (x, t)

dt
=

∂F (x, t)

∂t
+

dx

dt

∂F (x, t)

∂x
, (3.37)

one finds that
dε‖
dt

= −e
∂F

∂t
− e

∂F

∂x
vdx, (3.38)

where the quantity

ε‖ = mev
2/2− µmB − eF, (3.39)

is approximately the sum of the parallel kinetic energy (mev2‖/2) and the parallel

pseudo potential (−eF ).

It is noted that in the time integration of Eq. (3.38) along the path B→C→D

in Fig. 3.5 in the wave frame, the contribution of the right-hand side is negligibly

small, because its time period is short: Electrons drift from points B to D before F

significantly changes. (We also note that vdx and ∂F/∂x are roughly even and odd,

respectively, around the line x = xm.) On the other hand, in the integration along

the long-time path D→E→B, the effect of the change in F should be included.

Thus, integrating Eq. (3.38) along the path A→D in the wave frame, we ob-

tain an equation that resembles the energy conservation form of a particle in a

“potential” F :

mev
2
‖/2− eF + mev

2
‖0/2− eF0, (3.40)

where the terms on the right-hand side are the quantities in the far upstream

region. Electrons would move to the downstream region if eF +mev2‖0/2− eF0 > 0

when they arrive at point D, end of the main pulse. If, however, F happens to be

particularly small, eF +mev2‖0/2− eF0 < 0, when they arrive there, they would be

reflected, taking the path D→E→B. Because the wave propagation is not perfectly

stationary, this can occur.
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Relativistic description

Next, we consider relativistic motions in a stationary wave in the wave frame [1], for

which we have the energy equation: the differential form (3.11) and the integrated

form (3.12). Substituting vy obtained from the z component of the relativistic

equation of motion,

vy =
c

eBx0

dpz
dt

+ vx
By

Bx0
, (3.41)

in Eq. (3.11), one finds that

d

dt
(mec

2γ) = −e

(
E ·B
Bx0

)
dx

dt
− cEy0

Bx0

dpz
dt

. (3.42)

Then, introducing the quantity

ε = mec
2γ − eF +

cEy0

Bx0
pz, (3.43)

and using Eqs. (3.36) and (3.37) with ∂/∂t = 0, one can put Eq. (3.42) into the

following form:
dε

dt
= 0. (3.44)

The quantity ε is constant along the particle orbit. Because of the presence of the

third term on the right-hand side of Eq. (3.43), the particle energy mec2γ is not

limited by the magnitude of eF : γ and pz can both rise.

Integrating Eq. (3.44) yields

mec
2(γ − γ0) = e(F − F0)−

mecEy0

Bx0
(γvz − γ0vz0), (3.45)

which, with use of the quantity defined as

h = mec
2

(
1− Bz0

Bx0

vshvz
c2

)
, (3.46)

can be written as

γ = [e(F − F0) + h0γ0]/h. (3.47)

Equation (3.46) indicates that h is positive unless Bz0/Bx0 is much greater than

unity:
Bz0

Bx0
>

c2

vshvz
. (3.48)

96



-0.3

0

0.3
E//

ωpet=650

B0

0

10

540 555 570
x/(c/ωpe)

F

φ

-0.3

0

0.3

ωpet=680

525 540 555
0

10

x/(c/ωpe)

F

φ

Figure 3.7: Profiles of E‖, F , and φ in a shock wave at two different times in a

simulation. Here, F̃ = eF/(mec2) and φ̃ = eφ/(mec2). Near the end of the main
pulse region, F and φ become small; in particular, F has a negative dip in the right
panel.

If h > 0, then Eq. (3.47) suggests again that electrons cannot penetrate regions

where F is small, eF < eF0 − h0γ0. Furthermore, it shows that γ becomes partic-

ularly large if h ∼ 0; it can occur in the situation that

vsh ∼ c2Bx0/vzBz0. (3.49)

Under the circumstances such that Bz/B ∼ 1 and v‖ ∼ c (and thus vz ∼ cBz/B),

Eq. (3.49) becomes identical to Eq. (3.23).

One may write the nonrelativistic form of Eq. (3.44) as

d

dt

(
1

2
mev

2 − eF +me
cEy0

Bx0
vz

)
= 0. (3.50)

Appendix E proves that Eq. (3.50) is identical to Eq. (3.38) for the stationary case,

∂F/∂t = 0 [3].

Nonstationarity and deep trapping

　 Figure 3.7 shows E‖ (upper panels) and F and φ (lower panels) in a shock

wave at two different times observed in a simulation [1]. In the main pulse region
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[530<∼x/(c/ωpe)<∼550 in the left panels], F and φ are large, and E‖ is positive in

the front part of F (shock transition region) and negative in the region of the back

slope of F . Near the end of the main pulse region, F is small and sometimes

becomes negative, when electron reflection can occur there. In this example, at

ωpet = 680 (right panels) F has a negative dip around x/(c/ωpe) = 550 and E‖ has

large negative values.

The reflected electrons are then deeply trapped in the main pulse region with

large F . After the reflection they move forward to the front part of the shock

wave, where they are reflected backward again. Even if the values of F have been

restored to the normal (time-averaged) ones by the time they return to the end of

the main pulse, they are reflected forward again.

In fact, simulations show that the relativistic energy level (3.43) of a particle

in the wave frame slightly decreases after the reflection [3]. This indicates that the

energy level ε of the particle falls by a small amount in the “potential well” given

by the time-averaged F ; thus, the trapping becomes stronger.

x

xxm
xr

F(x,t)

Figure 3.8: Model profiles of F . The upper figure shows the time-averaged profile,
while the lower one shows the profile with a negative dip near the end of the main
pulse. Electrons can be reflected near x = xr, after which F will quickly recover
there from negative to positive values as in the upper figure.

　The slight decline in the energy level ε can be interpreted as follows [3]. As

mentioned earlier, it takes a long time for a reflected electron to move along the
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path D→E→B in Fig. 3.5. During this drift, F can significantly change, which can

affect the particle motion. Let 〈F (x)〉 be the stationary (time-averaged) profile

of F in the wave frame and F1 be the perturbation near the end of the main

pulse (x = xr in Fig. 3.8). In the case F1 = 0, the reflection does not occur. If

F = 〈F (x)〉+F1 is sufficiently small at some time, then some electrons are reflected

there. If F recovers after this, i.e., if ∂F1/∂t > 0, the parallel kinetic energy mev2‖/2

would decrease in time, which we see by integrating Eq. (3.38) along the particle

orbit over time [since Eq. (3.43) is for a stationary wave, we use Eq. (3.38) even

though it is nonrelativistic]: Provided that an electron is reflected at t = tr and F1

vanishes at time t (> tr), then from Eq. (3.38), one obtains

1

2
mev

2(t)− µmB(t)− e〈F 〉 = −e

∫ t

tr

∂F1

∂t
dt, (3.51)

where we have used the relation

1

2
mev

2(tr)− µmB(tr)− e〈F (tr)〉 ∼ 0, (3.52)

and have ignored the second term on the right-hand side of Eq. (3.38), assuming

that the time scale of the perturbations of F is much shorter than the ion gyroperiod

with their scale length of the order of the shock width (∼ c/ωpi). Equation (3.51)

indicates that the energy level of ε‖ slightly falls in the well of the pseudo potential

〈F 〉, resulting in deeper trapping. [Furthermore, the reflection of electrons with a

negative charge would act to make the values of F near the reflection point larger

(make ∂F1/∂t positive).]

It is noted, however, that the present discussion should be valid in the case that

vsh ! c cos θ. If the shock speed is so fast that vsh > c cos θ, then particles will not

be able to move with the shock wave for long periods of time; they will eventually

go to the downstream region.

The number of trapped, high-energy electrons continually grows in the main

pulse region unless vsh > c cos θ. It is because electrons are newly trapped at times

when a dip of F is created, and those electrons are hardly detrapped. Shock fronts

can therefore be source regions of radio waves due to synchrotron radiation and of

x and γ rays due to bremsstrahlung and inverse Compton scattering.

99



Bibliography

[1] N. Bessho and Y. Ohsawa, Phys. Plasmas 6, 3076 (1999).

[2] N. Bessho and Y. Ohsawa, Phys. Plasmas 9, 979 (2002).

[3] A. Zindo, Y. Ohsawa, N. Bessho, and R. Sydora, Phys. Plasmas 12, 052321
(2005).

[4] S. R. Kane, K. Kai, T. Kosugi, S. Enome, P. B. Landecker, and D. L. McKen-
zie, Astrophys. J. 271, 376 (1983).

[5] S. R. Kane, E. L. Chupp, D. J. Forrest, G. H. Share, and E. Rieger, Astrophys.
J. 300, L95 (1986).

[6] Y. Ohsawa, Phys. Fluids 28, 2130 (1985).

[7] A. B. Langdon and C. K. Birdsall, Phys. Fluids 13, 2115 (1970).

[8] A. B. Langdon, J. Comput. Phys. 6, 247 (1970).

[9] H. Okuda, Phys. Fluids 15, 1268 (1972).

[10] H. Okuda, J. Comput. Phys. 10, 475 (1972).

[11] V. K. Decyk and J. M. Dawson, J. Comput. Phys. 30, 407 (1979).

[12] P. C. Liewer, A. T. Lin, J. M. Dawson, and M. Z. Caponi, Phys. Fluids 24,
1364 (1981).

[13] J. M. Dawson, Rev. Mod. Phys. 55, 403 (1983).

[14] S. Takahashi, H. Kawai, Y. Ohsawa, S. Usami, C. Chiu, and W. Horton, Phys.
Plasmas 16, 112308 (2009); ibid. 16, 129904-1 (2009).

[15] Y. Ohsawa, J. Phys. Soc. Jpn. 58, 4445 (1989).

[16] G. Schmidt, Physics of High Temperature Plasmas, (Academic Press, New
York, 1979), Chap. 2.

100



Chapter 4

Ion acceleration

The electric potential and magnetic-field strength sharply rise in the shock tran-

sition region. This leads to ion reflection from the shock front; because of the

magnetic field in the upstream region, however, most of the reflected ions return to

the shock front and finally move to the downstream region. This process has been

discussed by many authors [1]- [14].

Morawetz showed in 1961 that ion reflection can create a steady-state shock

structure even in a collisionless plasma [1,2]. In 1970’s and 80’s, particle simulations

demonstrated ion reflection due to a shock wave and resulting plasma heating

[3]- [9]. Furthermore, it was pointed out that reflected ions can reach relativistic

energies if the magnetic field is rather strong such that |Ωe| " ωpe [8, 10]. This

result was applied [13, 14] to the ion acceleration in solar flares [15, 16], in which

the highest ion energy, 1∼10 GeV, is weakly relativistic, γ <∼10.

Sagdeev and Shapiro analyzed in 1973 the ion orbit moving across the magnetic

field along the wave front in a perpendicular shock wave and showed that these

ions gain great energies [17]- [20]. These particles suffer multiple reflections in the

shock transition region and eventually pass through the shock front to the down-

stream region. Extending their work, Katsouleas and Dawson calculated in 1983

particle orbits in a perpendicular, electrostatic, monochromatic wave and argued

that particles could continue to move along the wave front and undergo unlimited

acceleration if the wave electric field is stronger than the external magnetic field,

E/B > 1. They proposed an accelerator based on this model [21]. The particle
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acceleration due to multiple reflections has attracted a great deal of attention and

is now called the surfatron.

Multiple reflections can take place in the case that the particle speed v is close

to the shock speed vsh, while if v is much lower than vsh, particles can be reflected

only once [8]. In a low beta plasma, in which the ion thermal speed is lower than

the Alfvén speed and thus much lower than vsh, multiple reflections will rarely

occur.

If nonthermal, energetic particles with v > vsh encounter a shock wave, they can

experience another distinct energization process [22]- [29]. Since such energetic ions

have gyroradii ρ much greater than the width of the shock transition region, they

can move back and forth between the shock and upstream regions in association

with their gyromotions. They absorb energy from the transverse electric field

when they are in the shock wave, with their perpendicular velocities v⊥ going up,

while their energies are nearly constant when they are in the upstream region;

consequently, their kinetic energies increase stepwise [24]- [28].

In the oblique case, particles with v‖ cos θ ∼ vsh can move with the shock wave,

because the time-averaged particle velocity in the x direction, 〈vx〉, is nearly equal

to v‖ cos θ. Its interaction time is, however, limited. Because of the steep profile of

the magnetic field in the transition region, v⊥ that has grown in the shock wave is

converted to v‖ in each cycle of gyromotion. Since v‖ and thus 〈vx〉 rise, particles

can stay near the shock transition region for only a few gyroperiods. They escape

from the shock wave to the upstream region, and their energization ceases [25].

If, however, the shock speed is close to c cos θ,

vsh ∼ c cos θ, (4.1)

then the particle speed 〈vx〉 = v‖ cos θ cannot easily exceed vsh: Particle velocity

v‖ is limited by the speed of light, whereas particle momentum p‖ can increase

indefinitely. Particles with v‖ ∼ c can therefore move with the shock wave for long

periods of time, and they can be incessantly accelerated. By means of simulations

that combine particle simulations and test particle calculations, ion acceleration
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from γ ∼ O(1) to γ ∼ 160 has been demonstrated [27].

These three energization processes of ions are the subject of this chapter: one

reflection, multiple reflections (surfatron), and incessant acceleration of relativistic

particles.

4.1 Physical considerations and numerical calcu-
lations on one and multiple reflections

4.1.1 Conditions for reflection

Large electric potential forms in a shock wave; as shown in Eq. (2.39), its magnitude

is eφ ∼ 2miv2A(M − 1) in a perpendicular pulse in a low beta plasma. It was also

mentioned there that the potential is smaller than the kinetic energy of an ion with

the fluid speed in the wave frame, mi(MvA)2/2, and thus the ions with the average

velocity (fluid velocity) are not reflected by the potential.

Reflection can occur, however, because each particle has a thermal, random

velocity v′ in addition to the average velocity, v = −vshex + v′, and therefore can

have a kinetic energy smaller than the potential. If the inequality

mi

2
(v′x − vsh)

2 < eφ, (4.2)

holds when a particle enters the shock wave, then this particle would be reflected

from the shock front. (In the narrow shock transition region with its width ∼ c/ωpe

of a perpendicular shock wave, the electric force on the ions is stronger than the

magnetic force, and thus the condition for the reflection is determined primarily

by the electric force. Appendix F gives a more detailed discussion on the condition

for ion reflection including the effect of magnetic force.)

In the laboratory frame, ions with vref < vx < vsh at the time of encounter

with a shock wave will be reflected. Here, vref + vsh − (2eφ/mi)1/2 is the minimum

velocity for reflection, Eq. (F.27) in Appendix F. The velocity distribution function

f(vx) will be quite small at vx = vsh in a low beta plasma, while f(vref) increases

with φ; large-amplitude pulses can reflect many ions.
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Immediately after the reflection, the x component of the particle velocity is

(vsh− v′x) in the wave frame and is (2vsh− v′x) in the laboratory frame. The kinetic

energy of a reflected ion increases with increasing relative velocity (vsh − v′x) at

the time of encounter. As Eq. (4.2) shows, however, if the relative velocity is too

large (i.e., vx < vref in the laboratory frame), reflection does not occur. Ion ring

velocity distribution can thus be created in a low beta plasma [9]. On the other

hand, particles with v′x + vsh could experience multiple reflections; the energy gain

in each reflection is rather small though.

The multiple reflections would rarely occur in a low beta plasma. If the ion

thermal speed is much lower than the Alfvén speed, few particles would satisfy the

relation v′x + vsh. Since the relative speed is greater at the second collision with the

shock wave than at the first one, the second reflection is less likely than the first

one. The velocity range that allows multiple reflections is narrow: A quantitative

analysis for this is also given in Appendix F.

4.1.2 One reflection

　 Figure 4.1 displays the trajectories of an ion reflected by a pulse once [8]. This

is a result of numerical calculations for particle orbits in a given stationary, per-

pendicular solitary pulse, in which the maximum and equilibrium field strengths

have been taken to be Bm/B0 = 2.8 and |Ωe|/ωpe = 0.1, respectively. The upper

panel plotted in the wave frame indicates that the particle approaches the pulse in

a curtate-cycloid orbit (because its gyration speed is lower than the pulse speed)

from the far upstream region and is reflected by the pulse gaining a large amount

of energy, after which it exhibits a prolate-cycloid orbit with a large radius. When

reentering the pulse, it is not reflected, passing through the pulse to the down-

stream region. In the momentum space (lower panel), it moves in a circle with a

small radius when it is in the upstream region. When it is reflected, however, px

rapidly goes up. The particle then makes a circular motion with a large radius.

Particles reflected by a shock wave with a speed vsh have speeds v ∼ 2vsh in
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Figure 4.1: Orbits in the (x, y) and (px, py) planes of an ion reflected once. These
orbits are depicted in the wave frame. The magnitude of the initial momentum
is p/(mic) = 1.0 × 10−4 in the laboratory system. This particle is reflected by a
solitary wave near x = 0 and gains a great amount of energy.
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the laboratory frame; calculations for particle reflection are given in Appendix F,

which is based on Refs. [8, 9]. This is a significant energy multiplication if vsh is

much higher than the ion thermal velocity vT i. Indeed, from the relation

2vsh
c

= 2

(
me

mi

)1/2 |Ωe|
ωpe

M, (4.3)

for a shock wave with vsh = MvA, one sees that particle energy becomes relativistic

with one reflection ifmi/me = 1836, M = 10, and |Ωe|/ωpe = 3. Equation (4.3) also

implies that shock waves (large-amplitude magnetosonic waves) create protons with

much higher energies in coronal magnetic tubes than in the interplanetary space

where the magnetic field is much weaker, |Ωe| * ωpe.

4.1.3 Multiple reflections

Figure 4.2: Orbits of an ion reflected several times. The initial momentum is
p/(mic) = 2.5× 10−3 in the laboratory system.
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　 Figure 4.2 presents the orbits of a particle that has suffered multiple reflec-

tions. After the encounter with the pulse, this particle moves along the wave front

repeating small reflections, during which its py grows. The initial speed of this

particle is much greater than that of the particle in Fig. 4.1, and therefore the

multiple reflections are possible.

This type of motion was studied in detail by Sagdeev and Shapiro in 1973

[17–20]. Here, however, following Katsouleas and Dawson [21], we analyze the

motion in a heuristic manner. We consider a monochromatic, electrostatic wave

Ex = E0 cos k(x − vsht) propagating perpendicular to an external magnetic field

B = (0, 0, Bz0). The equation of motion for an ion then reads as

mi
d(γvx)

dt
= qiEx +

qivyBz0

c
, (4.4)

mi
d(γvy)

dt
= − qivxBz0

c
. (4.5)

If, owing to the strong Ex, the ion moves with the wave,

vx = vsh, (4.6)

then Eq. (4.5) gives

vy = − Ωivsht

γsh(1 + Ω2
i t

2v2sh/c
2)1/2

. (4.7)

The velocity vy increases with time, with the particle speed v approaching c.

Equation (4.6), however, will not hold for a long time because of the presence

of the magnetic field. If we suppose that the trapping ends when the magnetic

force surpasses the electric force in Eq. (4.4), then we obtain the upper limit of the

speed as v ∼ cE0/Bz0.

Katsouleas and Dawson [21] have suggested that if the electric field is so strong

that E0 > γshBz0 (this condition can be seen more easily if we write Eq. (4.4) in

the wave frame), then the assumption (4.6) does not break down; thus, unlimited

acceleration could occur. Developing this idea, they proposed a new plasma-based

accelerator.
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Nevertheless, as can be seen from Eq. (2.44), the wave theory indicates that

Ex < Bz in stationary, nonlinear, magnetosonic waves [30]. Consequently, the

unlimited surfatron acceleration will not be realized in magnetosonic waves.

4.1.4 Demonstration with particle simulations

Figure 4.3: Ion phase spaces (x, px) and (x, py) near a perpendicular shock wave.
Ions are rapidly accelerated to relativistic energies in the shock transition region.

　 Figure 4.3 is a result of a particle simulation, showing relativistic ion ac-

celeration caused by a perpendicular shock wave [14], where the equilibrium mag-

netic field strength is taken to be |Ωe|/ωpe = 3, and the observed shock speed is

vsh = 2.7vA. Here, ions are rapidly accelerated to relativistic energies in the shock

transition region. [The vertical axis of the left panel is px/(mic) = γvx/c; the

particles with px/(mic) " 1 are relativistic.] In this simulation, the Alfvén speed

vA is 15 times as fast as the ion thermal velocity vT i; thus, the energization is due

to one reflection.

Figure 4.4 shows the differential energy spectra f(γ) of the ions at t = 0 and

at ωpet = 480. The shock wave produces a large number of relativistic particles;

the energy spectrum at ωpet = 480 is well approximated by the power-law with a

spectral index s = 1.2: f = (γ−1)−1.2. Furthermore, it has a sharp cutoff near the

highest energy γ ∼ 3. These features are consistent with the observations of solar
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Figure 4.4: Power spectra f(γ) of ions at t = 0 and at ωpet = 480. The dashed
line represents a power-law form scaling as (γ − 1)−1.2, which fits fairly well to the
spectrum at ωpet = 480. The observed spectrum has a sharp cutoff near γ = 3.

energetic particles reported in Refs. [15, 16].

It is noted, however, shock waves can create various types of energy spectra. In

fact, as mentioned earlier, a shock wave can also generate a ring velocity distribu-

tion [9]. The energy spectra depend on several physical parameters, such as time,

wave amplitude, magnetic-field strength, propagation angle, and plasma tempera-

ture. Furthermore, if many large-amplitude magnetosonic pulses are generated in

a plasma owing to strong disturbances, the distribution of their amplitudes would

play an important role in determining the energy spectrum for high-energy ions.

4.2 Incessant acceleration of fast ions

We have seen the ion acceleration for the cases with v < vsh and with v ∼ vsh. We

now proceed to consider fast ions with

v > vsh. (4.8)

Their gyroradii are much greater than the width of the shock transition region,

which is ∼ c/ωpi in oblique shock waves,

ρ > c/ωpi. (4.9)
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4.2.1 Energy absorption from a perpendicular shock wave

ρ

tin tout

B

Ey

Figure 4.5: Schematic representation of the orbit of a fast ion and the front of
a shock wave. When the particle is in the shock wave (shaded area), it absorbs
energy from the transverse electric field. When it is in the upstream region, its
energy is constant. This figure shows the case of a perpendicular shock wave. In
the case of oblique shock waves, Bx0 is added to the external magnetic field, and
particles have gyro-averaged velocities 〈vx〉 + v‖ cos θ in the x direction.

Figure 4.5 shows a schematic diagram of the interaction of a fast ion and a

perpendicular shock wave. This particle enters the shock wave at t = tin and goes

out to the upstream region at t = tout. Such gyromotion is possible because of the

relations (4.8) and (4.9). Since the energy of the particle is high, it nearly follows

the unperturbed orbit. When in the shock wave, the particle gains energy from the

electric field Ey, while the work done by Ex is small: The field Ex is strong only

in the transition region, and the work done by Ex when the particle goes in the

shock wave and that when it goes out almost cancel. Integrating the electric force

along the unperturbed gyro-orbit from time tin to tout, one obtains the increment

of γ as [24, 26]

δγ =
2qip1⊥Ey1

m2
i c

2Ωi1
sin

(
Ωi1(tout − tin)

2γ

)
, (4.10)

where p1⊥ is the magnitude of perpendicular momentum in the shock wave (the

subscript 1 refers to quantities in the shock wave). Equation (4.10), which is also
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applicable to oblique shock waves, is derived in Appendix G. Since the gryoradius

ρ is large, the contribution from the thin transition region has been ignored in

the above calculation, which is consistent with the treatment of Ex; the profiles

of Bz, Ey, and φ are approximated with step functions near the shock front in

the theoretical model for the incessant acceleration in Sec. 4.2. The increment δγ

increases with p1⊥, which is a reflection of the fact that the arc length of a particle

orbit in the shock wave becomes longer as the particle energy goes up.

This type of motion has been observed in particle simulations. After gyrations

of a few times [∼ ρΩi/(2πvsh)], fast ions eventually move to the downstream region,

and some of them undergo energy multiplication by a factor of two or three [24].

4.2.2 Energy absorption from an oblique shock wave
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Figure 4.6: Interaction between a fast ion and an oblique shock wave. The shock
speed is vsh = 1.74vA with θ = 45◦. In the upper panel, the solid and dashed
lines, respectively, represent the time variations of the positions of the ion and
the wave front. The lower panel shows the time variation of γ of the ion. This
particle enters the shock wave twice and eventually goes away from the front to
the upstream region. Its energy goes up when it is in the shock wave.

In a magnetic field forming an angle θ with the x axis, the x component of the

gyro-averaged particle velocity is given by

〈vx〉 + v‖ cos θ. (4.11)
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Particles can therefore move with an oblique shock wave propagating in the x

direction if

vsh + v‖ cos θ. (4.12)

Figure 4.6 shows an example of the interaction between a fast ion and an oblique

shock wave [26], where the solid and dashed lines in the upper panel represent the x

positions of the particle and shock wave, respectively, while the lower panel displays

the time variation of γ. This particle barely enters the shock wave twice, and its

energy rises when it is in the shock wave; the rise in γ is due to the increase in the

perpendicular momentum p⊥ caused by Ey.

B0
p1 p0

p1

//

//

x

z B1
t=tin

⊥

⊥
p0

p

Figure 4.7: Schematic representation of magnetic field and momentum at t = tin
projected on the (x, z) plane. The subscripts 0 and 1 refer to quantities in the
upstream and shock wave regions, respectively. Although p is continuous, p0 = p1,
the perpendicular and parallel components change from (p0⊥,p0‖) to (p1⊥,p1‖).
Note that p1‖ > p0‖. The abrupt change in the momentum components also occurs
at t = tout.

Unlike the case of perpendicular shock waves, this particle finally outruns the

shock wave, although v‖ cos θ is initially smaller than vsh. This arises because part

of the perpendicular momentum p⊥ is converted to the parallel momentum p‖ when

the particle crosses the shock transition region with a steep magnetic-field profile:

At this moment, the perpendicular and parallel components of p rapidly change

because of the change in the direction of B, whereas the total momentum p is

continuous. That is, p0 = p1 and p0⊥ /= p1⊥, where p0 is the momentum when the

particle is in the upstream region and p1 is the one in the shock wave (Fig. 4.7).
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If a fast ion enters a shock wave at time t = tin and goes out of it to the

upstream region at t = tout, then the increase in the parallel momentum of this

particle is given by

δp‖ ≡ [p0(tout)− p0(tin)] ·B0/B0 = [p1⊥(tout)− p1⊥(tin)] ·B0/B0, (4.13)

where because of the above definition of p0, p0(tout) and p0(tin) are the momenta

right after t = tout and before tin, respectively. The increment δp‖ is always positive

[25]- [28], as proved in Appendix G. Since the increase in p‖ is caused by the

magnetic-field structure, the particle energy is unchanged in this process; p⊥ falls

when p‖ rises.

The parallel velocity v‖ and thus 〈vx〉 grow in this process, so that the condition

(4.12) breaks down after a few cycles of gyromotion across the thin transition region.

The fast ion outruns the shock wave, and the acceleration process ceases. This is

a kind of particle reflection due to a shock wave, even though its mechanism is

different from that described in Sec. 4.1.

4.2.3 Relativistic incessant acceleration

Whereas p‖ can increase indefinitely, v‖ is limited by the speed of light c. Equa-

tion (4.11) therefore suggests that relativistic particles with v‖ ∼ c cannot easily

outrun the shock wave if

vsh + c cos θ. (4.14)

No matter how large p‖ becomes, 〈vx〉 (+ v‖ cos θ) does not exceed c cos θ. Some

particles will move with the shock wave for long periods of time and undergo energy

jumps many times.

Fast particles that barely enter the shock wave spend most of the time in the

upstream region in each cycle of their gyromotion. Their gyroperiods are therefore

approximately given by 2πγ/Ωi0, where Ωi0 is the nonrelativistic ion gyrofrequency

in the upstream region and is related to the gyrofrequency Ωi1 in the shock wave

through Ωi1 = (B1/B0)Ωi0. Thus, dividing Eq. (4.10) by 2πγ/Ωi0, we obtain a
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gyro-averaged differential equation for the time rate of change of γ of a relativistic

particle accelerated many times by one shock wave as

dγ

dt
∼ qiv1⊥Ey

πmic2(B1/B0)
sin

(
Ωi1(tout − tin)

2γ

)
. (4.15)

For a stationary wave with a propagation speed vsh, the z component of Faraday’s

law gives the relation Ey = (vsh/c)(Bz1−Bz0). Equation (4.15) can then be written

as [27]
dγ

dt
∼ g

π

vsh
c
Ωi0, (4.16)

where g is a numerical factor smaller than unity,

g =
v1⊥
c

(
1− Bz0

Bz1

)(
1− B2

x0

2B2
z1

)
sin

(
Ωi1(tout − tin)

2γ

)
. (4.17)

Here, we have expanded the term (B2
z1 + B2

x0)
−1/2 assuming that Bz1 ) Bx0. If

the time dependence of v1⊥ and (tout − tin) is weak, roughly speaking, γ linearly

increases with time as γ ∼ (g/π)(vsh/c)Ωi0t+ γ0, where γ0 is the initial value of γ.

With particle simulations containing fast ions, it was found that, under the

condition vsh ∼ c cos θ, some fast particles continue to interact with the shock wave

until the end of the simulation run, with their γ rising stepwise; the particle in

Fig. 9 in Ref. [26] exhibits nine energy jumps.

To observe the acceleration process from γ ∼ 1 to γ ) 1, we need a simulation

time much longer than the relativistic ion gyroperiod.

To numerically study long-time behavior of incessantly accelerated relativis-

tic ions, we have adopted a test particle method. We obtain the field data and

propagation speed of an oblique shock wave from a one-dimensional, fully kinetic,

relativistic, electromagnetic, particle simulation. Then, assuming that the shock

propagation is stationary, we follow test particle orbits based on the field data in

this shock wave. In so doing, we are supposing that the abundance of nonthermal,

relativistic particles is much smaller than that of bulk particles; thus, the effect of

fast particles on wave evolution should be negligibly small.

The plasma parameters in the test particle calculations are taken to be the

same as those in the corresponding particle simulation [27]. The ion-to-electron
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Figure 4.8: Field profiles obtained from a particle simulation. These fields have
been used for test particle calculations.

mass ratio is mH/me = 50 (since the particle simulation contained He ions with

mHe/mH = 4 and nHe/nH = 0.1, rather a small value of mH/me = 50 was chosen);

the electron skin depth is c/(ωpe∆g) = 4; and the frequency ratio |Ωe0|/ωpe is

1.5 in the upstream region. For these parameters, the Alfvén speed is vA/c =

0.20. The propagation angle is taken to be θ = 61◦. The numerical integration

of the relativistic equation of motion of test particles was performed with Adams-

Bashforth-Moulton method [31].

Figure 4.8 shows the field profiles of a shock wave with a propagation speed

vsh = 2.4vA, which is close to c cos 61◦. These fields obtained from a particle

simulation were used for test particle calculations.

Plotted in Fig. 4.9 is the time variation of γ of an accelerated test particle. An

expanded view of the early stage is also presented in the small panel. The Lorentz

factor γ increases stepwise 42 times from γ = 4.2 to γ + 160. At ΩH0t = 1.1× 104,

where ΩH0 is the nonrelativistic hydrogen gyrofrequency in the upstream region, the

particle escaped from the shock wave to the upstream region. The time intervals
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Figure 4.9: Time variation of γ of a relativistic ion incessantly accelerated by
a shock wave. The fields shown in Fig. 4.8 have been used in the test particle
calculation. The energy of this particle rises stepwise from γ + 4 to γ + 160. This
particle finally outruns the shock wave owing to the increase in p‖.

and the magnitudes of energy jumps both grow with time, because the gyroperiod

and gyroradius become longer as γ goes up. The gyro-averaged γ rises almost

linearly with time, as suggested by Eq. (4.16).

The top panel of Fig. 4.10 presents the time variation of the x position of

this particle relative to the shock front, X = (x − vsht)/(c/ωpe). Here, X = 0 is

the position of the shock front; hence, X is negative when the particle is in the

shock wave. Although X > 0 for most of the time, the minima of X are negative

until ΩH0t = 1.1 × 104, indicating that the particle has interacted with the wave

for a very long time. After this time, the particle goes away ahead of the shock

wave. As shown in the second to fourth panels, the parallel momentum p‖ grows

steadily and v‖ approaches the speed of light c, while p⊥ and v⊥ rapidly change

exhibiting fish-bone profiles. The rise in p⊥ and v⊥ is caused by the transverse

electric field in the shock wave, and their fall is due to the conversion to the

parallel component. The velocity vx oscillates around the shock speed vsh, which

is indicated by the dashed line. With use of the observed average values of v1⊥/c
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Figure 4.10: Time variations of the position, momentum, and velocity of an inces-
santly accelerated ion. Here, X = x − vsht, with X = 0 being the position of the
shock front. The particle is in the upstream region (X > 0) most of the time. The
parallel momentum p‖ goes up stepwise, while p⊥ exhibits a fish-bone oscillation.
The parallel velocity v‖ approaches the speed of light c, and vx oscillates around
vsh.
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(= 0.2 ∼ 0.3), Bz0/Bz1 (= 0.3 ∼ 0.5), and sin[Ωi1(tout − tin)]/(2γ)] (∼ 0.7), we

find from Eq. (4.17) that g = 0.07 ∼ 0.13, which gives an estimate for the energy

increase rate as Ω−1
i0 dγ/dt = 0.01 ∼ 0.02, while the gyro-averaged slope of γ in

Fig. 4.9 for 1.4× 103 < ΩH0t < 1.1× 104 is observed to be Ω−1
i0 dγ/dt = 0.014. The

simulation results are consistent with the theoretical predictions.

Highly relativistic positrons and electrons, as well as ions, can have gyroradii

greater than the width of the shock transition region and therefore satisfy the

conditions for the incessant acceleration, Eqs. (4.8) and (4.9). They can thus also

suffer this energization process, after becoming relativistic with some mechanisms.

Such an example will be shown in Chap. 6.
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Chapter 5

Heavy-ion acceleration

The elemental compositions of solar energetic heavy ions are on average similar

to that of the solar corona [1, 2]: The ratio of the number density of high-energy

heavy ions, nj(h), to that of the background heavy ions, nj(0), is independent of

particle species j,
nj(h)

nj(0)
∼ const. (5.1)

This is also the case with galactic cosmic rays.

The motivation of the work in the present chapter stems from this fact, which

places a stringent constraint on the theory of cosmic-ray acceleration. If the ac-

celeration model were based on Landau resonance [3], for instance, it would be

excluded out because of this fact. The number of resonance particles, njr, whose

velocities are near the wave phase velocity ω/k approximately scales as

njr

nj0
∼ exp

(
−mj(ω/k)2

2T

)
, (5.2)

where T is the plasma temperature. In a multi-ion-species plasma, this ratio ex-

ponentially decreases with increasing mj, which contradicts Eq. (5.1). The accel-

eration model based on the reflection caused by the electric potential would also

be excluded out: The number of reflected ions is given by an equation similar to

Eq. (5.2) [4], which can be seen from the expression for the minimum velocity for

reflection, vref + vsh−(2eφ/mj)1/2, discussed in Sec. 4.1.1. The value of the velocity

distribution function at this speed, fj(vref), will decrease rapidly with increasing

ion mass mj. In fact, one can confirm with particle simulations that few thermal
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heavy ions are reflected by a shock wave in a multi-ion-species plasma with protons

being the major ion component.

Simulations for a multi-ion-species plasma show, however, that there is a mech-

anism that energizes heavy ions in such a way that their compositions are consistent

with Eq. (5.1) [5]. Furthermore, the energization of heavy ions takes place even

in a small-amplitude, soliton-like pulse; thus, unlike the solitary pulses in a single-

ion-species plasma [6], it is damped even in the propagation perpendicular to a

magnetic field [7, 8]. (Periodic perpendicular waves are undamped in both single-

and two-ion-species plasmas [7–10].) The presence of multiple ion species tends to

enhance the dissipation of wave energy, which has also been studied for Bernstein

waves in a thermal equilibrium state [11, 12].

In this chapter, we first show a simulation of heavy-ion acceleration caused by a

shock wave in a multi-ion-species plasma. Next, we present the theory of heavy-ion

acceleration due to a shock wave and that due to a small-amplitude pulse. We then

theoretically and numerically study the damping of small-amplitude pulses arising

from the heavy-ion acceleration.

5.1 Simulation of heavy-ion acceleration

Simulations have revealed simple and remarkable properties of heavy-ion acceler-

ation: A shock wave accelerates all the heavy ions that pass through the shock

front, and these particles reach nearly the same speed [5]. The heavy-ion speeds

and density ratios nj(h)/nj(0) thus become independent of particle species.

　To show this, we use a particle simulation code containing four ion species,

in which, as in space plasmas, protons (H) are the major constituent, and He

is 10 percent of H in number. The other two ion species are O and Fe with

smaller abundances: Their mass densities are nOmO/(nHmH) = 4 × 10−3 and

nFemFe/(nHmH) = 2× 10−3. Assuming the plasma temperature to be of the order

of the temperature of the solar corona, T + 2× 106 K, we take the gyrofrequencies

to be ΩHe/ΩH = 1/2, ΩO/ΩH = 7/16, and ΩFe/ΩH = 1/4. In short, the abundances
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Figure 5.1: Snapshots of field profiles of a shock wave and phase spaces (x, vy) of
protons and heavy ions. Some protons (H) are reflected near the shock front and
gain energies. All the heavy ions entering the shock wave are accelerated by the
transverse electric field and reach nearly the same speed.
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of heavy ions are small, and their gyrofrequencies are equal to or lower than ΩH/2.

Figure 5.1 displays snapshots of the field profiles and phase spaces (x, vy) of

the four ion species in a perpendicular shock wave with vsh = 2.0vh (= 2.1vA) [5].

This wave is the high-frequency mode: As described in Sec. 2.3, the magnetosonic

wave is split into several modes in a multi-ion-species plasma, and large-amplitude

pulses evolve into high-frequency-mode pulses or shock waves.

The orbits of all the ion species are strongly distorted near the shock transition

region [x/(c/ωpe) + 840]. Some protons are reflected there and gain energies, with

the mechanism discussed in Chap. 4. The heavy ions, on the other hand, exhibit

distinct behavior. All of them are accelerated in the shock wave with similar

trajectories, and their resultant speeds are nearly the same. These properties of

heavy-ion acceleration have also been confirmed for an oblique shock wave with

θ = 50◦ [5].

5.2 Theory of heavy-ion acceleration

5.2.1 Acceleration due to a shock wave

This section discusses the physical mechanism and obtains the maximum speed of

accelerated heavy ions in a heuristic way.

In the wave frame, each particle species flows in the negative x direction with

velocity vjx. The y component of the equation of motion in a perpendicular shock

wave reads as

mj
dvjy
dt

= qj

(
Ey0 −

vjxBz

c

)
, (5.3)

which can be viewed as either a fluid equation for particle species j or an equation

for a particle j with no thermal motion; in the former, d/dt stands for ∂/∂t+vj ·∇.

In the upstream region, the relatin vjx = −vsh holds, and vsh is related to Ey0

as Ey0 = −vshBz0/c; hence, the right-hand side of Eq. (5.3) is zero.

In the shock wave, however, the magnetic field Bz becomes much stronger. Let

us see how each particle species reacts to this change.
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For the electrons, the right-hand side of Eq. (5.3) remains to be nearly zero,

Ey0 − vjxBz/c + 0, (5.4)

because the drift approximation is sufficiently accurate for them. Furthermore, H

ions that are the major and lightest ion component move with the velocity vHx

nearly equal to vex to keep charge neutrality. Consequently, although the hydrogen

motion is not described by the drift approximation, the H ions also satisfy Eq. (5.4);

the term mHdvHy/dt is kept small.

Heavy ions with large inertia, on the other hand, cannot be quickly decelerated

when they enter the shock wave; thus, they penetrate deep into it keeping the speed

vjx + −vsh. Substituting Eq. (2.58) in Eq. (5.3) yields

mj
dvjy
dt

+ qjvsh
c

(Bz −Bz0). (5.5)

Since Bz in the shock wave is much greater than Bz0, the right-hand side of Eq. (5.5)

has large values, leading to the rapid increase in vjy of heavy ions.

Denoting the acceleration time by ∆t, we can estimate the maximum value of

vjy as

vjym + qjvsh
mjc

〈Bz −Bz0〉∆t, (5.6)

where 〈Bz − Bz0〉 is the average value of (Bz − Bz0) that the particle feels during

∆t. The approximation vjx + −vsh used here will break down in a time ∼ 1/Ωj,

in which vjx is substantially converted to vjy. Taking the acceleration time to be

∆t ∼ mjc/(qj〈Bz〉) ∼ mjc/[qj(Bzm +Bz0)/2], where Bzm is the maximum value of

Bz, and using the relation vsh = Mvh, we find the maximum vjy as

vjym ∼ Mvh
Bzm −Bz0

Bzm + Bz0
. (5.7)

All the quantities on the right-hand side are determined by the wave properties;

hence, vjy is independent of particle species j. That is, all the heavy ions are

accelerated, and their final speeds are nearly the same.

Reference [5] discusses the mechanism seen in the laboratory frame, in which

heavy ions absorb energy from the transverse electric field formed in the shock

wave. Their final speeds are also given by Eq. (5.7).
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If large-amplitude magnetosonic waves (shock waves) are generated in solar

flares, they will accelerate all the heavy ions that pass through the wave front with

the present mechanism. As a result, if one observes these high-energy heavy ions

that have flown to the earth, their elemental compositions would be similar to that

of the solar corona. Since the magnetic fields are strong in coronal magnetic tubes,

their energies can be quite high.

5.2.2 Acceleration due to a small-amplitude pulse

The analysis in the previous section shows that the heavy ions of the same particle

species follow nearly the same orbit. This indicates that the acceleration of heavy

ions can be described with a multi-fluid model, in which each particle species is

treated as one fluid.

Figure 5.2: Maximum speed of accelerated heavy ions in a H-He plasma as a
function of the wave amplitude. Here, He is the heavy ion “b.” The upper and
lower lines, respectively, show the theoretical prediction for the acceleration due to
shock waves, Eq. (5.7), and that due to small-amplitude solitary pulses, Eq. (5.9).
The closed circles and triangles present simulation results, which are consistent with
the shock theory (5.7) in the large-amplitude region such that (Bm − B0)/B0 " 1
and consistent with the soliton theory (5.9) in the small amplitude region (Bm −
B0)/B0 * 1.

Another important feature of this mechanism is that the heavy-ion accelera-

tion takes place even in small-amplitude pulses. This is in contrast to the proton
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acceleration due to reflection, which virtually disappears as the amplitude of the

magnetosonic pulse decreases. Since we know the field profiles of a small-amplitude

pulse, we can calculate the speed of a heavy ion after the passage of the pulse:

vjy =
qj
mj

∫ ∞

−∞

(
Ey −

vjxBz

c

)
dt. (5.8)

For a small-amplitude, perpendicular solitary pulse of the high-frequency mode in

a two-ion-species plasma with light ions “a” and heavy ions “b” (Ωb < Ωa) with

ωpb * ωpa, one obtains, with the help of Eqs. (C.28) and (C.29) in Appendix C,

the speed of the “b” ions that have passed through the pulse as

vbym = gvBB
1/2
n , (5.9)

where Bn is the normalized amplitude, Bn = (Bzm − Bz0)/Bz0, and the coefficient

gvB is defined as

gvB =
2
√
6

α1/2η3
Ωbω2

pa

|Ωe|ω2
pe

(
1− Ωb

Ωa

)
vh, (5.10)

with η [∼ (me/mi)1/2] given by Eq. (2.107) and α by Eq. (2.97); gvB depends on

the heavy-ion mass.

This has been quantitatively confirmed with particle simulations. In Fig. 5.2

[13], the heavy-ion speed is plotted as a function of the wave amplitude; the sim-

ulation results (closed circles and triangles) are close to the theoretical prediction

(5.7) for shock waves (the upper line) in the large-amplitude regime Bn " 1, while

they are close to the prediction (5.9) for solitary pulses (the lower line) in the

small-amplitude regime Bn * 1.

The speed (5.9) due to a small-amplitude pulse is considerably lower than the

speed (5.7) due to a shock wave. The difference between them stems from the

fact that perturbed fields Bz and Ey remain strong in the large region behind the

shock front, while for a small-amplitude, soliton-like pulse with a short pulse width,

perturbed fields exist only inside it; heavy ions thus move to the downstream region

before they are sufficiently accelerated. With use of the assumption ωpb * ωpa, the

heavy-ion speed (5.9) can be approximated as

vbym ∼ Ωbωpe

|Ωe|ωpa
vhB

1/2
n . (5.11)
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5.3 Damping of small-amplitude pulses in a multi-
ion-species plasma

Figure 5.3: Profiles of Bz of a perpendicular solitary wave in a H-He plasma at
various times. The initial amplitude is Bn(0) = 0.1. The solitary pulse propagates
almost steadily. However, it is gradually damped. Furthermore, a long-wavelength
perturbation is generated behind the original pulse.

The heavy-ion acceleration causes the damping of a pulse even if its propagation

is perpendicular to a magnetic field [7,8]. This is a phenomenon that is not found in

a single-ion-species plasma, in which perpendicular magnetosonic solitary waves [6]

as well as periodic waves [9,10] are undamped. This section analyzes this damping

with theory and three-fluid simulations.

The code contains H and He with nHe/nH = 0.1 (light ion a is H and heavy ion

b is He). The hydrogen-to-electron mass ratio is taken to be mH/me = 1000; the

magnetic field strength is |Ωe|/ωpe = 0.5, so that c/vA = 68.3 and vA/vh = 0.967.

Figure 5.3 shows the propagation of a perpendicular solitary pulse [7]. As the

initial field and density profiles in this simulation, we have used a solitary wave

solution obtained from the KdV equation for the high-frequency mode derived in

Appendix C. The profile of Bz moves almost steadily. Unlike the magnetosonic

solitary wave in a single-ion-species plasma, however, its amplitude gradually de-

creases.
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Figure 5.4: Profiles of heavy-ion velocity parallel to the wave front, vby, at various
times. A solitary pulse is near (x− vht)/(c/ωpe) = 650, where vby grows with time.
After having sufficiently grown there, vby exhibits a long-wavelength oscillation
behind the pulse.

Figure 5.4 shows the profiles of heavy-ion velocity vby near this pulse at various

times. Since vby is zero in the nonlinear wave theory [see Eq. (C.32) in Appendix

C], the initial vby was taken to be zero everywhere. Near the pulse region [(x −

vht)/(c/ωpe) + 650], however, vby grows with time, reaching its steady state value,

vby + 0.01vh, at ΩHt + 0.75. Then vby begins to oscillate behind the pulse. This

behavior of vby, which is related to wave damping, is a higher order effect that

is not included in the KdV equation. The observed frequency and wavelength

of this oscillation are ω = 1.053ωhf0 and λ = 1.2(2π/kc), respectively, for this

case (for ωhf0 and kc, see Fig. 2.7). Other quantities also oscillate with the same

frequency and wavelength (one also finds this oscillation of Bz behind the original

pulse from an expanded view of Fig. 5.3). That is, the cross-field motion of heavy

ions (vby) induces a perturbation of the high-frequency mode with k ∼ kc (hence,

ω ∼ ωhf0). The wave energy of the original pulse is thereby gradually transferred

to long-wavelength perturbations through the weak acceleration of heavy ions.

One can make a rough estimate of the damping rate of the original pulse by
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calculating the kinetic energy that the heavy ions gain in this process per unit time,

nb0(mbv2bym/2)Mvh. Comparison between this energy and that of the original pulse

leads to a fairly good estimate for the damping rate, the same order of magnitude

as the observed one.

Calculations taking into account the collective motion induced by vby give a

more accurate damping rate. By expressing the field and velocity components of

the long-wavelength perturbation of the high-frequency mode in terms of vby, one

can write its wave energy density as w(ω)v2bym, where

w(ω) =
1

2

mbnb0

mana0
(mana0 +mbnb0)

(
ω2
lfr

ω2
+

(ω2 − ω2
lfr)

2

ω2(ω2
hf0 − ω2

lfr)

)
. (5.12)

(For the details of the calculation, see Appendix H.) The amount of energy that

the perturbation gains per unit time is w(ω)v2bymMvh, which is equal to the time

rate of change of the total wave energy Ew of the original pulse:

dEw

dt
= −w(ω)v2bymMvh. (5.13)

Equation (5.13) can be put into the differential equation for Bn. The Mach

number M of a solitary wave is related to Bn through M = 1+Bn/2. Furthermore,

as shown in Eq. (5.9), the amplitude of the long-wavelength perturbation, vbym, is

proportional to B1/2
n . We can also express the total energy of the original pulse as

a function of Bn, by integrating the wave energy density over the pulse region:

Ew =

∫ (
(B − B0)2 + E2

8π
+
∑

j

mjnjv2j
2

)
dx. (5.14)

(Because perpendicular waves are considered here, B has only the z component.)

Substituting the soliton solution in Eq. (5.14) yields the dependence of Ew on Bn.

For instance, since the magnetic-field profile is expressed by Eqs. (2.54) and (2.55)

with vp0 = vh, µ = −c2/(2ω2
pe), and α given by Eq. (2.97), the magnetic field energy

of the soliton is found to be

∫ ∞

−∞

(B − B0)2

8π
dx =

4

3

(
B2

0

8π

)
B2

nD. (5.15)
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Calculating the other components in the same manner, we find that the total ion

kinetic energy is equal to the magnetic field energy and that the electric-field and

electron kinetic energies are much smaller than them. Hence, the total energy of

the soliton is

Ew =
8

3

√
6

α

c

ωpe

(
B2

0

8π

)
B3/2

n . (5.16)

The energy Ew scales as B3/2
n . This dependence arises from the fact that the wave

energy density and the soliton width are proportional to B2
n and to B−1/2

n , respec-

tively. Equation (5.13) thus becomes the differential equation for the amplitude

Bn of the original pulse,

dB3/2
n

dt
= − 3

2
γdBn(0)

1/2Bn

(
1 +

Bn

2

)
, (5.17)

where γd is defined as

γd =
α1/2ωpevh

4
√
6cBn(0)1/2

(
w(ω)g2vB
B2

0/(8π)

)
. (5.18)

Figure 5.5: Damping rate γd as a function of the initial normalized amplitudeBn(0).
The solid line and dots show, respectively, the theoretical prediction and simulation
results. In the region where the theoretical treatment is valid [Bn(0) " η], the
theory and simulation results are consistent.

If we ignore the second term on the right-hand side of Eq. (5.17), we have

Bn(t)
1/2 = Bn(0)

1/2(1− γdt/2). (5.19)
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Because the amplitude must be positive, this solution is valid in the time range

0 ≤ t < 2/γd. For small t, γdt << 1, Bn(t) can be approximated as

Bn(t) = Bn(0)(1− γdt), (5.20)

indicating that γd is the initial damping rate. As can be seen from Eq. (5.18), the

damping rate γd is proportional to Bn(0)−1/2.

Figure 5.5 compares the theoretical prediction and simulation results on γd. In

the region Bn(0) " η, they are consistent. It is because the soliton theory for the

high-frequency mode, which the above theory is based on, is valid for amplitudes

greater than η, as shown by the condition (2.96).

For a fully-ionized, H-He plasma with the density ratio nHe/nH = 0.1, the

amplitude of a solitary pulse with Bn(0) = 0.1 becomes 0.9 times as small as the

initial one after the pulse has traversed a length l + 6 × 104 cm in a plasma with

ne = 108 cm−3. For a density ne = 1014 cm−3, it is l + 60 cm.

It is noted that, unlike solitary pulses, small-amplitude periodic waves are un-

damped even in a two-ion-species plasma [7]. In a periodic wave profile, the direc-

tion of the heavy-ion acceleration also periodically changes. Thus, the net increase

in vby is zero in one wavelength.
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Chapter 6

Positron acceleration

Plasmas containing positrons have been studied in various fields, such as astro-

physics and plasma-based accelerators [1]- [12]; the wave theory in Sec. 2.4 is one

example of the studies in basic plasma physics. The presence of positrons around

pulsars was suggested by Sturrock in 1971 [1], and relativistic pulsar winds of

electron-positron plasmas were predicted by Kennel and Coroniti [2]. In addition,

some observations claim that major components of relativistic jets from active

galactic nuclei are electrons and positrons [3, 4]. Furthermore, intense lasers now

enable us to produce plasmas containing positrons in laboratory experiments [5].

Positron acceleration is studied in some experiments of plasma-based accelera-

tors [11, 12].

The subject of the present chapter is positron acceleration in a shock wave in

a magnetized plasma consisting of electrons, positrons, and ions [13]- [18]. In this

mechanism, some positrons are accelerated in the shock transition region for long

periods of time with an energy increase rate proportional to the parallel electric field

E‖ [13, 14]. Particle simulations have demonstrated energization to γ ∼ 104 [17].

Since the acceleration was not saturated until the end of those simulation runs,

ωpet ∼ 7000, longer time simulations would give higher energies.

In the surfatron acceleration mentioned in Sec. 4.1.3, particles move along the

wave front across the magnetic field [19, 20], while in this mechanism, positrons

move in the transition region nearly parallel to the magnetic field; thus, the latter

can operate in a weaker electric field than the former. Furthermore, simulations
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show that this mechanism is quite stable; that is, even if the shock profile is tem-

porarily distorted and the acceleration stops, energy multiplication processes can

start again after the wave profile has been recovered. Besides the nearly parallel

motion, curtate and prolate cycloid orbits along the shock front appear in these

processes after such perturbations.

6.1 Theory of ultrarelativistic positron accelera-
tion

The theory in Sec. 2.4 tells us that the magnetosonic wave is split into two modes

in an EPI plasma. As was shown in Figs. 2.19 and 2.20, except for the vicinity of

the density ratio np0/ne0 = 1, the cutoff frequency of the high-frequency mode of

the magnetosonic wave is much higher than the ion gyrofrequency in EPI plasmas;

thus, the nonlinear coupling of the high- and low-frequency modes is rather weak.

This differs from the case of two-ion-species plasmas, in which the cutoff frequency

of the high-frequency mode is of the order of Ωi and thus the nonlinear coupling

of the two modes is strong. The shock wave in an EPI plasma analyzed below can

therefore be viewed as the low-frequency mode, affected little by the presence of

the high-frequency mode particularly when np0/ne0 is small.

Although both positrons and ions can be reflected by a shock wave, their orbits

are distinct from each other because of their large mass ratio mi/mp. As discussed

in Chap. 4, the ion reflection, which is caused by the sharp rise of the magnetic

field and electric potential, mainly occurs across the magnetic field. On the other

hand, the reflection of thermal positrons is primarily along the magnetic field and is

caused by the parallel pseudo potential F that rapidly rises in the shock transition

region. The parallel kinetic energy of a thermal positron in the upstream region

would be mpv2‖/2 ∼ mpv2Tp/2 in the wave frame; if the thermal speed vTp is lower

than the Alfvén speed, then we would have mpv2‖/2 ∼ mpv2A/2. Comparing these

values with the magnitude of eF given by Eq. (2.205), one sees that a substantial

fraction of thermal positrons can be reflected by a shock wave.
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Figure 6.1: Time variations of x, y, z, and γ of an accelerated positron.

Figure 6.1 is a simulation result [13] showing a typical motion of a positron

accelerated by this mechanism. After the encounter with a shock wave, this particle

stays in the shock transition region, moving in the direction nearly parallel to B0,

which we see from the time variations of x and z; we also note that the change in y

is much smaller than those of x and z (they are normalized to c/ωpe). The Lorentz

factor γ rises with time. More quantitative analysis of simulation results will be

given in Sec. 6.2, after we have described the theory in the next section.

6.1.1 Acceleration nearly parallel to the magnetic field

In the theory of ultrarelativistic acceleration of positrons along the magnetic field

in a shock wave [13]- [17], the shock speed vsh is assumed to be close to c cos θ,

Eq. (3.25). Since the gyro-averaged particle velocity in the x direction is given by

〈vx〉 + v‖ cos θ, if vsh ∼ c cos θ, then reflected positrons with v ∼ c can move with

the shock wave for long periods of time, with the x component of the positron

velocity being

vx + vsh. (6.1)
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Furthermore, for ultrarelativistic positrons moving nearly parallel to the magnetic

field, the following relation should hold:

v
dγ

dt
) γ

∣∣∣∣
dv

dt

∣∣∣∣ . (6.2)

That is, for particles with v + c, a slight change in the speed results in a huge

change in γ. Indeed, because

dγ

dt
=

γ3

2

d

dt

(
v2

c2

)
, (6.3)

dγ/dt is γ3/2 times as large as d(v2/c2)/dt. In the relativistic equation of motion,

mp
d(γv)

dt
= e

(
E +

v

c
×B

)
, (6.4)

we therefore ignore the term γdv/dt in comparison with vdγ/dt. Another assump-

tion is that the y component of the velocity is smaller than the other components,

|vy| * |vx|, |vz|, which differs from the surfatron acceleration [19, 20], in which vy

is the dominant velocity component.

Under these assumptions, we adopt the following ordering:

vsh
c

∼ vz
c

∼ Bx0

B0
∼ Bz

B0
∼ Ey

B0
∼ O(1), (6.5)

1

Ωp

dγ

dt
∼ vy

c
∼ By

B0
∼ Ex

B0
∼ Ez

B0
* 1. (6.6)

We then obtain the lowest order equations as

mpvsh
dγ

dt
= eEx + e

vy
c
Bz − e

vz
c
By, (6.7)

0 = e
vz
c
Bx0 − e

vsh
c
Bz0, (6.8)

mpvz
dγ

dt
= −e

vy
c
Bx0. (6.9)

Here, we have eliminated Ey and Ez using the following equations:

Ey = (vsh/c)(Bz − Bz0), (6.10)

Ez = −(vsh/c)By, (6.11)
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which result from Faraday’s law for one-dimensional, stationary waves, in which

the fields depend only on ξ = x − vsht. Equation (6.8) shows that the positron

motion is nearly parallel to the external magnetic field B0:

vz
vsh

=
Bz0

Bx0
. (6.12)

With the help of Eqs. (6.9) and (6.12), we eliminate vy and vz in Eq. (6.7) and find

the time rate of change of γ as

1

Ωp

dγ

dt
=

c cos θ

vsh

(E ·B)

(B ·B0)
. (6.13)

It is noted that from Eqs. (6.10) and (6.11), it follows that (E ·B) = (E ·B0) for

stationary waves. Substitution of Eq. (6.13) in Eq. (6.9) yields vy as

vy
c

=
vshByB2

z0/(cBx0)− ExBz0

Bz0Bz +B2
x0

. (6.14)

The energy increase rate dγ/dt is constant. Because of the assumption (6.1), the

particle position ξ and thus the vectors E(ξ) and B(ξ) in Eq. (6.13) are constant.

The theory has been extended in Ref. [14] to a more general case, in which no

assumptions are made on the magnitudes of velocity components and wave fields:

Equation (6.8) is replaced by

mpvy
dγ

dt
= e

vz
c
Bx0 − e

vsh
c
Bz0, (6.15)

and the ordering of wave fields, Eqs. (6.5) and (6.6), are not used. This calculation

gives the energy increase rate as

1

Ωp

dγ

dt
=

ExBz0vsh/c − Bx0By(γ
−2
sh − γ−2)

BzB0(γ
−2
sh − γ−2) +Bz0B0v2sh/c

2
. (6.16)

In this generalized theory, the only assumption on the wave is that it is stationary

and one-dimensional. Other than magnetosonic waves, therefore, there might be

waves that can accelerate positrons with this mechanism.

6.1.2 Surfatron and generalized theory

We here discuss the relation between the surfatron acceleration and the generalized

theory. In the limit of θ → 90◦, Bx0 vanishes, and it follows from Eq. (6.9) that
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Figure 6.2: Speed-of-light circle (6.17) and ellipse (6.20) of zeroth-order velocities
for perpendicular waves in the (vsh, vy) plane. If these lines cross, we have solutions.

vz = 0; hence,

v2x + v2y = v2sh + v2y + c2, (6.17)

which gives

v2y/c
2 + γ−2

sh . (6.18)

From Eqs. (6.15) and (6.18), one finds that

γ = (vsh/c)γshΩpt, (6.19)

which is identical to the particle speed in the limit of γ ) 1 in the unlimited

surfatron acceleration [20]: On using Eqs. (4.6) and (4.7), we obtain the same form

as Eq. (6.19), with Ωp replaced by Ωi, for γ ) 1 [Ω2
i t

2v2sh/c
2 ) 1 in Eq. (4.7)].

If the propagation angle is θ = 90◦, strong longitudinal electric fields are re-

quired even in the present model. From Eqs. (6.7) and (6.15), we have an elliptic

equation in the (vsh, vy) plane:

v2sh
(Bz/Bz0)(vd/2)2

+
(vy + vd/2)2

(vd/2)2
= 1, (6.20)

where vd = cEx/Bz. Figure 6.2 displays the speed-of-light circle (6.17) and the

ellipse (6.20) in the (vsh, vy) plane [14]. In the case that these two lines cross, we

have solutions; they exist if Ex/Bz " 1 or (Bz/Bz0)[Ex/(2Bz)]2 " 1. This indicates

that the longitudinal electric field Ex must be strong for the perpendicular case.
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Since Ex/Bz is always smaller than unity in stationary perpendicular magnetosonic

waves [21] [see Eq. (A.12)], they will not have these solutions. For this reason, the

perpendicular case would be practically unimportant in positron acceleration in

the present mechanism.

6.1.3 Perturbed motions

Careful observations of simulations reveal that γ and other physical quantities of

an accelerated positron exhibit small-amplitude oscillations, such as the one in the

bottom panel of Fig. 6.1, in addition to the increase in γ predicted by Eq. (6.13).

To realize this phenomenon, perturbations to the zeroth-order motion described in

Sec. 6.1.1 have been analyzed in Ref. [14]. We here summarize its result, giving

the detailed calculations in Appendix I.

The perturbation is an elliptic motion in the plane perpendicular to the vector

U = γ2
0

(
v0 ·B
cB0

)
v0

c
+

B

B0
, (6.21)

where γ0 and v0 are the Lorentz factor and velocity in the zeroth-order theory,

respectively. The vector U is nearly parallel to the zeroth-order velocity v0 because

γ0 ) 1. The frequency of this perturbation is
(

ω

Ωp

)2

= γ−4
0

[
γ2
0

(
v0 ·B
cB0

)2

+
B2

B2
0

]
, (6.22)

with the velocity components vy1 and vz1 being related to vx1 as

vy1 =
[(ω/Ωp)2γ4

0(vy0vz0/c
2) +ByBz/B2

0 ]− i(ω/Ωp)γ0Ux

[(ω/Ωp)2γ4
0(vx0vz0/c

2) + BxBz/B2
0 ] + i(ω/Ωp)γ0Uy

vx1, (6.23)

vz1 =
[(ω/Ωp)2γ4

0(vy0vz0/c
2) +ByBz/B2

0 ] + i(ω/Ωp)γ0Ux

[(ω/Ωp)2γ4
0(vx0vy0/c

2) +BxBy/B2
0 ]− i(ω/Ωp)γ0Uz

vx1. (6.24)

Appendix I gives the velocity components in the plane perpendicular to U , from

which one would see more directly that the motion is elliptic.

The zeroth-order theory in Sec. 6.1.1 is also applicable to the ions if we replace

mp by mi. However, one needs a slightly different perturbation scheme for the ions,

which is also given in Appendix I. The ion perturbation motion is one-dimensional

and can be unstable [14, 22].
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Figure 6.3: Phase spaces (x, γ) of positrons (orange dots) and electrons (blue dots)
and the profiles of Bz at two different times. Some positrons have been accelerated
to γ ∼ 104 by the end of the simulation run, ωpet = 7000.

6.2 Simulations of ultrarelativistic acceleration
of positrons

6.2.1 Demonstration and analysis of acceleration

Figure 6.3 shows phase spaces (x, γ) of positrons (orange dots) and electrons (blue

dots) near a shock front at two different times, ωpet = 3000 and 7000 [17]. By

the end of the simulation run, ωpet = 7000, some positrons reach energy γ ∼ 104.

Since the acceleration has not been saturated, positron energies would further rise

if we carry out a longer time simulation with a larger system size. We also find

high-energy electrons with γ ∼ 7000, which is due to the mechanism described in

Chap. 3 and is not further mentioned here. This is a result of a shock simulation

with mi/me = 1836, np0/ne0 = 0.02, θ = 43◦, |Ωe|/ωpe = 12, c/ωpe = 10∆g, and the

system length L = 65536∆g. The shock speed is vsh = 2.64vA with vA/c = 0.28;

thus, vsh is close to c cos θ.

We show below three types of motions of accelerated positrons reported in
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Figure 6.4: Time variations of γ and v of a positron accelerated along the magnetic
field. Except for the time period ωpet + 1000 to 2000, the velocity is nearly parallel
to B0, and γ goes up with time.

Ref. [16], in which the system size is 1/4 of that in Fig. 6.3; other simulation

parameters are mi/me = 100, np0/ne0 = 0.02, θ = 42◦, |Ωe|/ωpe = 3.0, and c/ωpe =

4∆g (thus, vA/c = 0.301); the shock speed, vsh = 2.42vA, is close to c cos θ. The

highest energy in this case is γ ∼ 2000.

Figure 6.4 displays the time variations of energy and velocity components of

an accelerated positron. The horizontal line in the panel for vx represents the

theoretical relation vx = vsh, Eq. (6.1), and that for vz is vz = vsh tan θ, Eq. (6.12).

The simulation results for vx and vz are close to these theoretical predictions. The

velocity component vy is small and is explained by the theory (6.14), which is also

shown by the horizontal line. This particle moves nearly parallel to B0, with its γ

going up with time.

For the time period 1000 ! ωpet ! 2000, however, the increase in γ is rather

slow, and all the velocity components exhibit large-amplitude oscillations. As can

be seen from Fig. 6.5, the shock profile in this period significantly deviates from

the normal one: The shock transition region broadens and the electric field Ex
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fields have diffusive profiles: The gradient of Bz is small and Ex is weak even in
the shock transition region, compared with those at other times.
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Figure 6.6: Orbit in the (x − vsht, y) plane of the positron analyzed in Fig. 6.4.
After the encounter with the shock wave at point S, this particle moves primarily
in the negative y direction along the shock front. However, owing to the deviation
of the wave profile, the orbit turns to a circular one at ωpe + 1000, which continues
until ωpe + 2000, during which γ does not increase much.

becomes weak.

Figure 6.6 shows the orbit of this particle in the (x − vsht, y) plane. It (1)

encounters the shock wave at point S, (2) moves along the shock front (note the

difference in the scales of the horizontal and vertical axes), (3) exhibits a circular

orbit, and then (4) moves along the front again. For the phases (2) and (4),

γ increases with time, while for the phase (3), which is 1000 ! ωpet ! 2000, the

shock profile is diffusive and γ does not grow much. From Figs. 6.4–6.6, we see that

this acceleration is quite stable: Although the acceleration is temporarily stopped

by the deviation of wave profile, it can start again when the shock is restored to

the normal, sharp profile.

Figure 6.7 compares the time variations of observed γ and theoretical prediction

γHUO, which is the integral of Eq. (6.13) derived by Hasegawa, Usami, and Ohsawa

[13]:

γHUO = Ωp

∫
c cos θ

vsh

(E ·B)

(B ·B0)
dt. (6.25)

In the numerical calculation of γHUO, the simulation values of E and B along the

particle orbit were used. The observed γ and the theory γHUO are quite close. The
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Figure 6.7: Time variation of γ of a positron accelerated along the magnetic field.
Here, W⊥ is the work done by the perpendicular electric field defined by Eq. (6.26),
and γHUO represents the theory (6.25). The observed energy γ is significantly higher
than W⊥ and close to γHUO.

work done by the electric field E⊥ perpendicular to B,

W⊥ =
e

mpc2

∫
E⊥ · vdt, (6.26)

is considerably smaller than them.

The perturbation motion theoretically predicted in Sec. 6.1.3 has also been

quantitatively examined with simulations. Figure 6.8 shows the frequencies of the

perturbation oscillations in γ and velocity components [14]. The theoretical line

representing Eq. (6.22) fits well to the simulation result (dots).

Rapid variations of field structures can change or modify the mechanism of

particle acceleration. Figure 6.9 shows one such example. This particle encounters

the shock wave at point S and moves along the shock front and nearly along the

magnetic field. Due to the deformation of the shock profile, however, significant

part of v‖ is converted to v⊥, with the particle orbit turning to a prolate cycloid

in the (x − vsht, y) plane. As Fig. 6.10 shows, the contribution of E⊥ becomes

important in the energy multiplication; both W⊥ and γ go up stepwise, with their

values fairly close and much greater than γHUO for ωpet " 1000. Because of the

increase in v⊥, the gyroradius (∼ γc/Ωp) exceeds the shock width, and the incessant
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Figure 6.9: Orbit of an accelerated positron in the (x− vsht, y) plane. The particle
enters the shock region at point S and is accelerated nearly along the magnetic
field in the shock transition region. Then, after the deviation of the shock profile,
its orbit changes to that of the incessant acceleration.
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Figure 6.10: Time variation of γ of the positron in Fig. 6.9. Here, γHUO is small,
while γ and W⊥ exhibit similar time dependence. The change to the incessant
acceleration occurs at ωpet + 1000, at which the deviation of the shock profile
begins.

acceleration discussed in Sec. 4.2 begins.

Figure 6.11 shows the third, intermediate type. As in the previous two exam-

ples, the acceleration in Fig. 6.11 is nearly parallel to the magnetic field in the early

phase. This particle, however, exhibits a curtate cycloid motion after the defor-

mation of the shock profile. The magnitude of v⊥ of this particle is between those

of Figs. 6.6 and 6.9. Figure 6.12 shows that W⊥ and γHUO noticeably increase,

indicating that both E‖ and E⊥ significantly contribute to the energization.

We see from these results that positron acceleration is persistent. It can last

for a long time in non-stationary wave propagation.

6.2.2 Dependence on plasma parameters

At the end of this chapter, we briefly mention how the acceleration depends on the

propagation angle θ, and density ratio np0/ne0 [15].

Figure 6.13 shows the highest γ observed in simulations as a function of θ, where

the shock speeds are taken to be vsh/c + 0.73. Other parameters are the same as

those for Figs. 6.4–6.12, whereas the simulation times, ωpet = 2400, were nearly a

half of theirs. We find the peak of γ near the dotted vertical line that shows the
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acceleration nearly along the magnetic field in the shock transition region, the orbit
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angle with vsh = c cos θ; γ exceeds 100 in the range 30◦ ! θ ! 50◦. Similarly, if

we fix θ and B0 and observe the highest energy γ as a function of the shock speed

vsh, which is altered by the shock amplitude, γ has a peak near the shock speed

vsh = c cos θ.

This acceleration is strong in a plasma with a low positron-to-electron density

ratio, as shown in Fig. 6.14, where the positron phase spaces (x, γ) near the shock

front are depicted for three different density ratios: np0/ne0 = 0.02, 0.1, and 0.5.

As the ratio np0/ne0 rises, the number of high-energy positrons and their highest

energy both go down. This result was first found with simulations [15] and then

explained by the theory for the parallel electric field in an EPI plasma [18, 23]

described in Sec. 2.5: The parallel pseudo potential F becomes small and more

nonstationary as np0/ne0 rises.
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Chapter 7

Wave evolution and particle
acceleration behind a shock front

The previous chapters were concerned with the phenomena near a shock front.

This final chapter studies wave evolution and particle acceleration in a much larger

region.

Strong disturbances create shock waves and generate large-amplitude Alfvén

waves behind them [1,2]. The plasma behind a shock front has a velocity v across

the magnetic field and thus has nearly a constant electric field E = −v ×B/c, in

addition to B0 and wave fields. Furthermore, this region would have an alternating

magnetic field if the amplitude of a generated Alfvén wave is greater than the

magnitude of B0.

These circumstances can give rise to particle acceleration in the Alfvén wave

region with mechanisms different from those near a shock front [2]. Three types of

such acceleration have been found: type 1 in which particles move along a pulse

with an intense magnetic field [3], type 2 in which particles meander along a moving

magnetic neutral sheet [4,5], and type 3 in which particles traverse the Alfvén wave

region with an alternating magnetic field [1, 2]. Ultrarelativistic electron accelera-

tion caused by these mechanisms has been demonstrated with particle simulations.

These mechanisms differ from that of trapped electrons described in Chap. 3 in

that

1) they do not require the condition vsh ∼ c cos θ, and
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2) they can work in weak magnetic fields such that |Ωe| < ωpe as well as in strong

ones.

In addition, unlike the mechanisms described in Chapters 3 to 6, many of the

electrons that gain energy in the Alfvén wave are supplied from the downstream

region.

7.1 Electron acceleration due to a compressive
pulse

Type 1 acceleration was first found near a small compressive pulse generated in a

shock wave [3]. Here, the term “compressive pulse” means fluctuations in which

the magnetic field and plasma density are higher than outside. Such pulses can be

occasionally generated by, for instance, a strong deformation of shock profile [6]

due to the ion reflection discussed in Sec. 4.1. A few years later, simulations with

a larger system size revealed that type 1 can also take place in the Alfvén wave

region behind a shock front [1,2]. It has been thus recognized that type 1 operates

in more general circumstances than had initially been thought. Before studying

the acceleration in Alfvén waves, which accompanies several complicated processes,

we investigate in this section the mechanism of electron acceleration caused by a

compressive pulse. Since types 2 and 3 are related to this mechanism, we describe

this process in some detail.

7.1.1 Theoretical considerations

Before making a theoretical analysis, we present a simulation result showing elec-

tron acceleration due to a compressive pulse behind a shock front: Figure 7.1

displays field profiles and electron phase space (x, γ) near the pulse [3]. Here, the

center of the pulse is at (x− vcpt)/(c/ωpe) = 0, where vcp is the speed of the com-

pressive pulse. There are many high-energy electrons on the left side of the pulse;

clearly, they were not produced near the shock front at (x− vcpt)/(c/ωpe) + 34 at

this moment (ωpet = 800); this position is out of this figure. It is also noteworthy
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Figure 7.1: Snapshots of field profiles and electron phase space (x, γ) near a small
compressive pulse behind a shock front. The field values are normalized to Bz0.
The shock propagation angle is θ = 60◦ and the field strength is |Ωe|/ωpe = 0.4.

that the transverse electric field Ey is present outside the compressive pulse as well

as inside it, which is because the pulse is behind the shock front. Particle motions

in this simulation are shown in Sec. 7.1.2, after the theoretical discussion below.

In the light of the above simulation result, we analyze particle motions near a

compressive pulse behind a shock front in the perpendicular case, B0 = (0, 0, Bz0);

extension to the oblique case is straightforward [1]. The shock wave and compres-

sive pulse are both supposed to propagate in the x direction.

The x component of the E ×B drift velocity is then

vdx(x) = c
Ey(x)

Bz(x)
. (7.1)

Since Ey and Bz are both positive, vdx is also positive. With use of the relation

Ey(x) =
vsh
c
[Bz(x)−Bz0], (7.2)

which is obtained from Faraday’s law for a stationary wave, Eq. (7.1) can be written
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as

vdx(x) = vsh

(
1− Bz0

Bz(x)

)
. (7.3)

[Strictly speaking, this system is not perfectly stationary, because the shock wave

and compressive pulse have different propagation speeds. Equation (7.2) should

be viewed as an approximate relation near the small compressive pulse.] Since

Bz behind the shock front is greater than Bz0, vdx is in the range 0 < vdx < vsh;

electrons move to the downstream region of the shock wave.

If there is a compressive pulse with its speed lower than vdx(x), then electrons

would enter the pulse from its rear (left) edge. They would stay near the rear edge

for some periods of time because the high magnetic field in the pulse prevents them

from quickly passing through the pulse region.

We consider these particle motions assuming that their gyroradii are greater

than the pulse width. For simplicity, we take the shape of the compressive pulse

to be rectangular with a width ∆ (Fig. 7.2); the x position of its left boundary

is denoted by xbd. Accordingly, the electric and magnetic fields are constant and

may be written as EI = (0, EI, 0) and BI = (0, 0, BI) in the pulse region, xbd <

x < xbd +∆, and EII = (0, EII, 0) and BII = (0, 0, BII) behind the pulse, x < xbd.
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The fields are stronger inside the pulse than outside: EI > EII and BI > BII.

Although Ex will also be present near the boundaries of the pulse, it does not play

an important role here and is ignored.

When an electron is inside the pulse, xbd < x < xbd +∆, it moves in an ellipse

in the momentum space (see Appendix J). Its orbit may be expressed as

(px − PI)2

a2I
+

p2y
(aI/γdI)2

= 1, (7.4)

where γdI = (1− v2dI/c
2)−1/2 with

vdI = c
EI

BI
. (7.5)

The quantities PI and aI are functions of vdI and gyration speed and are given by

Eqs. (J.7) and (J.8), respectively, in Appendix J, where it is proved that PI and

a2I are both positive. We take aI to be positive. Because of the drift vdI in the x

direction, the center of px is shifted by PI from the origin.

Behind the compressive pulse, x < xbd, electrons also make elliptic motions in

the momentum space,

(px − PII)2

a2II
+

p2y
(aII/γdII)2

= 1, (7.6)

where PII and a2II are given by Eqs. (J.9) and (J.10), and with use of the drift speed

vdII = c
EII

BII
, (7.7)

γdII is defined as γdII = (1− v2dII/c
2)−1/2.

As an electron moves from the inside to the outside, crossing the rear boundary

of the pulse, the elliptic motion in the momentum space changes from the one

represented by Eq. (7.4) to the one by Eq. (7.6). When the electron returns to the

pulse region, the ellipse center and radius change again.

The electron shown in the lower left picture in Fig. 7.2 goes out from the

pulse crossing the rear boundary x = xbd at point B, and, after a half gyroperiod,

goes into the pulse at point C: The vertical line on which points A–F are located
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represents the rear boundary. Because Ey > 0, the electron gains energy during

the motion B→C. It absorbs the greatest amount of energy, i.e., the shift in the y

direction |y(C)− y(B)| becomes the largest, in the situation that the orbit crosses

the rear boundary x = xbd at right angles, for which py(B) and py(C) are both

zero.

At point B, the center of the ellipse is shifted along the px axis by

∆P (t0) = PII(t0)− PI(t0), (7.8)

where t0 is the time at point B. As proved in Appendix J, the shift is positive,

∆P (t0) > 0, (7.9)

if vdI − vdII < 0. One can also calculate the shift of the ellipse center occurring at

point C at t = t1: ∆P (t1) = PI(t1)− PII(t1), which is negative if vdI − vdII < 0.

Since we know the equations for the ellipses, we can find the momenta and thus

energies at points B, C, D, · · · , if the momentum at point A is given. Because PII

is the center of px and aII is the radius along the px axis, the momentum at point

C is given as a function of px(t0) as

px(t1) = PII[px(t0)] + aII[px(t0)]. (7.10)

Similarly, the momentum at point D at t = t2 is given as a function of px(t1),

px(t2) = PI[px(t1)]− aI[px(t1)]. (7.11)

In this way, we can successively obtain the momentum at the l-th crossing (l =

1, 2, 3, · · · ) from px(t0).

　
　
For γ ) 1 with

γ(t0) ∼ −px(t0)/(mec), (7.12)

i.e., px(t0) is much greater than py and pz in magnitude, we can put Eq. (7.10) into

the following form:

γ(t1) ∼
1 + EII/BII

1− EII/BII
γ(t0). (7.13)
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Figure 7.3: Time variations of x, Bz, Wσ, and γ of an accelerated electron. Here,
Bz[x(t)] is the magnetic field at the position of the electron, and Wσ is the work
done by the electric field Eσ (σ = x, y, or z). For comparison, the time variations
of x and γ of a non-accelerated electron with a much shorter gyroperiod are also
plotted.
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Figure 7.4: Trajectory of the accelerated electron in the (px, py) plane. The orbit
is an outward elliptic spiral.
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If EII/BII is close to unity behind the pulse, γ(t1) should become significantly

greater than γ(t0). In addition, because γ(t1) is proportional to γ(t0), we see that

the energy increment can be huge for high-energy particles in this mechanism. For

γ(t2), we find that

γ(t2) ∼
1− EI/BI

1 + EI/BI
γ(t1). (7.14)

Equations (7.13) and (7.14) also hold in the oblique case if the magnitude of pz

remains small; in which EI and EII are the y components and BI and BII are the

strengths of B [3]. Particles with their vx [+ c(E ×B/B2)x + v‖Bx0/B] close to

the pulse speed can undergo this process. Another interesting and important point

is that, also in the oblique case, the high magnetic field in the compressive pulse

prevents the particles that have caught up with the pulse from passing through

it. It is because the parallel momentum p‖ = (p · B)/B of the particle gyrating

near the rear edge of the pulse decreases, owing to the mechanism described in

Sec. 4.2.1. The high magnetic field acts to make these particles stay near the pulse

for long periods of time.

7.1.2 Observed particle motions

We now examine simulation results. Plotted in the top panel of Fig. 7.3 is the

time variation of (x− vcpt) of an electron energized by a compressive pulse with a

propagation speed vcp: Field profiles and phase space (x, γ) near this pulse were

shown in Fig. 7.1. Here, the center of the pulse is at (x− vcpt)/(c/ωpe) = 0 and the

dotted horizontal line indicates the rear edge of the pulse, (x− vcpt)/(c/ωpe) = −5.

After catching up with the pulse, this particle stays near the back slope of the pulse

for some period because of the high magnetic field in the compressive pulse. The

second, third, and fourth panels display, respectively, the time variation of Bz as

seen by this particle; the work done by the electric field,

Wσ = −e

∫
Eσvσdt, (7.15)

with σ = x, y, or z; and the Lorentz factor γ of this particle. When the particle

is in the pulse, Bz[x(t)] is high and γ goes down. On the other hand, when the
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particle is outside the pulse, Bz is low and γ rises. The variations of Wy and γ are

quite similar, indicating that the particle absorbs energy mainly from Ey. The lines

with a short-period oscillation in the top and bottom panels represent an electron

that did not suffer energization.

Figure 7.4 shows the orbit of this particle projected on the (px, py) plane. The

orbit is an elliptic spiral, with its radius growing with time.

Even though the theory described in Sec. 7.1.1 is based on the simplified model

(for instance, we have used rectangular field profiles in the calculation of particle

motion), its predictions are consistent with these simulation results.

7.2 Acceleration around a moving neutral sheet

Type 2 acceleration was first found with a simulation for a collision of a shock wave

and a magnetic neutral sheet [4,5]. If a shock wave propagates crossing a magnetic

neutral sheet, at which the magnetic polarity changes, the sheet begins to move

following the shock front. Unlike the ordinary, static, field-reversed configuration

[7], the moving neutral sheet has transverse electric fields on both sides of the

sheet because ∂B/∂t /= 0. These fields can energize particles meandering along

the sheet. Figure 7.5 illustrates the magnetic-field profile of a moving magnetic

neutral sheet and orbits of an accelerated particle in it; this model was used in

the theory in Ref. [4] and will be compared with simulation results. The sign of

the magnetic field changes (BIBII < 0) at the neutral sheet x = xbd, which is

propagating with a speed vnp behind a shock front. The particle is moving in the

negative y direction along the sheet, absorbing energy from the transverse electric

field. When the particle crosses the neutral sheet, the direction of the orbit sharply

changes at py + 0 in the momentum space; as a result, the momentum trajectory is

in the lower-half plane. Despite the fact that the field structure and particle motion

in the field-reversed pulse are completely different from those in the compressive

pulse, the increment of kinetic energy in this process is given by the same equations

as those in the compressive pulse [4, 5]: Eqs. (7.13) and (7.14). A few years after
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Figure 7.5: Schematic diagram of moving magnetic neutral sheet behind a shock
front and electron orbits in the (x, y) and (px, py) planes. Here, vnp is the speed
of the pulse containing the neutral sheet. In the configuration space, the particle
goes in the negative y direction, meandering along the moving neutral sheet. The
direction of the momentum abruptly changes at py + 0 in the momentum space;
therefore, the orbit is in the lower-half plane.

these studies, type 2 acceleration was also found in large-amplitude Alfvén waves

behind a shock front [1, 2].

　　
We now show some results of a simulation [4] in which a shock wave collides

with an initially static, magnetic neutral sheet: Plotted in Fig. 7.6 are the time

variations of Wσ, which is the work done by Eσ, Bz[x(t)], and γ of an electron

energized near a moving neutral sheet. The energy γ increases when Bz[x(t)] is

positive, i.e., when the particle is in region II in Fig. 7.5. This particle gains

energy mainly from Ey, which we see from the fact that Wy and γ have similar

time profiles. Figure 7.7 displays the orbits of this particle. In the (x, y) plane,

this particle exhibits a meandering orbit, moving along the neutral sheet. The

trajectory in the momentum space lies in the lower-half plane, with its direction

rapidly changing near py = 0. Figures 7.6 and 7.7 are consistent with Fig. 7.5.
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7.3 Alfvén waves and particle acceleration be-
hind a shock front

Strong disturbances can generate Alfvén waves behind magnetosonic shock fronts.

In this section, we investigate wave evolution and particle acceleration in such

circumstances. Before doing that, however, we make a short mention of the motion

of bulk particles arising from a plasma disturbance.

7.3.1 Motions of bulk particles

Figure 7.8 presents a result of a simulation [8] in which a high-density plasma

(exploding plasma) collides with a low-density plasma (surrounding plasma) in an

external magnetic field in the z direction (Fig. 3.1); the initial macroscopic velocity

v0 of the exploding plasma is in the positive x direction whereas that of the sur-

rounding plasma is zero. The speed of the exploding plasma, v0/(ωpe∆g) = 2.05,

is much higher than the Alfvén speed, vA/(ωpe∆g) = 0.04, and the linear mag-

netosonic speed, vp0/(ωpe∆g) = 0.18. Other parameters are as follows: The total

system length is L = 16, 384∆g; mi/me = 100, c/(ωpe∆g) = 4, and |Ωe|/ωpe = 0.1.

The top and middle panels of Fig. 7.8 display the (x, t) diagrams of exploding and

surrounding ions, respectively, and the bottom panel shows electron trajectories.

Here, xiSb (thick dotted lines) and xiEb (thick solid lines) are, respectively, the tra-

jectories of the surrounding and exploding ions that were initially at the boundary

of the two plasmas, x = b; for comparison, they are plotted in all the panels. From

the top and middle panels we see that the surrounding ions begin to move upon

the passage of the exploding ions. Although xiEb goes faster than xiSb in the early

phase, xiSb is quickly accelerated; moreover, xiEb moves backward around the time

Ωi0t = 2, where Ωi0 is the nonrelativistic ion gyrofrequency calculated with use of

the external magnetic field strength. Thus, xiSb passes xiEb(t) at Ωi0t = 2.1. The

exploding electrons (solid lines) in the bottom panel do not pass the surrounding

electrons (dotted lines), indicating that the two groups of electrons are not mixed:

The width of the boundary layer is of the order of the electron gyroradius. Their
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boundary xeb, which is represented by the thick dashed-and-dotted line, is between

xiSb and xiEb for Ωi0t<∼2. After Ωi0t + 1, on both sides of the boundary xeb, we find

regions where electron and ion trajectories are concentrated. These two regions

gradually move away from each other. These are shock waves; one propagating

forward in the surrounding plasma away from xeb and the other backward relative

to its background (exploding) plasma. 　
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Figure 7.8: Ion and electron trajectories in a collision of exploding and surrounding
plasmas. The top, middle, and bottom panels show, respectively, exploding ions,
surrounding ions, and electrons. The thick solid and dotted lines indicate xiEb(t)
and xiSb(t), respectively. The dash-dotted line xeb(t) in the bottom panel represents
the boundary of the two groups of electrons.

The physical processes of these phenomena may be summarized as follows. The

cross-field motion of the exploding plasma induces strong Ey, with its velocity vx

being nearly equal to the Ey × Bz drift speed: We can view the ions as unmagne-

tized and the electrons as magnetized in the early phase. This Ey accelerates the
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surrounding ions behind xiEb in the y direction in the very early phase, Ωi0t * 1.

This velocity is gradually converted to vx owing to the magnetic force; these sur-

rounding ions thus begin to move in the x direction with their final speed close to

that of the exploding ions. The magnetic field causes the oscillation of xiEb; when

xiEb is significantly slowed down for the first time, Ωi0t = 1 ∼ 2, the compression

of magnetic-field lines near the front of the exploding ions is particularly enhanced.

The compression of field lines results in the formation of shock waves, which will

also be discussed in the next section.

As the angle θ decreases, the velocity component parallel to B becomes im-

portant [9]. Because of the parallel velocity v‖, the two groups of electrons are

more easily mixed. The amplitude of the oscillation of xiEb and the acceleration

of xiSb both decrease with decreasing θ; Ref. [9] shows that xiSb does not catch up

with xiEb for θ < 65◦. The region where the exploding and surrounding ions are

overlapping, xiSb ! x ! xiEb, expands with time.

Alfvén waves have been observed in the ion overlapping region in oblique shock

simulations. Furthermore, rapid acceleration of electrons caused by these Alfvén

waves has also been reported [1, 2]; these mechanisms can be understood by ex-

tending the theory for the compressive pulses and moving neutral sheets discussed

in Sections 7.1 and 7.2. In the next section, we examine these simulation results.

7.3.2 Evolution of waves and phase spaces

To observe the evolution of several kinds of waves with different propagation speeds

in a simulation, we take the total system length to be long, L = 32, 768∆g [2].

Initially, the plasma in the region 800∆g < x < 10, 400∆g (exploding plasma) has a

density twice as high as that in the region 10, 440∆g < x < 31, 968∆g (surrounding

plasma). The angle between B0 and the x axis is θ = 30◦. The exploding plasma

has an initial velocity v0 perpendicular to B0 (θv = 90◦) with v0/c = 0.98 while

the surrounding plasma is at rest (Fig. 2.1). Some other important parameters are

mi/me = 400, vT i/(ωpe∆g) = 2.9×10−2, vTe/(ωpe∆g) = 5.8×10−1, c/(ωpe∆g) = 10,
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Figure 7.9: Snapshots of phase spaces and field profiles in the early phase. Here,
pixE is the x component of the momentum of the exploding ions, while pixS is the
momentum of the surrounding ions. The SMF pulse is developing near x/(c/ωpe) =
1500, reflecting exploding ions to the left and surrounding ions to the right. Around
there, we find growing magnetic perturbations and turbulent structure in the ion
phase spaces [2].

|Ωe|/ωpe = 0.4; hence, the Alfvén speed is vA/(ωpe∆g) = 0.200. The speed of the

linear magnetosonic wave is vp0/(ωpe∆g) = 0.202 for θ = 30◦. We can produce

strong shock waves if we make the density of the exploding plasma high, its volume

large, or its initial speed v0 high.

A collision of two plasmas generates large-amplitude density and field perturba-

tions, which evolve into shock waves and Alfvén waves. We first sketch the overall

picture of plasma behavior in such circumstances. The field structures are much

more complicated in the oblique case than in the perpendicular case (θ = 90◦) in
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which Alfvén waves do not appear.

Phase spaces and field profiles

Figure 7.9 displays ion and electron phase spaces and field profiles in the early phase

(ωpet = 1200) of a simulation run. (To depict phase spaces, we have used 1/20 of

the particles.) The fields F (fourth panel) and φ (bottom panel) are the parallel

pseudo potential, Eq. (2.178), and electric potential, respectively. The subscripts E

and S denote exploding and surrounding plasmas, respectively. Near x/(c/ωpe) =

1500 in the second panel, there is a strong-magnetic-field (SMF) pulse, which is

created near the boundary of the colliding two plasmas through the compression

of magnetic field lines. Some surrounding ions are reflected there to the right

(second panel) and exploding ions to the left (top panel). These ion motions lead

to the formation of forward and backward shock waves [8,9]. Near the SMF pulse,

magnetic perturbations are growing and the ion phase spaces are turbulent. As

shown in the third panel, electron energies are still much lower than γ = 100 at

this moment.

Because v0 is large and B0 is rather weak, exploding ions penetrate deep into

the surrounding plasma, creating a region where exploding and surrounding ions

coexist. Counter-streaming instabilities become unstable in this region: We find

small-amplitude, short-wavelength perturbations in the density profile in Fig. 7.9.

However, the instabilities grow only in the early phase (ωpet ! 700), quickly sat-

urated with small amplitudes. The details of the instabilities are described in

Refs. [8, 9].

Shock waves have formed and ultrarelativistic electrons have been created in the

Alfvén wave region in Fig. 7.10 (ωpet = 2600). The forward and backward shock

fronts are at x/(c/ωpe) = 2180 and at x/(c/ωpe) = 1900, respectively. Because

the initial density of the exploding plasma is higher than that of the surrounding

one, the forward shock wave is stronger than the backward one. In the region

1650 ! x/(c/ωpe) ! 2100 behind the forward shock front, there are Alfvén waves

(including the SMF pulse); their amplitudes are still growing, and their wave-
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Figure 7.10: Snapshots of phase spaces and field profiles. The forward and back-
ward shock fronts are at x/(c/ωpe) = 2180 and at x/(c/ωpe) = 1900, respectively.
In the region where Alfvén waves are forming, 1650 ! x/(c/ωpe) ! 2100, ultrarel-
ativistic electrons are present. The parallel pseudo potential F sharply rises near
the SMF pulse, indicating that a strong E‖ is created there at this moment [2].
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Figure 7.11: Trajectories of shock fronts and Alfvén waves. The quantity vsmp in
the horizontal axis is the speed of the SMF pulse. The right and left thick lines
represent forward and backward shock fronts, respectively. The dotted and thin
solid lines denote the SMF pulse and Alfvén waves, respectively [2].

lengths are increasing. Furthermore, many reflected exploding ions are present

there; accordingly, the momentum distribution of the exploding ions has greatly

broadened. In addition, we find vortices in the phase space of the surrounding

ions. These imply that the ion kinetic motions affect the evolution of the Alfvén

waves. Electron energies in this region have reached γ = 300 by this time. The

plasma density is rather low in the SMF pulse, 2020 ! x/(c/ωpe) ! 2100. The

magnitude of the parallel pseudo potential, which is highly nonstationary, is quite

large, eF/(mec2) ∼ 200, in the SMF pulse at this moment, indicating that a strong

parallel electric field E‖ is created there.

Wave trajectories

Shock waves propagate much faster than other low-frequency waves, as shown in

Fig. 7.11. Here, the trajectories of the forward and backward shock fronts are

plotted by the thick solid lines; the speed of the former is vsh ∼ 24vp0 and that

of the latter is v′sh ∼ 14vp0 in the laboratory frame. On the other hand, the

speed of the backward shock wave relative to the flow speed 〈v′fl〉 of its upstream
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plasma is v′sh − 〈v′fl〉 = −4.2vp0; here, 〈v′fl〉 is the average fluid speed in the region

x′
sh/(c/ωpe) − 20 < x/(c/ωpe) < x′

sh/(c/ωpe), where x′
sh is the x position at which

ne of the backward shock wave begins to sharply rise. (The upstream region of the

backward shock wave is x < x′
sh.)

The SMF pulse (dotted line) is between the two shock fronts. Its speed is of

the order of the Alfvén speed, vsmp − 〈vfl〉 = (0.6± 2.7)vA cos θ, where vsmp − 〈vfl〉

is the average plasma flow velocity near the pulse and σ = 2.7vA cos θ represents

the standard deviation of the observed values of vfl(x, t). Electromagnetic pulses

behind the SMF pulse are shown by the thin solid lines. Their propagation speeds

are approximately equal to that of the SMF pulse.

From the simulation results that the speeds are close to vA cos θ and that the

density perturbations are rather small, these electromagnetic perturbations (in-

cluding the SMF pulse) are identified as the Alfvén wave [10]- [17].

7.3.3 Electron acceleration due to Alfvén waves

Figure 7.12 illustrates three types of ultrarelativistic electron acceleration observed

in the Alfvén wave region behind a shock front. Type 1 shown in the top panel is

the same as the mechanism caused by the compressive pulse discussed in Sec. 7.1.

This process is found near the back slope of the SMF pulse. Both the SMF and

compressive pulses have a magnetic-field bump, which is an essential pulse character

for this mechanism; the density profile is unimportant. Type 2 in the middle panel is

the same as the mechanism caused by the moving magnetic neutral sheet discussed

in Sec. 7.2. As shown in Fig. 7.10, the signs of Bz and By change with x in the

large-amplitude Alfvén wave, indicating the presence of moving magnetic neutral

sheets. Particles meandering along these sheets can suffer Type 2 acceleration.

Type 3 acceleration occurs in particles traversing the region with an alternating

magnetic field. An important point here is that the plasma behind a shock front

is moving across a magnetic field and thus has an electric field Ey + −(v×B/c)y,

as well as wave fields. Particles can absorb energy from this field.
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Figure 7.12: Schematic diagram of three types of acceleration occurring in the
Alfvén wave region behind a shock front. The left and right pictures show the
orbits in the configuration and momentum spaces, respectively. Type 1 (top panel)
takes place in the back slope of an SMF pulse. Type 2 (middle panel) is found
around a moving magnetic neutral sheet. Particles traversing the region of an
alternating magnetic field can exhibit the orbit of type 3 (bottom panel) [2].

Particles can experience multiple energization processes. The motion of a par-

ticle that suffers the three types of acceleration is reported in Ref. [1].

We now look at particle motions observed in the simulation of Figs. 7.9–7.11.

The red line in the upper left panel in Fig. 7.13 shows the time variation of

the x position of an accelerated electron relative to the SMF pulse, x− vsmpt. The

other lines are the wave trajectories same as those in Fig. 7.11 although the vertical

and horizontal axes have been exchanged; i.e., the two thick lines represent shock

fronts, and the dotted and thin solid lines are the SMF pulse and Alfvén waves,

respectively. This particle enters the shock wave from the upstream region and, at

point B (ωpet = 1610), begins to move in the negative y direction along the SMF

pulse. This motion leads to the rapid growth of γ, as shown by the lower left panel.

The orbits B→E in the (x− vsmpt, y) and (px, py) planes resemble those in type 1

in Fig. 7.12.

The particle in Fig. 7.14 is initially behind the Alfvén wave region. It catches
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Figure 7.13: Trajectories of an electron with type 1 acceleration. The upper left
panel shows the time variation of (x−vsmpt) of this particle (red line) and the wave
trajectories same as those in Fig. 7.11. The times at points A in the four panels
are the same; this is also the case with points B–E. This particle absorbs energy
moving along the SMF pulse [2].
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Figure 7.14: Trajectories of an electron with type 2 acceleration. This particle
gains energy in a meandering orbit along a moving neutral sheet. The px in the
lower right panel is the momentum in the frame moving with the Alfvén wave; i.e.,
px = γsmp(plx −meγvsmp), where plx is the momentum in the laboratory frame and
γsmp = (1− v2smp/c

2)−1/2 [2].
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Figure 7.15: Trajectories of an electron with type 3 acceleration. This particle
traverses the Alfvén wave region with an alternating magnetic field [2].
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Figure 7.16: Electron density distributions in the (x, γ) plane. The upper panel
shows n(x, γ) at time ωpet = 3500. The solid line indicates the profile of Bz at this
time. Ultrarelativistic electrons are in the Alfvén wave region. The horizontal and
vertical axes in the lower panel show initial particle positions x(0) and energies
γ(t) at ωpet = 3500, respectively. The vertical dashed line represents the initial
boundary between the exploding and surrounding plasmas. Comparison of the two
panels shows that many of the electrons that eventually become high energy are
initially in the downstream region [2].

up with the left end of this region at point A. From point B (ωpet = 2770), it

gains a large amount of energy, going in the negative y direction in a meandering

orbit along a moving magnetic neutral sheet. The orbits in the configuration and

momentum spaces indicate that this acceleration is type 2 in Fig. 7.12.

The particle in Fig. 7.15 is in the Alfvén wave region from the beginning; i.e.,

when the Alfvén waves were being generated, it was in that region. Between points

A and E, it traverses the Alfvén wave region with an alternating magnetic field.

Its y position considerably decreases with its γ rapidly growing. The right panels

show that this acceleration is type 3 in Fig. 7.12.

Many of the particles that become high energy in the Alfvén wave are sup-

plied from the downstream region. The upper panel of Fig. 7.16 shows the elec-

tron density distribution in the [x(t), γ(t)] plane at time ωpet = 3500; the vertical
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Figure 7.17: Energy spectra of total, exploding, and surrounding electrons at time
ωpet = 3800. The vertical axis N(γ) shows the number of electrons in the interval
γ− 0.5 < γ < γ+0.5. The energy spectrum of the total electrons is approximately
given by N(γ) ∼ γ−0.93 in the range 10 < γ < 150 [2].
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Figure 7.18: Electron energy versus collision speed v0. The electron energy observed
in the simulations rises with v0 in both θ = 30◦ and θ = 60◦ cases.
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dashed line denotes the boundary between the exploding and surrounding plasmas

at t = 0. Most of the ultrarelativistic electrons are in the Alfvén wave region

2000 ! x/(c/ωpe) ! 2500 at this moment. As shown in the lower panel for the den-

sity distribution ne[x(0), γ(t)], however, the initial positions of these high-energy

particles are mostly in the downstream region: The vertical axis of the lower panel

represents γ of particles at ωpet = 3500, while the horizontal axis shows their ini-

tial x positions. (The initial density ne[x(0), γ(0)], which is not shown here, is in

the low-energy region, γ ! 5, in the entire plasma region.) Comparison of the

upper and lower panels indicates that high-energy electrons that are in the Alfvén

wave region at ωpet = 3500 are mostly exploding electrons; i.e., they were in the

downstream region at t = 0.

Figure 7.17 shows energy spectra of electrons at ωpet = 3800, where N(γ)

indicates the number of electrons in the bin γ − 0.5 < γ < γ + 0.5. The spectrum

of the total electrons denoted by the black line can be approximated by a power

law with N(γ) ∼ γ−0.93 in the range 10 < γ < 150. (As in Figs. 7.9 and 7.10, we

have used 1/20 of the electrons here.)

The electron energy in the Alfvén wave region becomes high in a strong collision

of two plasmas. Figure 7.18 shows the dependence of the highest electron energy

on the collision speed v0. In both θ = 30◦ and θ = 60◦ cases, γ rises rapidly with

v0, particularly in the region with large v0.
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Appendix A

Finite-amplitude, stationary,
relativistic, perpendicular wave

We obtain stationary perpendicular waves from a relativistic, cold, two-fluid model;

i.e., pj = 0 and θ = 90◦. Because we consider low-frequency phenomena, we assume

charge neutrality, ni + ne = n. The continuity equations for the ions and electrons

then give vix + vex = vx for one-dimensional propagation (∂/∂y = ∂/∂z = 0).

Since the time derivatives are zero, ∂/∂t = 0, in the wave frame, we have the

following basic equations:

mjvx
d

dx
(γjvx) = qjEx +

qj
c
vjyB, (A.1)

mjvx
d

dx
(γjvjy) = qjEy −

qj
c
vxB, (A.2)

∇×E = 0. (A.3)

dB

dx
= −4πne

c
(viy − vey) , (A.4)

where γj is the Lorentz factor for the fluid speed vj, γj = (1 − v2j/c
2)−1/2, and

B = Bz.

Equation (A.3) indicates that Ey and Ez are constant in space and time:

Ey = Ey1 = const., (A.5)

Ez = Ez1 = const., (A.6)

where the subscript 1 refers to quantities at a position x = x1 in the far upstream
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region. From the continuity equation with ∂/∂t = 0, one finds that

nvx = n1v1 = const. (A.7)

Adding the ion and electron components of Eq. (A.2) leads to

d

dx
(miγiviy +meγevey) = 0, (A.8)

from which it follows that

viy + −me

mi

γe
γi
vey. (A.9)

Hence, if

γe * mi/me, (A.10)

and vx ! MvA * c, where M is the Alfvén Mach number, the ion speed is

nonrelativistic,

γi + 1. (A.11)

Furthermore, because of the assumption (A.10), the left-hand side of Eq. (A.1) for

the electrons can be ignored, resulting in

Ex = −vey
c
B. (A.12)

This indicates that the magnitude of Ex/B is always smaller than unity.

Summing Eq. (A.1) over particle species, ignoring the term mevxd(γevx)/dx,

and using Eq. (A.11), we have

mivx
dvx
dx

=
eB

c
(viy − vey). (A.13)

With the aid of Eqs. (A.4) and (A.7), we eliminate (viy − vey) and nvx to obtain

min1v1γi
dvx
dx

= − 1

8π

dB2

dx
, (A.14)

which can be integrated from x1 to x to give

vx = v1s, (A.15)
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where s is defined as

s = 1− B2 − B2
1

8πmin1v21
. (A.16)

From Eqs. (A.7) and (A.15), it follows that

n =
n1

s
. (A.17)

Substituting Eq. (A.17) in Eq. (A.4) yields

vey =
cs

4πen1

dB

dx
, (A.18)

where viy has been ignored.

With use of Eqs. (A.15) and (A.18), the Lorentz factor of the electrons can be

written as

γe =

{
1− s2

[(v1
c

)2

+
1

(4πn1e)
2

(
dB

dx

)2
]}−1/2

,

which can be approximated as

γe =

[
1−

(
s

4πn1e

)2(dB

dx

)2
]−1/2

, (A.19)

because v1 ! MvA * c in the entire region.

Combining Eq. (A.2) for the electrons and Ampère’s law (A.4), and eliminating

γe, we find that

d

dx

[
vey

(
1−

v2ey
c2

)−1/2]
= − e

mev1s
Ey1 +

e

cme
B. (A.20)

We multiply Eq. (A.20) by vey. Then using Eqs. (A.16) and (A.18), we obtain

(4πn1e)
2 vey
c

d

dx

[
vey
c

(
1−

v2ey
c2

)−1/2]

=
ω2
pe

2c2
d

dx

[(
B − c

v1
Ey1

)2

− (B2 − B2
1)

2

16πmin1v21

]
. (A.21)

Here, ωpe is the plasma frequency at x = x1. With the help of the identity

f(x)
d

dx

f(x)

[1− f 2(x)]1/2
=

d

dx

1

[1− f 2(x)]1/2
, (A.22)
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we integrate Eq. (A.21) from x = x1 to x to have

(4πn1e)
2

[(
1−

v2ey
c2

)−1/2

−
(
1−

v2ey1
c2

)−1/2
]

=
ω2
pe

2c2

[
(B −B1)

(
B +B1 −

2cEy1

v1

)
− (B2 − B2

1)
2

16πmin1v21

]
. (A.23)

One can put this equation into a form analogous to the equation for a particle

in a potential:

1

2

(
dB̃

dx̃

)2

+ Φ(B̃) = 0, (A.24)

where B̃ and x̃ are non-dimensional quantities defined as

B̃ = B/B1, (A.25)

x̃ = x/(c/ωpe), (A.26)

and the “potential” Φ(B̃) is

Φ(B̃) =
ω2
pe

2Ω2
es

2

(
−1 +

{
Ω2

e

2ω2
pe

[(
B̃ − 1

)(
B̃ + 1− 2cEy1

v1B̃

)

−v2A(B̃
2 − 1)2

4v21

]
+

[
1−

(
Ωes1
ωpe

dB̃

dx̃1

)2]−1/2
}−2)

, (A.27)

where Ωe and vA, as well as ωpe, are the values at x = x1, and dB̃/dx̃1 stands

for the x̃ derivative of B̃ at x̃ = x̃1. Figure A.1 gives an example of Φ(B̃). The

value of B̃ oscillates in this “potential well,” a periodic solution corresponding to

a nonlinear wavetrain.

If dB̃/dx̃ → 0 as |x̃| goes to infinity (hence, dB̃/dx̃1 = 0), we have a solitary

wave solution. Let B̃m designate the maximum value of B̃. Then it follows from

Eq. (A.24) that Φ(B̃m) = 0 because dB̃/dx̃ = 0 there. Besides, we can take Ey1 as

Ey1 = v1B1/c. Thus, the Alfvén Mach number is given by

M = (B̃m + 1)/2, (A.28)
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Figure A.1: Profile of Φ(B̃) for dB̃/dx̃1 = 0.1, |Ωe|/ωpe = 1, v1/vA = 1.2, and
cEy1/(v1B1) = 0.8.

in the solitary wave. The “potential” Φ can be expressed as

Φ(B̃) =
ω2
pe

2Ω2
es

2
(−1 +Q−2), (A.29)

with

s = 1− 2(B̃2 − 1)/(B̃m + 1)2, (A.30)

Q = 1 +
Ω2

e

2ω2
pe

(B̃ − 1)2
(
1− (B̃ + 1)2

(B̃m + 1)2

)
. (A.31)

Since Φ(B̃) and hence s are finite (s does not become zero), inspection of Eq. (A.30)

indicates that (B̃m + 1)2 > 2(B̃2
m − 1); i.e.,

1 < B̃m < 3. (A.32)

Equations (A.28) and (A.32) are the same as those in the nonrelativistic case.

The characteristic soliton width D is given by

D

(c/ωpe)
∼ (B̃m − 1)−1/2, (A.33)

for B̃ + 1 and by
D

(c/ωpe)
∼ |Ωe|

ωpe
(B̃m − 1), (A.34)
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for (|Ωe|/ωpe)(B̃m − 1) > 1. In the case that the amplitude is small, B̃ + 1, we can

expand Eq. (A.29) as

Φ(B̃) = −1

2

(
1− (B̃ + 1)2

(B̃m + 1)2

)
(B̃ − 1)2, (A.35)

which is estimated to be of the order ∼ (B̃m − 1)3. Equation (A.24) then gives

Eq. (A.33). On the other hand, if B̃m and |Ωe|/ωpe are both large, it follows from

Eq. (A.29) that Φ(B̃) ∼ ω2
pe/|Ωe|2. From this order estimate and Eq. (A.24), we

find Eq. (A.34). A physical picture for this is given in Sec. 2.2.1 [see Eq. (2.45)].

One can calculate the magnitude of the electric potential in a solitary wave with

the help of Eqs. (A.12), (A.16), and (A.18):

φ = −
∫ x

x1

Exdx =

∫ B

B1

B

4πn1e

(
1− 2(B̃2 − 1)

(B̃m + 1)2

)
dB. (A.36)

Integrating this and using the relation (A.28), one finds Eq. (2.39).

The above results reduce to nonrelativistic ones under the following conditions:

(
Ω2

e

2ω2
pe

)(
B̃ − 1

)2

* 1, (A.37)

(
Ωe

ωpe

dB̃

dx̃

)2

* 1. (A.38)

That is, relativistic treatment is required for large-amplitude waves in a strong

magnetic field. The nonrelativistic Φ is derived from Eq. (A.27) as

Φ(B̃) = − 1

2s2




(
B̃ − 1

)(
B̃ + 1− 2cEy1

v1B̃

)
− v2A(B̃

2 − 1)2

4v21
+

(
dB̃

dx̃1

)2


 . (A.39)
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Appendix B

KdV Equation in a warm,
single-ion-species plasma

This appendix derives the KdV equation for magnetosonic waves in an electron-

ion plasma with finite thermal pressures from the two-fluid model (2.7)–(2.13).

Since we consider low frequency phenomena, we ignore the displacement current

in Ampère’s law (2.11) and assume charge neutrality,

ne + ni = n. (B.1)

Then, from the continuity equation, it follows that

vex + vix = vx. (B.2)

In the following calculations, the ion and electron masses are treated as being

the same order of magnitude; we therefore define the sound and Alfvén speed as

c2s =
Γipi0 + Γepe0
n0 (mi +me)

, (B.3)

v2A =
B2

0

4πn0 (mi +me)
. (B.4)

With use of these quantities, the phase velocities vp0 = ω/k of the fast and slow

magnetosonic waves are given by Eq. (2.6) in the long-wavelength limit.

We introduce stretched coordinates, Eqs. (2.46) and (2.47), and expand physical

quantities as

n = n0 + εn1 + ε2n2 + · · · , (B.5)
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vx = εvx1 + ε2vx2 + · · · , (B.6)

vjz = εvjz1 + ε2vjz2 + · · · , (B.7)

pj = pj0 + εpj1 + ε2pj2 + · · · , (B.8)

Ey = εEy1 + ε2Ey2 + · · · , (B.9)

Bz = Bz0 + εBz1 + ε2Bz2 + · · · , (B.10)

vjy = ε3/2vjy1 + ε5/2vjy2 + · · · , (B.11)

Ex = ε3/2Ex1 + ε5/2Ex2 + · · · , (B.12)

Ez = ε3/2Ez1 + ε5/2Ez2 + · · · , (B.13)

By = ε3/2By1 + ε5/2By2 + · · · . (B.14)

Then the continuity equation (2.7) gives

ε3/2
(
n0

∂vx1
∂ξ

− vp0
∂n1

∂ξ

)

+ε5/2
(
∂n1

∂τ
− vp0

∂n2

∂ξ
+ n0

∂vx2
∂ξ

+
∂(n1vx1)

∂ξ

)
+ · · · = 0. (B.15)

The x, y, and z components of the equation of motion (2.8) are, respectively,

ε3/2
[
vp0

∂vx1
∂ξ

+ Ωj

(
c
Ez1

B0
+ vjy1 sin θ

)
− 1

mjn0

∂pj1
∂ξ

]

+ε5/2
[
vp0

∂vx2
∂ξ

− ∂vx1
∂τ

− vx1
∂vx1
∂ξ

− 1

mjn0

∂pj2
∂ξ

+
n1

mjn2
0

∂pj1
∂ξ

+Ωj

(
c
Ex2

B0
+ vjy1

Bz1

B0
− vjz1

Bz1

B0
+ vjy2 sin θ

)]
+ · · · = 0, (B.16)

εΩj

(
c
Ey1

B0
+ vjz1 cos θ − vx1 sin θ

)

+ε2
[
vp0

∂vjy1
∂ξ

+ Ωj

(
c
Ey2

B0
− vx1

Bz1

B0
+ vjz2 cos θ − vx2 sin θ

)]
+ · · · = 0, (B.17)

and

ε3/2
[
vp0

∂vjz1
∂ξ

+ Ωj

(
c
Ez1

B0
− vjy1 cos θ

)]
+ ε5/2

[
vp0

∂vjz2
∂ξ

− ∂vjz1
∂τ

−vx1
∂vjz1
∂ξ

+ Ωj

(
c
Ez2

B0
+ vx1

By1

B0
− vjy2 cos θ

)]
+ · · · = 0. (B.18)
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The equation for the pressure (2.9) becomes

ε3/2
(
vp0

∂pj1
∂ξ

− pj0
∂Γjvjx1

∂ξ

)
+ ε5/2

(
vp0

∂pj2
∂ξ

− ∂pj1
∂τ

− vx1
∂pj1
∂ξ

−pj0Γj
∂vx2
∂ξ

− pj1Γj
∂vx1
∂ξ

)
+ · · · = 0. (B.19)

From the y and z components of Faraday’s law (2.10), we have

ε2
(
vp0
c

∂By1

∂ξ
+

∂Ez1

∂ξ

)
+ ε3

(
vp0
c

∂By2

∂ξ
+

∂Ez2

∂ξ
− 1

c

∂By1

∂τ

)
+ · · · = 0, (B.20)

ε3/2
(
vp0
c

∂Bz1

∂ξ
− ∂Ey1

∂ξ

)
+ ε5/2

(
vp0
c

∂Bz2

∂ξ
− ∂Ey2

∂ξ
− 1

c

∂Bz1

∂τ

)
+ · · · = 0. (B.21)

Ampère’s law (2.11) takes the following forms:

ε

(
∑

j

n0qjvjx1

)
+ ε2

(
∑

j

qj(n0vjx2 + nj1vjx1)

)
+ · · · = 0, (B.22)

ε3/2
(

∂Bz1

∂ξ
+

4π

c

∑

j

n0qjvjy1

)

+ε5/2
(
4π

c

∑

j

qj (n0vjy2 + nj1vjy1) +
∂Bz2

∂ξ

)
+ · · · = 0, (B.23)

and

ε

(
4π

c

∑

j

n0qjvjz1

)
+ ε2

(
4π

c

∑

j

qj(n0vjz2 + nj1vjz1)−
∂By1

∂ξ

)
+ · · · = 0.(B.24)

Gauss’s law (2.12) is

ε

(
4π

∑

j

nj1qj

)
+ ε2

(
(4π

∑

j

nj2qj)−
∂Ex1

∂ξ

)
+ · · · = 0. (B.25)

From the equations of order ε, for instance, we have

c
Ey1

B0
+ vjz1 cos θ − vx1 sin θ = 0, (B.26)

viz1 = vez1 = vz1. (B.27)
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In this way, from the lowest order equations in Eqs. (B.15)–(B.25), we find the

lowest order perturbations in terms of Bz1 as

n1

n0
=

v2A sin θ(
v2p0 − c2s

)Bz1

B0
, (B.28)

vx1
vp0

=
v2A sin θ(
v2p0 − c2s

)Bz1

B0
, (B.29)

viy1
vp0

=
v2A

v2p0 − v2A cos2 θ

(
vp0
Ωe

+
v2A cos2 θ

Ωivp0

)
∂

∂ξ

Bz1

B0
, (B.30)

vey1
vp0

=
v2A

v2p0 − v2A cos2 θ

(
vp0
Ωi

+
v2A cos2 θ

Ωevp0

)
∂

∂ξ

Bz1

B0
, (B.31)

vz1
vp0

= −cos θv2A
v2p0

Bz1

B0
, (B.32)

pj1
pj0

= Γj
n1

n0
= Γj

v2A sin θ(
v2p0 − c2s

)Bz1

B0
, (B.33)

Ex1

B0
=

v2A sin θ

ΩiΩec

(
(Ωi + Ωe)vp0

(v2p0 − v2A cos2 θ)
− (ΩeΓepe0 + ΩiΓipi0)

n0(mi +me)(v2p0 − c2s)

)
∂

∂ξ

Bz1

B0
, (B.34)

Ey1

B0
=

vp0
c

Bz1

B0
, (B.35)

Ez1

B0
=

(Ωi + Ωe) v2Av
2
p0 cos θ

ΩiΩec
(
v2p0 − v2A cos2 θ

) ∂

∂ξ

Bz1

B0
, (B.36)

By1

B0
= − (Ωi + Ωe) v2Avp0 cos θ

ΩiΩe

(
v2p0 − v2A cos2 θ

) ∂

∂ξ

Bz1

B0
. (B.37)

Integration of Eq. (B.34) yields the electric potential φ1, Eq. (2.184).

From the momentum equation in the order ε2, we obtain

−vp0
∂

∂ξ
(viy1 − vey1) = (Ωi − Ωe)

(
c
Ey2

B0
− vx1

Bz1

B0
− vx2 sin θ

)

+(Ωiviz2 − Ωevez2) cos θ, (B.38)
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−vp0
∂

∂ξ

(
viy1
Ωi

− vey1
Ωe

)
= (viz2 − vez2) cos θ. (B.39)

The z component of Ampère’s law in the order ε2 becomes

∂By1

∂ξ
=

4π

c
n0

∑

j

qjvjz2. (B.40)

The momentum equation in the order ε5/2 gives

(
1

Ωi
− 1

Ωe

)(
∂

∂τ
+ vx1

∂

∂ξ

)
vx1 − vp0

(
1

Ωi
− 1

Ωe

)
∂vx2
∂ξ

= (viy2 − vey2) sin θ +
Bz1

B0
(viy1 − vey1)

+
c

eB0n0

(
n1

n0

∂

∂ξ
(pi1 + pe1)−

∂

∂ξ
(pi2 + pe2)

)
, (B.41)

(
1

Ωi
− 1

Ωe

)(
∂

∂τ
+ vx1

∂

∂ξ

)
vz1 − vp0

∂

∂ξ

(
viz2
Ωi

− vez2
Ωe

)

= − (viy2 − vey2) cos θ. (B.42)

The equation for the pressure in the order ε5/2 is

vp0
∂

∂ξ
(pi2 + pe2) =

(
∂

∂τ
+ vx1

∂

∂ξ

)
(pi1 + pe1)

+ (Γipi0 + Γepe0)
∂vx2
∂ξ

+ (Γipi1 + Γepe1)
∂vx1
∂ξ

. (B.43)

From Eqs. (B.21) and (B.23) in the order ε5/2, we find

∂Bz1

∂τ
= −c

∂Ey2

∂ξ
− 4πen0vp0

c

(
(viy2 − vey2) +

n1

n0
(viy1 − vey1)

)
. (B.44)

We now eliminate the second-order quantities with the subscript 2 from the

above equations to derive an equation that contains only the equilibrium and first-

order quantities. Combining Eqs. (B.38), (B.40), (B.42), and (B.44), we eliminate

the quantities (viz2/Ωi−vez2/Ωe), (viy2−vey2), and (viz2−vez2) to have the following
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equation:

4πen0v2p0
cB0ΩiΩe

∂2

∂ξ2
(viy1 − vey1) =

4πen0vp0
B2

0

(
1

Ωi
− 1

Ωe

)
∂Ey2

∂ξ

−c cos2 θ

vp0B0

∂Ey2

∂ξ
+

4πen0v2p0
cB0

cos θ

(
1

Ωi
− 1

Ωe

)(
∂

∂τ
+ vx1

∂

∂ξ

)
vz1

−4πen1 cos2 θ

cB0
(viy1 − vey1)−

cos2 θ

vp0B0

∂Bz1

∂τ
− vp0 cos θ

B0

(
1

Ωi
+

1

Ωe

)
∂2By1

∂ξ2

−4πen0vp0
cB2

0

(
1

Ωi
− 1

Ωe

)
∂

∂ξ
(vx1Bz1)−

4πen0vp0
cB0 sin θ

(
1

Ωi
− 1

Ωe

)
∂vx2
∂ξ

. (B.45)

From Eqs. (B.41), (B.43), and (B.44), it follows that

∂Ey2

∂ξ
= −1

c

∂Bz1

∂τ
− B0vp0

cv2A sin θ

(
∂

∂τ
+ vx1

∂

∂ξ

)
vx1 −

4πen1vp0
c2

(viy1 − vey1)

+
4πen0vp0
c2 sin θ

Bz1

B0
(viy1 − vey1) +

4πvp0
cB0 sin θ

n1

n0

∂

∂ξ
(pi1 + pe1)

− B0

n0(mi +me)cv2A sin θ

(
∂

∂τ
+ vx1

∂

∂ξ

)
(pi1 + pe1)

+
B0(v2p0 − c2s)

cv2A sin θ

∂vx2
∂ξ

− B0 (Γipi1 + Γepe1)

n0(mi +me)cv2A sin θ

∂vx1
∂ξ

. (B.46)

By substituting Eq. (B.46) in Eq. (B.45), we can eliminate both vx2 and Ey2.

Then expressing the first-order quantities with Bz1, we obtain the KdV equation

(2.52) in the main text.
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Appendix C

Derivation of KdV Equation for
the high-frequency mode

This appendix considers nonlinear evolution of the high-frequency mode in a plasma

consisting of electrons, light ions (a), and heavy ions (b, c, · · · ). The gyrofrequencies

of the heavy ions are supposed to be lower than that of the light ions, Ωa, and

the heavy-ion densities are lower than the light-ion density na0. We can write

the relation between ω and k of the high-frequency mode in the form of “weak

dispersion,” Eq. (2.115), in large part of the frequency domain above its cutoff

frequency of the order of the ion gyrofrequency.

We derive the KdV equation for quasi-perpendicular waves from the cold, fluid

model for a multi-ion-species plasma:

∂nj

∂t
+∇ · (njvj) = 0, (C.1)

(
∂

∂t
+ (vj · ∇)

)
vj =

Ωj

|Ωe|
1

η
(E + vj ×B), (C.2)

∂B

∂t
= −∇×E, (C.3)

∇×B = η
∑

j

njqjvj, (C.4)

where η is defined by Eq. (2.107), a small quantity of order (me/mi)1/2. We have

normalized the length, velocity, and time, respectively, to c/ωpe, vh, and (c/ωpe)/vh.

Furthermore, we have normalized the number density, charge, magnetic field, and
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electric field to ne0, e, B0, and vhB0/c, respectively. The coefficient on the right-

hand side of Eq. (C.2), Ωj/(|Ωe|η), is of order η for the ions (j = a, b, c, · · · ) and of

order η−1 for the electrons (j = e). Ampère’s law, Eq. (C.4), also contains η.

We introduce stretched coordinates,

ξ = ε1/2(x− t), (C.5)

τ = ε3/2t, (C.6)

and expand the plasma variables as

Bz = sin θ + εBz1 + ε2Bz2 + · · · , (C.7)

Ey = εEy1 + ε2Ey2 + · · · , (C.8)

vjx = εvjx1 + ε2vjx2 + · · · , (C.9)

vjz = η−1(ε2vjz1 + ε3vjz2 + · · · ), (C.10)

nj = nj0 + εnj1 + ε2nj2 + · · · , (C.11)

and

By = ε3/2By1 + ε5/2By2 + · · · , (C.12)

Ex = η−1(ε3/2Ex1 + ε5/2Ex2 + · · · ), (C.13)

Ez = ε3/2Ez1 + ε5/2Ez2 + · · · , (C.14)

vjy = η−1(ε3/2vjy1 + ε5/2vjy2 + · · · ). (C.15)

To avoid the frequency regime ω ! Ωa, we assume that η * ε * 1, inequal-

ity (2.96). In addition, the propagation angle is supposed to be nearly perpen-

dicular, so that sin θ ∼ O(1) and cos θ ∼ O(η); hence, Bx0 = cos θ ∼ O(η). This

expansion differs from the conventional reductive perturbation scheme [Eqs. (B.5)–

(B.14) in Appendix B] in that the quantities Ex, vjy, and vjz are proportional to

η−1.
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Applying the above scheme, Eqs. (C.5)–(C.15), to Eqs. (C.1)–(C.4), we have

the following equations. The continuity equation is

ε3/2
(
−∂nj1

∂ξ
+ nj0

∂vjx1
∂ξ

)
+ε5/2

(
−∂nj2

∂ξ
+

∂nj1

∂τ
+ nj0

∂vjx2
∂ξ

+
∂nj1vjx1

∂ξ

)
+ · · · = 0.

(C.16)

The x component of the equation of motion for the ions becomes

ε3/2
(
∂vix1
∂ξ

+
Ωi

|Ωe|η2
(Ex1 + viy1)

)
+ ε5/2

(
∂vix2
∂ξ

− ∂vix1
∂τ

− vix1
∂vix1
∂ξ

+
Ωi

|Ωe|η2
(Ex2 + viy2 + viy1Bz1)

)
+ · · · = 0, (C.17)

where the subscript i refers to ion species, i = a, b, c, · · · . The quantity Ωi/(|Ωe|η2)

is of order unity. The y and z components of the equation of motion for the ions

read as

η−1ε2
∂viy1
∂ξ

+ η−1ε3
(
∂viy2
∂ξ

− ∂viy1
∂τ

− vix1
∂viy1
∂ξ

)
+ · · ·

+ηε

(
Ωi

|Ωe|η2
(Ey1 − vix1)

)

+ηε2
[

Ωi

|Ωe|η2

(
Ey2 +

cos θ

η
viz1 − vix2 − vix1Bz1

)]
+ · · · = 0, (C.18)

η−1ε5/2
∂viz1
∂ξ

+ η−1ε7/2
(
∂viz2
∂ξ

− ∂viz1
∂τ

− vix1
∂viz1
∂ξ

)
+ · · ·

+ηε3/2
[

Ωi

|Ωe|η2

(
Ez1 −

cos θ

η
viy1

)]

+ηε5/2
[

Ωi

|Ωe|η2

(
Ez2 + vix1By1 −

cos θ

η
viy2

)]
+ · · · = 0. (C.19)

For the x, y, and z components of the electron equation of motion, we have

η−2ε3/2(Ex1 + vey1) + η−2ε5/2(Ex2 + vey2 + vey1Bz1) + · · · = 0, (C.20)

η−1ε(Ey1 − vex1) + η−1ε2
(
−∂vey1

∂ξ
+ Ey2 +

cos θ

η
vez1 − vex2 − vex1Bz1

)
+ · · · = 0,

(C.21)

η−1ε3/2
(
Ez1 −

cos θ

η
vey1

)
+η−1ε5/2

(
−∂vez1

∂ξ
+ Ez2 + vex1By1 −

cos θ

η
vey2

)
+· · · = 0.

(C.22)
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The y and z components of Faraday’s law are

ε2
(
−∂By1

∂ξ
− ∂Ez1

∂ξ

)
+ ε3

(
−∂By2

∂ξ
+

∂By1

∂τ
− ∂Ez2

∂ξ

)
+ · · · = 0, (C.23)

ε3/2
(
−∂Bz1

∂ξ
+

∂Ey1

∂ξ

)
+ ε5/2

(
−∂Bz2

∂ξ
+

∂Bz1

∂τ
+

∂Ey2

∂ξ

)
+ · · · = 0. (C.24)

The x, y, and z components of Ampère’s law become

ε
∑

j

nj0qjvjx1 + ε2
(
∑

j

nj0qjvjx2 +
∑

j

nj1qjvjx1

)
+ · · · = 0, (C.25)

ε3/2
(

∂Bz1

∂ξ
+
∑

j

nj0qjvjy1

)
+ε5/2

(
∂Bz2

∂ξ
+
∑

j

nj0qjvjy2 +
∑

j

nj1qjvjy1

)
+· · · = 0,

(C.26)

ε2
(

∂By1

∂ξ
−
∑

j

nj0qjvjz1

)
+ ε3

(
∂By2

∂ξ
−
∑

j

nj0qjvjz2 −
∑

j

nj1qjvjz1

)
+ · · · = 0,

(C.27)

where
∑

j denotes summation over all the particle species including electrons.

With the aid of the assumption η * ε * 1, we obtain, from the lowest order

terms in Eqs. (C.16)–(C.27), the following relations among the quantities with the

subscript 1:

ne1 = vex1 = Ey1 = Bz1, (C.28)

ni1 =
ni0Ωi

|Ωe|η2
Bz1, vix1 =

Ωi

|Ωe|η2
Bz1, (C.29)

vey1 = −Ex1 = ∂Bz1/∂ξ, (C.30)

vez1 =
cos θ

η

∂2Bz1

∂ξ2
, Ez1 = −By1 =

cos θ

η

∂Bz1

∂ξ
, (C.31)

viy1 = viz1 = 0. (C.32)

Unlike the case of single-ion-species plasmas, vjx1 depends on particle species, al-

though their currents in the x direction cancel as shown below by Eq. (C.34).

By virtue of the O(η−1ε3) terms in Eq. (C.18) and the O(η−1ε7/2) terms in

Eq. (C.19), we find

viy2 = viz2 = 0. (C.33)
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[The O(η−1ε3) terms are greater than the O(ηε) terms because η * ε * 1.] From

the terms of order ε and ε2 in Eq. (C.25), we have

∑

i

ni0qivix1 = vex1, (C.34)

∑

i

ni0qivix2 = vex2 −
∑

j

nj1qjvjx1, (C.35)

where
∑

i denotes summation over ion species. We multiply the O(ε5/2) terms in

Eq. (C.17) by ni0qi and take summation over ion species i; in which we substitute

Eq. (C.35) for
∑

i ni0qivix2:

∂vex1
∂τ

− ∂

∂ξ

(
vex2 −

∑

j

nj1qjvjx1

)
+
1

2

∂

∂ξ

(
∑

i

ni0qivix1
2

)
−
(
∑

i

ni0qiΩi

|Ωe|η2

)
Ex2 = 0.

(C.36)

Here, we have used Eqs. (C.33) and (C.34). We can eliminate the quantities with

the subscript 2 such as vex2 and Ex2 from Eq. (C.36) and from the second order

equations in Eqs. (C.20), (C.21), (C.24), and (C.26) by similar calculations. We

then obtain the KdV equation for the high-frequency mode in the normalized form,

∂Bz1

∂τ
+ αBz1

∂Bz1

∂ξ
+

1

2

(
1− cos2 θ

η2

)
∂3Bz1

∂ξ3
= 0. (C.37)

The coefficient α is given by Eq. (2.119) in the main text.
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Appendix D

Highest energy of trapped
electrons

We here derive Eq. (3.24), the highest energy of electrons that are reflected and

then trapped by an oblique shock wave.

Electron velocities in the upstream region

We consider the electron motion in the wave frame, where the electric field is

E = (Ex, Ey0, 0); Ey0 is negative and is related to the shock speed vsh through

Eq. (2.58). The guiding-center velocity of an electron, vg, is given by Eqs. (3.18)–

(3.22).

In the far upstream region, the z component of the guiding-center velocity

averaged over the electrons in a small volume element is zero, 〈vgz0〉 = 0, where

the subscript 0 refers to the quantities in the far upstream region. Then, because

〈vgx0〉 = −vsh = cEy0/Bz0, the average parallel velocity is given by

〈v‖0〉 = −vshBx0/B0 < 0. (D.1)

Incoming electrons have negative vgx0; thus, from Eq. (3.20) it follows that

v‖0 < vsh
B2

z0

Bx0B0
, (D.2)

which, combined with Eq. (3.22), gives

vgz0 < vsh
B2

z0

B2
0

(
Bx0

Bz0
+

B0

Bx0

)
. (D.3)

Electrons with these velocity components will encounter the shock wave.

197



Estimate of the highest electron energy

From the relativistic equation of motion for an electron, Eq. (3.10), we have an

energy equation (3.12). Figure 3.5 in Sec. 3.2.1 shows a schematic diagram of the

guiding-center orbit of a trapped electron projected on the (x, y) plane; the electron

is reflected at point D. Points C and E are at the peak position of the potential φ;

hence, xC = xE = xm. The electric field Ex is positive in the region x > xm and is

negative in x < xm.

Substituting the guiding-center velocity, Eqs. (3.20) and (3.21), in Eq. (3.12),

we find the increase in the kinetic energy when the guiding-center moves from point

B to point C as

KBC = e(φC − φB) + eEy0

∫ C

B

Idx− eEy0

∫ C

B

v‖By

B
dt, (D.4)

where

I =
Ex

Ey0 + (v‖/c)(BBx0/Bz)
. (D.5)

Its denominator is proportional to the guiding-center velocity vgx. The first term

on the right-hand side of Eq. (D.4) shows the energy increase due to the potential

difference. The second and third terms represent the work done by the electric

field Ey0. If an electron moves with a velocity nearly equal to the fluid velocity,

then v‖ would be negative, as suggested by Eq. (D.1). Thus, the denominator of

Eq. (D.5) cannot be close to zero because Ey0 is also negative, which implies that

the electron moves quickly from points B to C.

We have a similar equation for the change in energy KCD; the energy increase

along the orbit B→C→D→E can be written as

KBE = KBC +KCD + e(φE − φD) + eEy0

∫ E

D

Idx− eEy0

∫ E

D

v‖By

B
dt. (D.6)

When the electron guiding center moves from points D to E, v‖ has rather large

positive values; otherwise vgx cannot be positive. If the parallel velocity is

v‖ ∼ −cEy0Bz

Bx0B
, (D.7)
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then vgx ∼ 0, and the denominator of I in the fourth term on the right-hand side

of Eq. (D.6) becomes quite small; the fourth term can therefore take a large value.

In other words, if vgx is small, it takes a long time for the electron to reach xE

from xD, during which it traverses a long distance in the y direction. As a result,

this particle gains a great amount of energy from Ey0, with its v‖ approaching c.

Accordingly, it follows that
∣∣∣∣
∫ E

D

Idx

∣∣∣∣ )
∣∣∣∣
∫ C

B

Idx

∣∣∣∣ ,
∣∣∣∣
∫ D

C

Idx

∣∣∣∣ . (D.8)

This is also the case with the integral
∫
v‖(By/B)dt. We thus have

KBE = e(φE − φB) + eEy0

∫ E

D

Idx− eEy0

∫ E

D

dt
v‖By

B
. (D.9)

In view of the facts that the second and third terms on the right-hand side of

Eq. (D.9) arise from the integral
∫
vgydt in Eq. (3.12) and that v‖ is approximately

given by Eq. (D.7), we find that the ratio of the magnitude of the third term to

that of the second one is ∼ By/Bx0. Since By ∼ 0 near xm (= xE) (see Fig. 2.4),

the third term can be ignored compared with the second term:

KBE = eφE + eEy0

∫ E

D

Idx, (D.10)

where φB has been taken to be zero.

The expression for I in Eq. (D.10) can be further simplified. Because Bz has

large values in the shock wave, especially around the point x = xm, we can assume

that

B/Bz ∼ 1. (D.11)

Furthermore, since v‖ is large along the path D → E, we take the magnitude of v‖

to be

v‖ ∼ c. (D.12)

The denominator of I in Eq. (D.10) can then be approximated as

Ey0 + (v‖/c)(BBx0/Bz) ∼ Ey0 +Bx0. (D.13)
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Electron reflection occurs when the potential φ and thus the parallel pseudo po-

tential F become small at point D; for this reason, φD is ignored compared with

φE. Under these circumstances, we obtain from Eq. (D.10) a simple expression for

KBE in the wave frame, Eq. (3.24).
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Appendix E

Equivalence of Eqs. (3.38) and
(3.50)

We prove here that Eqs. (3.38) and (3.50) are identical for a stationary wave

(∂F/∂t = 0). To do this, we first note that in the drift approximation, Eq. (3.50)

can be written as

d

dt

(
me

2
(v2‖ + v2d) + µmB − eF +mec

Ey0

Bx0
vgz

)
= 0, (E.1)

where vgz is the z component of the guiding-center velocity.

The time derivative of vgz can be expressed in terms of ∂F/∂x and d(µmB)/dt.

Since Ez = 0 in the wave frame, the following equation holds:

mec
Ey0

Bx0

dvz
dt

=
mec

Bx0

(
Ey0

dvz
dt

− Ez
dvy
dt

)
, (E.2)

the right-hand side of which is proportional to the x component of E × dv/dt.

Substituting the equation of motion for dv/dt, we find that

E × dv

dt
= − e

mec
E × (v ×B), (E.3)

which, with the aid of Eq. (3.27), becomes

E × dv

dt
= − e

mec
[(E ·B)vd + (E ·B)ṽ − (E · ṽ)B], (E.4)

where the relation E ·vd = 0 has been used. On account of Eqs. (2.174) and (3.36),

the x component of Eq. (E.4) time-averaged over a gyroperiod can be written as
〈
E × dv

dt

〉

x

=
eBx0

mec

∂F

∂x
vdx −

Bx0

mec

d

dt
(µmB), (E.5)
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where we have dropped the term (E · B)ṽx through the averaging. We can thus

put Eq. (E.2) into the following form:

〈
mec

Ey0

Bx0

dvz
dt

〉
= e

∂F

∂x
vdx −

d

dt
(µmB). (E.6)

Since 〈vz〉 = vgz, we find that Eq. (3.38) is equivalent to Eq. (E.1) and hence to

Eq. (3.50).
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Appendix F

Conditions for ion reflection

We calculate in the wave frame the motion of ions reflected by a perpendicular

shock wave and derive the conditions for ion reflection. It is shown that many ions

can experience one reflection at the shock front. However, only ions with their

speeds close to vsh can experience multiple reflections.

F.1 Motions in the upstream and transition re-
gions

Since we are in the wave frame, Ey is constant, Ey = Ey0 (< 0), in the upstream

region (x > x1 in Fig. F.1). The electric potential is assumed to rise in the shock

transition region with a constant gradient from zero at x = x1 to a finite value at

x = x1 − ∆, where ∆ is the width of the shock transition region (shaded area in

Fig. F.1). The longitudinal electric field Ex (> 0) is then constant in this region;

outside of which, it is zero. The sharp rise of the magnetic field also acts to reflect

particles. For simplicity, however, we assume a uniform magnetic field, focusing on

the effect of the electric field on reflection. 　
Under these circumstances, the ion motion in the upstream region can be de-

scribed as

vx = V0 cosΨ + VEy, (F.1)

vy = V0 sinΨ, (F.2)
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Figure F.1: Schematic diagram of ion orbit in a perpendicular shock wave in the
wave frame. The electric potential is assumed to rise in the shock transition region
(shaded area) with a constant gradient. In the upstream region (x > x1), ions
with their gyration speeds lower than vsh move in a curtate cycloid. Some ions are
reflected in the shock transition region by Ex.

where

VEy = cEy0/B, (F.3)

Ψ = −Ωit+ δ, (F.4)

with δ a constant. We suppose that a particle reaches the line x = x1 at time t = t1

with y = y1 and with the phase

Ψ1 = −Ωit1 + δ. (F.5)

We may write the velocity in the shock transition region as

vx = V1 cos[−Ωi(t− t1) + δ1] + VEy, (F.6)

vy = V1 sin[−Ωi(t− t1) + δ1]− VEx, (F.7)

where

VEx = cEx/B, (F.8)

and the position as

x− x1 = −(V1/Ωi){sin[−Ωi(t− t1) + δ1]− sin δ1}+ VEy(t− t1), (F.9)
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y − y1 = (V1/Ωi){cos[−Ωi(t− t1) + δ1]− cos δ1} − VEx(t− t1). (F.10)

Because the velocity given by Eqs. (F.1) and (F.2) and that given by Eqs. (F.6)

and (F.7) are equal at t = t1, the constants V1 and δ1 are related to V0 and Ψ1

through

V1 = [V 2
0 + V 2

Ex + 2V0VEx sinΨ1]
1/2, (F.11)

cos δ1 = (V0/V1) cosΨ1, (F.12)

sin δ1 = (V0 sinΨ1 + VEx)/V1. (F.13)

In a perpendicular magnetosonic wave, in which ∆ is small (∼ c/ωpe), the longitu-

dinal electric field is so strong that VEx should be large:

VEx ) |VEy|, V0. (F.14)

In this case, we see from Eqs. (F.11)-(F.13) that

V1 + VEx

[
1 +

1

2

(
V0

VEx

)2

+

(
V0

VEx

)
sinΨ1

]
, (F.15)

δ1 + π/2. (F.16)

F.2 First reflection in the transition region

This section computes the position and time of the first reflection, and then shows

the velocity range for reflection to occur.

At the reflection point, vx becomes zero,

cos[−Ωi(t− t1) + δ1] = −VEy/V1. (F.17)

The right-hand side of Eq. (F.17) is positive and is much smaller than unity, as can

be seen from Eqs. (F.14) and (F.15). In addition, since the velocity vx is negative

at t = t1, it follows that

cos δ1 < −VEy/V0. (F.18)
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On account of Eqs. (F.14) and (F.16), the left-hand side of Eq. (F.17) can be

approximated as

cos[−Ωi(t− t1) + δ1] = Ωi(t− t1)− δ1 + π/2 = Ωi(t− t1) + (V0/V1) cosΨ1, (F.19)

where the following relation has been used:

δ1 − π/2 = −(V0/V1) cosΨ1, (F.20)

which is found from Eqs. (F.12) and (F.16). From Eqs. (F.17) and (F.19), we have

the reflection time as

tref − t1 = −VEy + V0 cosΨ1

ΩiV1
. (F.21)

Substituting Eq. (F.19) in Eq. (F.6) and integrating it over time, we find the

reflection point as

xref − x1 = −(VEy + V0 cosΨ1)2

2ΩiVEx
. (F.22)

If the length |xref − x1| is smaller than the shock width,

x1 − xref < ∆, (F.23)

then the incoming particles (V0 cosΨ1+VEy < 0) satisfying the following condition

are reflected by the electric field Ex at least once:

−VEy > V0 cosΨ1 > vref , (F.24)

where vref is the minimum velocity for reflection,

vref = −VEy − (2∆ΩiVEx)
1/2 . (F.25)

For a stationary solitary wave with eφ = 2miv2A(M − 1), we can estimate the

magnitude of Ex∆ as

eEx∆ + 2miv
2
A(M − 1). (F.26)

Or, with use of the relation eEx∆ + eφ, vref may be written as

vref + vsh − (2eφ/mi)
1/2. (F.27)
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F.3 Second reflection

Here, we examine the velocity after the first reflection and then give the velocity

range for the second reflection.

Similarly to the previous section, one obtains from Eq. (F.9) the time t2 at

which the particle crosses the line x = x1 as

Ωi(t2 − t1) = −2(VEy + V0 cosΨ1)/V1. (F.28)

The velocity at time t2 is expressed as

vx2 + −(VEy + V0 cosΨ1)

+

(
2VEy

VEx

)2 (VEy + V0 cosΨ1)

(2VEy + V0 cosΨ1)

(
VEy + V0 cosΨ1 +

V 2
0 cos2 Ψ1

2VEy

)
, (F.29)

vy2 = VEyΩi(t2 − t1) + V0 sinΨ1. (F.30)

Under the condition (F.14), the following approximations are possible:

vx2 ∼ −(VEy + V0 cosΨ1), (F.31)

Ψ2 + −π/2, (F.32)

where Ψ2 is the phase at t = t2 in the shock region,

Ψ2 = −Ωi(t2 − t1) + δ1. (F.33)

The motion of the particle that has returned to the upstream region again

(x > x1, t > t2) may be written as

vx = V2 cos[−Ωi(t− t2) + δ2] + VEy, (F.34)

vy = V2 sin[−Ωi(t− t2) + δ2]. (F.35)

From the continuity of the velocity at t = t2, the constants V2 and δ2 are given by

V2 = [(vx2 − VEy)
2 + v2y2]

1/2, (F.36)

cos δ2 = (V1/V2) cosΨ2 [= (vx2 − VEy)/V2], (F.37)
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sin δ2 = (V1 sinΨ2 − VEx)/V2 (= vy2/V2). (F.38)

Substituting Eqs. (F.29) and (F.30) in Eq. (F.36) and using Eq. (F.28), we obtain

V2 in terms of V0 and Ψ1:

V 2
2 = V 2

0 + 4(VEy + V0 cosΨ1)

[
VEy −

VEyV0

VEx
sinΨ1

+

(
VEy

VEx

)2 V 2
0

VEy

(3 sin2 Ψ1 − 1)

2

]
. (F.39)

If V0 * |VEy|, then V0 and δ2 can be approximated as

V2 + −2VEy, (F.40)

δ2 + 0. (F.41)

The direction of the velocity of the reflected particle changes again in the up-

stream region owing to the magnetic force. The time t3 at which the particle

reenters the shock wave (reaches the line x = x1) is found from Eq. (F.9):

sinΨ3 − sin δ2 = (VEy/V2)Ωi(t3 − t2), (F.42)

where Ψ3 is the phase at t = t3 in the upstream region,

Ψ3 = −Ωi(t3 − t2) + δ2. (F.43)

Then, similarly to Eq. (F.24), one obtains the condition for particles to be reflected

again in the shock region as

−VEy > V2 cosΨ3 > vref . (F.44)

Particles with small initial gyration speeds (V0 * |VEy|) are not reflected twice

by the shock wave. Indeed, with use of Eqs. (F.40) and (F.41), which is valid for

V0 * |VEy|, Eq. (F.42) can be written as

sinΨ3 = Ψ3/2. (F.45)

Hence, Ψ3 is in the region π/2 < Ψ3 < π or in −π/2 > Ψ3 > −π; thus, cosΨ3 < 0.

Since vref > 0, the relation (F.44) is not satisfied.
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F.4 Multiple reflections with small relative ve-
locity

This section analytically shows that the second reflection is possible if the relative

speed is small.

We consider the following circumstances:

vx = V0 cosΨ1 + VEy = −εv, (F.46)

0 < εv * V0, |VEy|, VEx, (F.47)

vy = V0 sinΨ1 + V0Ψ1 = εu, |εu| * V0, (F.48)

where ε is the smallness parameter. Then Eqs. (F.21) and (F.22) become

tref − t1 =
εv

ΩiV1
, (F.49)

xref − x1 = − (εv)2

2ΩiVEx
. (F.50)

That is, the reflection time is quite short, and the reflection point is in the vicinity

of the line x = x1.

This suggests that these ions can be reflected many times. Indeed, we can show

that Eq. (F.44) is satisfied. Similarly to Eqs. (F.36)–(F.38), we obtain

V2 = −VEy + εv, (F.51)

δ2 = −εu/VEy. (F.52)

Equation (F.42) then gives

Ωi(t3 − t2) + (6εv/|VEy|)1/2. (F.53)

Using Eqs. (F.43) and (F.51)–(F.53), one finds that

V2 cosΨ3 + −VEy − 2εv. (F.54)

Since εv is small, V2 cosΨ3 is greater than vref : The condition for the second reflec-

tion, Eq. (F.44), is met.
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Appendix G

Jumps in energy and parallel
momentum

We consider fast particles moving with an oblique shock wave and making gyromo-

tions across its transition region (Fig. 4.5); i.e., fast particles satisfying the relation

v‖ cos θ ∼ vsh. If they barely enter the shock wave, they will quickly go out again

to the upstream region. They can repeat this process several times near the shock

transition region, during which they suffer jumps in their energies and parallel mo-

menta. By the latter effect, these particles can eventually outrun the shock wave.

We treat these processes here.

G.1 Magnitude of an energy jump

Since the gyroradii of fast ions are much greater than the width of the shock

transition region, the magnetic-field profile is approximated by a step function in

the following analysis of particle orbit; i.e., the magnetic field in the upstream region

is B0 = B0(cos θ, 0, sin θ), and that in the shock wave is B1 = B1(cos θ1, 0, sin θ1).

The magnetic force on fast particles is stronger than the electric force, and their

orbits are well approximated by the unperturbed orbits. In the shock wave, their

orbits may be written as

x(t) = v‖t cos θ1 + ρ sin θ1 cos(−Ωi1t/γ + η) + ax, (G.1)

y(t) = ρ sin(−Ωi1t/γ + η) + ay, (G.2)
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z(t) = v‖t sin θ1 − ρ cos θ1 cos(−Ωi1t/γ + η) + az, (G.3)

where Ωi1 is the nonrelativistic ion gyrofrequency in the shock wave, and θ1, η, ax,

ay, and az are constant. The momentum is then given as

px(t) = p1‖ cos θ1 + p1⊥ sin θ1 sin(−Ωi1t/γ + η), (G.4)

py(t) = −p1⊥ cos(−Ωi1t/γ + η), (G.5)

pz(t) = p1‖ sin θ1 − p1⊥ cos θ1 sin(−Ωi1t/γ + η). (G.6)

Taking the scalar product of the relativistic equation of motion with momentum

p, one has
d

dt

(
p2

2

)
= qip ·E. (G.7)

Substituting the unperturbed orbit (G.1)–(G.6) in Eq. (G.7) and integrating it over

time from t = tin to t = tout, one obtains the increase in p2 as

δ

(
p2

2

)
= qip1‖E‖(tout − tin)

− 2qiγp1⊥
Ωi

(Ex sin θ1 − Ez cos θ1) sin

(
−Ωi(tout + tin)

2γ
+ η

)
sin

(
−Ωi(tout − tin)

2γ

)

+
2qiγp1⊥

Ωi
Ey cos

(
−Ωi(tout + tin)

2γ
+ η

)
sin

(
−Ωi(tout − tin)

2γ

)
, (G.8)

where E‖ = Ex cos θ1+Ez sin θ1. The first term on the right-hand side of Eq. (G.8)

is ignored, because E‖ is small compared with Ey in shock waves and is appreciable

only in the thin shock transition region. (In these calculations, the contribution

from the transition region is not included.) Furthermore, since the gyro-averaged

particle velocity 〈vx〉 is supposed to be close to vsh, we can assume that

cos

(
−Ωi(tout + tin)

2γ
+ η

)
+ −1. (G.9)

Equation (G.8) is then reduced to

δ

(
p2

2

)
= −2qiγp1⊥

Ωi
Ey sin

(
−Ωi(tout − tin)

2γ

)
, (G.10)

which gives the amount of energy that a fast particle gains per gyroperiod. A

fast particle moving with a shock wave can undergo energy jumps, each given by

Eq. (G.10), while it is gyrating across the shock transition region.
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It is interesting to note that the right-hand side of Eq. (G.10) increases with

the particle energy. Substituting Eq. (G.11) in the equation for the increment of

energy

δγ =
1

m2
i c

2γ
δ

(
p2

2

)
, (G.11)

which is obtained from the relation γ = [1 + p2/(m2
i c

2)]1/2, we have Eq. (4.10) in

the main text. Since p1⊥ is proportional to γ, we find that

δγ ∼ Cv⊥γ, (G.12)

where C is a constant. Because v⊥ is supposed to be of the order of c, this relation

between γ and δγ nearly coincides with the one assumed in the Fermi acceleration

model, even though the two mechanisms are distinct.

G.2 Increase in parallel momentum

During the process discussed in Sec. G.1, the parallel momentum and thus 〈vx〉

increase. Fast particles with initial velocities v‖ cos θ + vsh thus tend to finally

outrun the shock wave. The increase in p‖ is caused by the rapid change in the

magnetic field in the shock transition region, as shown below.

Since the gyroradius of a fast ion is much greater than the width of the shock

transition region, the time rate of change of the magnetic field that an energetic

ion feels along its orbit can be expressed as

dB

dt
= (B1 −B0)[δ(t− tin)− δ(t− tout)]. (G.13)

Furthermore, it follows from the relativistic equation of motion,

dp

dt
= q

(
E +

v

c
×B

)
, (G.14)

that
dp

dt
·B = qE ·B, (G.15)

and thus
d(p ·B)

dt
= p · dB

dt
+ qE ·B. (G.16)
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The second term on the right-hand side of Eq. (G.16) can be ignored, because E‖ is

weak and mainly present near the shock transition region. Substituting Eq. (G.13)

in Eq. (G.16) and integrating it over time from t = ta (time right before t = tin) to

t = tb (time right after t = tout), we find

p(tb) ·B(tb)− p(ta) ·B(ta) = [p(tin)− p(tout)] · (B1 −B0). (G.17)

At t = ta and t = tb, the particle is in front of the shock wave; thus, B(ta) =

B(tb) = B0. Hence, the left-hand side of Eq. (G.17) is equal to [p0(tb)−p0(ta)]·B0,

to which only the parallel component of p0 contributes, where the subscript 0

refers to quantities in the upstream region. Let δp‖ designate the increase in the

momentum parallel to B0,

δp‖ = [p0(tb)− p0(ta)] ·B0/B0, (G.18)

then the left-hand side of Eq. (G.17) is equal to δp‖B0.

Because of the change in the direction of the magnetic field (B1 is not parallel to

B0), the magnitudes of the parallel and perpendicular components of the momen-

tum change when the energetic particle enters the shock wave. The values of the

momentum components also change when the particle goes out to the upstream re-

gion. That is, even though the momentum is continuous, p(tin) = p0(tin) = p1(tin),

p1‖(tin) is not equal to p0‖(tin). Furthermore, because E‖ is ignored here, p1‖(t) is

constant during the time from t = tin to t = tout, which leads to the relation

p(tin)− p(tout) = p1⊥(tin)− p1⊥(tout). (G.19)

Then, noting that p1⊥ ·B1 = 0, we find that

[p(tin)− p(tout)] · (B1 −B0) = [p1⊥(tout)− p1⊥(tin)] ·B0. (G.20)

Equation (G.17) thus gives the increase in the parallel momentum as

δp‖ = [p1⊥(tout)− p1⊥(tin)] ·B0/B0. (G.21)
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We prove that δp‖ is always positive. Let ex′ be the unit vector in the direction

perpendicular to B1 and to ey, the unit vector in the y direction; i.e., ex′ =

ey ×B1/B1. We then introduce the quantity

p1⊥x′ = p1⊥ · ex′, (G.22)

to put Eq. (G.21) into the form

δp‖ = [p1⊥x′(tout)− p1⊥x′(tin)] sin(θ1 − θ0). (G.23)

At the moment that the particle enters the shock region from the upstream region,

the x component of the particle velocity must be smaller than the shock speed vsh:

v1‖(tin) cos θ1 + v1⊥x′(tin) sin θ1 < vsh, (G.24)

where v1⊥x′ = v1⊥ · ex′. When the particle goes out to the upstream region, vx

must be greater than vsh:

v1‖(tout) cos θ1 + v1⊥x′(tout) sin θ1 > vsh. (G.25)

In terms of momentum, Eqs. (G.24) and (G.25) can be expressed as

p1‖(tin) cos θ1 + p1⊥x′(tin) sin θ1 < miγ(tin)vsh, (G.26)

p1‖(tout) cos θ1 + p1⊥x′(tout) sin θ1 > miγ(tout)vsh. (G.27)

The inequalities (G.26) and (G.27) indicate that

p1⊥x′(tout) > p1⊥x′(tin), (G.28)

because p1‖(tin) = p1‖(tout) and γ(tout) > γ(tin). [As shown in Sec. G.1, the electric

field Ey makes γ(tout) greater than γ(tin). Obviously, however, even in the case

that γ(tout) = γ(tin), the relation (G.28) holds.] Because θ1 > θ0, it follows from

Eqs. (G.23) and (G.28) that p‖ always increases,

δp‖ = p0‖(tout)− p0‖(tin) > 0. (G.29)
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Simulations show that p‖ increases at both t = tin and t = tout in the case that

vsh < c cos θ0, whereas it tends to decrease at t = tin if vsh ∼ c cos θ0 although the

total δp‖ is positive (Fig. 4.10). This was explained in Ref. [28] in Chap. 4.

Finally, we note that among the quantities δp‖, δγ = γ(tout) − γ(tin), and

δv‖ = m−1
i [p0‖(tout)/γ(tout)− p0‖(tin)/γ(tin)], the following relation holds

δp‖
p0‖(tin)

=
δv‖

v0‖(tin)
+

δγ

γ(tin)
, (G.30)

if δp‖/p0‖(tin) * 1 and δγ/γ(tin) * 1. Equation (G.30) indicates that δp‖ is

positive if δγ > 0, even in the case that δv‖ ∼ 0. This can occur when, as a result

of the acceleration, v0‖ has become close to c, while γ increases because of the

transverse electric field.
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Appendix H

Wave energy density of the
high-frequency mode

This appendix calculates the wave energy density of the high-frequency mode with

θ = 90◦, Eq. (5.12). For small-amplitude perturbations such as Eq. (2.2), we

linearize the cold, three-fluid equations. Then using the quantity σ defined as

σ(ω) =
ω[−|Ωe|ω2 + (ω2

paΩ
2
b/Ωa + ω2

pbΩ
2
a/Ωb)Ω2

e/ω
2
pe]

ω4 − ω2
hfrω

2 + ω2
hfrω

2
lfr

, (H.1)

we can express the perturbations in terms of vby1 as

vax1 = −i
Ωa

Ωb

(Ωa − σω)(ω2 − Ω2
b)

(Ω2
a − ω2)(ω − σΩb)

vby1, (H.2)

vay1 = − Ωa

Ωb

(ω − σΩa)(ω2 − Ω2
b)

(Ω2
a − ω2)(ω − σΩb)

vby1, (H.3)

vbx1 = i
(Ωb − σω)

(ω − σΩb)
vby1, (H.4)

vex1 = −i
|Ωe|
Ωb

(ω2 − Ω2
b)(σω + |Ωe|)

(Ω2
e − ω2)(ω − σΩb)

vby1, (H.5)

vey1 =
|Ωe|
Ωb

(ω2 − Ω2
b)(ω + σ|Ωe|)

(Ω2
e − ω2)(ω − σΩb)

vby1, (H.6)

B1 = −i
B0

(ω/k)

(ω2 − Ω2
b)

Ωb(ω − σΩb)
vby1, (H.7)

Ex1 = − B0

c
σ

ω2 − Ω2
b

Ωb(ω − σΩb)
vby1, (H.8)

Ey1 = −i
B0

c

ω2 − Ω2
b

Ωb(ω − σΩb)
vby1. (H.9)
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The energy density of the perturbation averaged over the wavelength λ is ob-

tained if we substitute the real part of each component in the following equation:

Eper =
1

λ

∫ λ

0

(
(B −B0)2 +E2

8π
+
∑

j

mjnjv2
j

2

)
dx. (H.10)

The energy density of the magnetic perturbation is found to be

〈
B2

1

8π

〉
=

ω2
pe(ω

2 − ω2
hf0)

2(ω2
hfrω

2 − ω2
hfrω

2
lfr − ω4)

(
ω2 − Ω2

b

Ωb(ω − σΩb)

)2(B2
0

8π

)
v2by1
c2

. (H.11)

Here, we have eliminated the wavenumber k in Eq. (H.7) using the dispersion

relation (2.80), and vby1 was assumed to be real. The ion-kinetic-energy densities

are

〈
manav2a

2

〉
=

ω2
pa

2Ω2
b

(
ω2 − Ω2

b

ω2 − Ω2
a

)2 [(1 + σ2)(ω2 + Ω2
a)− 4σΩaω]

(ω − σΩb)2

(
B2

0

8π

)
v2by1
c2

,

(H.12)〈
mbnbv2b

2

〉
=

ω2
pb

2Ω2
b

[(1 + σ2)(ω2 + Ω2
b)− 2σΩbω]

(ω − σΩb)2

(
B2

0

8π

)
v2by1
c2

. (H.13)

In this way we obtain the energy densities of all the components. The ratio of the

electron to total ion kinetic energies is ∼ me/mi, and the ratio of the electric to

magnetic energies is ∼ v2h/c
2. We can therefore ignore the electron kinetic energy

and electric field energy. Adding the magnetic and ion kinetic energies, and noting

that the relation ωhfr ) ω ≥ ωhf0 holds for the high-frequency mode with k<∼kc,

we find, after some manipulations, Eq. (5.12).
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Appendix I

Perturbed motions of positrons
and ions

This appendix investigates the perturbations of the position x and velocity v of

an accelerated positron around the zeroth-order solution obtained in Sec. 6.1. We

also examine the perturbations of an ion accelerated by the same mechanism.

I.1 Perturbations of positron motion

We normalize the time, velocity, and length using the nonrelativistic positron gy-

rofrequency Ωp as t̂ = Ωpt, v̂ = v/c, and x̂ = x/(c/Ωp); however, the hat is omitted

below in this appendix. We expand the particle position and velocity as

x = x(0) + v0t+ εx1(t) + ε2x2(t) + · · · , (I.1)

v = v0 + ε′v1(t) + (ε′)2v2(t) + · · · , (I.2)

where x(0) is the initial position, v0 is the zeroth-order solution, and ε and ε′ are

smallness parameters. We introduce a parameter Γ showing large values,

Γ ∼ γ ) 1, (I.3)

and assume that

dv0/dt ∼ Γ−3. (I.4)

The equation for γ, (6.3), then gives

dγ0/dt ∼ O(1), (I.5)
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where γ0 = (1− v20)
−1/2. The ordering for the perturbed velocity is

dv1/dt ∼ Γ−1v1, (I.6)

i.e., the characteristic frequency ω is of the order of the relativistic gyrofrequency.

Accordingly, from the relation v = dx/dt and Eqs. (I.1) and (I.2), it follows that

ε′ ∼ Γ−1ε. (I.7)

The perturbed velocity v1 is taken to be almost perpendicular to the zeroth-order

velocity v0:

v0 · v1 ∼ Γ−2v0v1, (I.8)

which leads to

ε′v0 ·
dv1

dt
∼ ε′Γ−3v0v1 ∼ εΓ−4. (I.9)

Furthermore, using the variable ξ = x−vsht, we expand the field quantities around

ξ0 [= x(0)] as

Ex(ξ) = Ex(ξ0) +
dEx

dξ0
(ξ − ξ0) + · · · , (I.10)

where dEx/dξ0 designates the value of dEx(ξ)/dξ at ξ = ξ0.

We apply this expansion scheme to the exact relativistic equation of motion,

(6.4).

First, we discuss the expansion of γ. With the aid of Eq. (I.2) and the relation

γ = (1− v2)−1/2, we expand γ as

γ = γ0 + δγ0 + ε′γ3
0(v0 · v1) + · · · , (I.11)

where δγ0 represents a small correction to γ0, which we have obtained ignoring

dv0/dt. Indeed, it follows from the exact relativistic equation of motion (6.4) that

dγ

dt
= E · v, (I.12)

while the equation of motion that ignores γ0dv0/dt compared with v0dγ0/dt gives

v20
dγ0
dt

= E · v0. (I.13)
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From Eqs. (I.2), (I.12), and (I.13), we see that dγ0/dt differs from the true dγ/dt

by an amount d(γ − γ0)/dt ∼ −E · v0/(v20γ
2
0) ∼ Γ−2, even if v0 is very close to

the true velocity v. This small difference δγ0 exists even in the absence of the

perturbation v1 which is considered below. The time derivative of γ is then given

as

dγ

dt
=

dγ0
dt

+
dδγ0
dt

+ ε′γ3
0

(
v0 ·

dv1

dt

)
+ ε′γ3

0

(
dv0

dt
· v1

)

+ε′3γ2
0

dγ0
dt

(v0 · v1) + · · · . (I.14)

It is supposed that δγ0 varies with the same time scale as γ0.

We find the zeroth-order equation of motion as

dγ0
dt

v0 = E(ξ0) + v0 ×B(ξ0). (I.15)

The relation between δγ0 and v0 becomes

dδγ0
dt

v0 + γ0
dv0

dt
+ δγ0

dv0

dt
= 0, (I.16)

which can be integrated to give

v0(t) = v0(0) exp

(
−
∫

dδγ0/dt

γ0 + δγ0
dt

)
. (I.17)

In the first order of ε′ (and ε), we obtain

ε′γ3
0

(
dv0

dt
· v1

)
v0 + ε′3γ2

0

dγ0
dt

(v0 · v1)v0 + ε′γ3
0

(
v0 ·

dv1

dt

)
v0

+ ε′
dγ0
dt

v1 + ε′
dδγ0
dt

v1 + ε′γ0
dv1

dt
+ ε′δγ0

dv1

dt
+ ε′γ3

0(v0 · v1)
dv0

dt

= ε
dE

dξ0
x1 + εv0 ×

dB

dξ0
x1 + ε′v1 ×B(ξ0). (I.18)

Here, some of the terms are negligibly small. The magnitudes of x1dE/dξ0 and

x1dB/dξ0 are small if the wavelength is greater than the magnitude of x1 (∼ c/Ωp).

For the magnetosonic wave, for instance, we have

x1
dB

dξ0
∼ B(c/Ωp)

(c/ωpi)
, (I.19)
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because the characteristic width of nonlinear oblique magnetosonic waves is ∼

c/ωpi. From Eqs. (I.4)–(I.6), we see that
∣∣∣∣v1 ·

dv0

dt

∣∣∣∣ *
∣∣∣∣v0 ·

dv1

dt

∣∣∣∣ , (I.20)

∣∣∣∣v1
dγ0
dt

∣∣∣∣ *
∣∣∣∣γ0

dv1

dt

∣∣∣∣ . (I.21)

We thus obtain the equation to solve:

γ3
0

(
v0 ·

dv1

dt

)
v0 + γ0

dv1

dt
= v1 ×B. (I.22)

Taking the scalar product of Eq. (I.22) with B, we find that

U · dv1

dt
= 0, (I.23)

where U is a vector defined by

U = γ2
0(v0 ·B)v0 +B. (I.24)

Equation (6.21) in the main text presents its unnormalized form. Since γ0 ) 1,

U is nearly parallel to v0. Equation (I.23) indicates that the component of v1

parallel to the vector U is constant. If it is initially zero, the perturbed velocity

v1 is always in the plane perpendicular to U .

Assuming that v1 varies with time as exp(−iωt), we put Eq. (I.22) into the

following form:

(
−iωγ3

0v
2
x0 − iωγ0

)
vx1 +

(
−iωγ3

0vx0vy0 − Bz

)
vy1

+
(
−iωγ3

0vx0vz0 + By

)
vz1 = 0, (I.25)

(
−iωγ3

0vx0vy0 + Bz

)
vx1 +

(
−iωγ3

0v
2
y0 − iωγ0

)
vy1

+
(
−iωγ3

0vy0vz0 −Bx

)
vz1 = 0, (I.26)

(
−iωγ3

0vx0vz0 −By

)
vx1 +

(
−iωγ3

0vy0vz0 +Bx

)
vy1

+
(
−iωγ3

0v
2
z0 − iωγ0

)
vz1 = 0. (I.27)
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The condition for a nontrivial solution of Eqs. (I.25) - (I.27) gives

−
(
iωγ3

0v
2
x0 + iωγ0

) (
iωγ3

0v
2
y0 + iωγ0

) (
iωγ3

0v
2
z0 + iωγ0

)

−
(
iωγ3

0vx0vy0 + Bz

) (
iωγ3

0vy0vz0 +Bx

) (
iωγ3

0vx0vz0 +By

)

+
(
−iωγ3

0vx0vz0 +By

) (
−iωγ3

0vx0vy0 +Bz

) (
−iωγ3

0vy0vz0 +Bx

)

−
(
ω2γ6

0v
2
x0v

2
z0 +B2

y

) (
iωγ3

0v
2
y0 + iωγ0

)
−
(
ω2γ6

0v
2
y0v

2
z0 + B2

x

) (
iωγ3

0v
2
x0 + iωγ0

)

−
(
ω2γ6

0v
2
x0v

2
y0 +B2

z

) (
iωγ3

0v
2
z0 + iωγ0

)
= 0. (I.28)

Using the relation v2x0 + v2y0 + v2z0 = 1− γ−2
0 , we obtain the frequency,

ω2 = γ−4
0 [γ2

0(B · v0)
2 +B2], (I.29)

and the velocity,

vy1 =
(ω2γ4

0vy0vz0 + ByBz)− iω(γ3
0vx0B · v0 + γ0Bx)

(ω2γ4
0vx0vz0 +BxBz) + iω(γ3

0vy0B · v0 + γ0By)
vx1, (I.30)

vz1 =
(ω2γ4

0vy0vz0 +ByBz) + iω(γ3
0vx0B · v0 + γ0Bx)

(ω2γ4
0vx0vy0 +BxBy)− iω(γ3

0vz0B · v0 + γ0Bz)
vx1. (I.31)

This velocity satisfies the relation U · v1 = 0, which is consistent with Eq. (I.23).

The unnormalized forms of these solutions are given by Eqs. (6.22)–(6.24) in

Sec. 6.1.3.

This motion is elliptic, which can easily be seen in the coordinate system (x̃, ỹ, z̃)

in which the z̃ axis is parallel to U (Fig. I.1). Noting that the three vectors B,

v0, and U are coplanar, we take the x̃ axis in this plane, in the direction parallel

to v0 − (U · v0)U/U2. We can then express B and v0 as B = (Bx̃, 0, Bz̃) and

v0 = (vx̃0, 0, vz̃0) with

vx̃0 = [v20 − (U · v0)
2/U2]1/2. (I.32)

Since U is nearly parallel to v0, the magnitude of vx̃0 is quite small: With the aid

of Eq. (I.24), we see that vx̃0 = [v20B
2 − (v0 ·B)2]1/2/U ∼ γ−2

0 . Taking the scalar

product of Eq. (I.24) with B and with v0, we have

UBz̃ = γ2
0(v0 ·B)2 + B2, (I.33)
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Figure I.1: Schematic diagram of the coordinate system (x̃, ỹ, z̃). The z̃ axis is
taken to be parallel to U . The vectors U , B, and v0 are in the (x̃, z̃) plane, while
v1 is in the (x̃, ỹ) plane. The vectors in the figure do not show exact magnitudes.

Uvz̃0 = γ2
0(v0 ·B), (I.34)

where use has been made of the relation γ2
0 = γ2

0v
2
0 + 1. The x̃ component of

Eq. (I.24) leads to

Bx̃ = − γ2
0vx̃0vz̃0

γ2
0v

2
x̃0 + 1

Bz̃. (I.35)

Because of the relation (I.23), we take vz̃1 to be zero. From Eq. (I.22), we then

obtain equations for (vx̃1, vỹ1):

−iωγ0(γ
2
0v

2
x̃0 + 1)vx̃1 −Bz̃vỹ1 = 0, (I.36)

Bz̃vx̃1 − iωγ0vỹ1 = 0, (I.37)

−iωγ3
0vx̃0vz̃0vx̃1 +Bx̃vỹ1 = 0. (I.38)

Substituting Eq. (I.35) in Eq. (I.38) yields the equation same as Eq. (I.36). Hence,

the condition for a nontrivial solution of Eqs. (I.36)–(I.38) becomes

ω2 =
B2

z̃

γ2
0(γ

2
0v

2
x̃0 + 1)

. (I.39)

On account of Eqs. (I.24), (I.32), and (I.33), one can show that Eq. (I.39) is identical

to Eq. (6.22) in the main text. The velocity component vỹ1 is related to vx̃1 as

vỹ1 = −i(γ2
0v

2
x̃0 + 1)1/2vx̃1, (I.40)

which is an elliptic motion in the (vx̃, vx̃) plane.

223



I.2 Perturbations of ion motion

For the ions, we normalize the physical quantities using Ωi0: t̂ = Ωi0t, v̂ = v/c, and

x̂ = x/(c/Ωi0). As in the previous section, the hat is omitted below. We expand

x, v, and the field quantities in the same way as Eqs. (I.1), (I.2), and (I.10),

respectively, and use the ordering for Γ, dv0/dt, and dγ0/dt same as Eqs. (I.3)–

(I.5). Instead of Eq. (I.6), however, we assume that

dv1/dt ∼ Γ−1/2v1, (I.41)

i.e., the characteristic frequency ω is higher than the relativistic ion gyrofrequency.

As a result, Eq. (I.7) is replaced by

ε′ ∼ Γ−1/2ε. (I.42)

Assuming again that v1 is nearly perpendicular to v0, Eq. (I.8), we obtain

ε′v0 ·
dv1

dt
∼ ε′Γ−5/2v0v1 ∼ εΓ−3. (I.43)

Applying these expansions and orderings to the equation of motion, we find

Eq. (I.18) in the first order of ε′ (and ε). The magnitude of the Lorentz force is

vy1Bz(ξ0)− vz1By(ξ0) ∼ εΓ−1/2, which is obviously smaller in magnitude than, for

instance, ε′γ0dv1/dt (∼ ε). We thereby find the equation in the order of ε as

γ3
0

(
v0 ·

dv1

dt

)
v0 + γ0

dv1

dt
=

dE

dξ0
x1 + v0 ×

dB

dξ0
x1. (I.44)

In the O(ε2) equation, we have terms such as 3γ5
0v

2
x0vx1(dvx1/dt)v0, which is smaller

than the terms of Eq. (I.44) if

ε < Γ−7/2. (I.45)

We suppose that ε is so small that (I.45) is satisfied.

Now, assuming that the perturbed quantities vary with time as exp(−iωt), we

find from Eq. (I.44) the frequency ω as

ω2 = −(1− v2sh)

γ0

(
dEx

dξ0
+ vy0

dBz

dξ0
− vz0

dBy

dξ0

)
. (I.46)
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Equation (I.46) is consistent with the ordering (I.41) and indicates that ω has real

values if
dEx

dξ0
+ vy0

dBz

dξ0
− vz0

dBy

dξ0
< 0. (I.47)

If this condition is not met, then the oscillation would grow with time; the particle

would quickly escape from the shock transition region.

The perturbed velocity v1 is given as

v1 = −iωx1(1,−γ2
shvshvy0,−γ2

shvshvz0). (I.48)

We thus find that

v0 · v1 = −iωx1vshγ
2
sh/γ

2
0 , (I.49)

which is in agreement with the ordering (I.8), indicating that v1 is almost perpen-

dicular to v0. Equation (I.48) also shows that the perturbation is one dimensional:

v1 is parallel to the vector (1,−γ2
shvshvy0,−γ2

shvshvz0).
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Appendix J

Electron motions inside and
outside a compressive pulse

J.1 Elliptic orbits in the momentum space

To analyze the relativistic electron motion near a small compressive pulse behind

a shock front, we assume, as in Sec. 7.1.1, that the electric and magnetic fields

are EI = (0, EI, 0) and BI = (0, 0, BI) inside the pulse and EII = (0, EII, 0) and

BII = (0, 0, BII) outside the pulse.

When an electron is inside the pulse, xbd < x < xbd +∆, it moves in an ellipse

in the momentum space, which can be shown with use of the relativistic equation

of motion:

me
d

dt
(γvx) = −e

c
vyBI, (J.1)

me
d

dt
(γvy) = −eEI +

e

c
vxBI. (J.2)

The z component of the momentum is constant because Ez = 0,

pz = pz0. (J.3)

From Eqs. (J.1) and (J.2), we obtain

mec
2 (γ − γ0I) = −eEI(y − y0I), (J.4)

where the subscript 0 refers to initial values; γ0I can be expressed as

γ0I =

(
1 +

p2x0 + p2y0 + p2z0
m2

ec
2

)1/2

. (J.5)
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Integrating Eq. (J.1) gives

meγvx −meγ0Ivx0I = −eBI

c
(y − y0I). (J.6)

Combining Eqs. (J.4) and (J.6), and using the relation γ = [1 + p2/(m2
ec

2)]1/2, we

obtain an elliptic equation for p, Eqs. (7.4) and (7.5), where PI and aI are given as

PI = meγ
2
dIvdIγ0I(1− vdIvx0I/c

2), (J.7)

a2I = (c2/v2dI)P
2
I − (m2

ec
2 + p2z0)γ

2
dI. (J.8)

Behind the pulse, x < xbd, electrons also make elliptic motions in the momen-

tum space, which are shown by Eqs. (7.6) and (7.7) with

PII = meγ
2
dIIvdIIγ0II(1− vdIIvx0II/c

2), (J.9)

a2II = (c2/v2dII)P
2
II − (m2

ec
2 + p2z0)γ

2
dII. (J.10)

The quantities PI and PII are both positive because vdI > 0 and vdII > 0.

J.2 Sign of a2I

We prove here that a2I and a2II are also positive. Noting that

γ0I ≥ γxz, (J.11)

where

γxz = [1 + (p2x0 + p2z0)/(m
2
ec

2)]1/2, (J.12)

we find that
a2I
γ2
dI

≥ m2
ec

2γ2
xzγ

2
dI

(
1− vdIvx0

c2

)2

− (m2
ec

2 + p2z0). (J.13)

Substituting the relation

m2
ec

2 + p2z0 = m2
ec

2(γ2
xz − γ2

0Iv
2
x0/c

2) ≤ m2
ec

2γ2
xz(1− v2x0/c

2), (J.14)

in Eq. (J.13) yields
a2I
γ2
dI

≥ m2
ec

2γ2
xzF (vx0), (J.15)
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where

F (vx0) = γ2
dI

(
1− vdIvx0

c2

)2

−
(
1− v2x0

c2

)
. (J.16)

With the aid of the relation

dF

dvx0
= 2

γ2
dI

c2
(vx0 − vdI), (J.17)

we see that F (vx0) has its minimum value F (vx0) = 0 at vx0 = vdI. Hence, Eq. (J.15)

indicates that a2I ≥ 0. One can prove that a2II ≥ 0 in the same way.

J.3 Sign of ∆P (t0)

When a particle goes out to the region behind the pulse at t = t0 at point B with

py(t0) = 0 (Fig. 7.2), the center of the ellipse is shifted along the px axis by the

amount given by Eq. (7.8). This section proves that it is positive, Eq. (7.9).

To connect the two ellipses at point B, we take the constants in Eqs. (J.7) and

(J.9) to be

γ0I = γ0II = γ(t0), (J.18)

vx0I = vx0II = vx(t0). (J.19)

We then find ∆P (t0) as

∆P (t0) = mecγ(t0)(γ
2
dIβ

2
dI − γ2

dIIβ
2
dII)

×
[
vx(t0)

c
−
(
1 +

(1− βdI)(1− βdII)

βdII + βdI

)]
, (J.20)

where βdI and βdII are defined as

βdI = vdI/c, (J.21)

βdII = vdII/c. (J.22)

By using Faraday’s law, we can find the relation among the pulse and drift

speeds. If the propagation of the compressive pulse is nearly stationary, integrating

the z component of Faraday’s law over a small region containing the rear boundary

x = xbd, we obtain
vcp
c
(BI − BII) = EI − EII, (J.23)
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where vcp is the propagation speed of the compressive pulse. We then find the

relation

vdII − vdI =
(BI − BII)

BI
(vdII − vcp). (J.24)

Since BI > BII, we have

vdII > vdI > vcp, (J.25)

or

vdII < vdI < vcp. (J.26)

If the compressive pulse is an ordinary nonlinear magnetosonic pulse propagating

in the positive x direction in an equilibrium plasma, vdII is zero in the laboratory

frame where the plasma is at rest outside the pulse, and the relation (J.26) holds.

If, however, a magnetosonic pulse behind a shock front propagates in the negative

x direction relative to the downstream plasma, then Eq. (J.25) can be satisfied. In

this case, the relation

γ2
dIβ

2
dI − γ2

dIIβ
2
dII < 0, (J.27)

and thus Eq. (7.9) hold: The shift ∆P (t0) is positive.

In the same way, we obtain the shift of the ellipse center at t = t1, ∆P (t1) =

PI(t1)− PII(t1), as

∆P (t1) = mecγ(t1)(γ
2
dIIβ

2
dII − γ2

dIβ
2
dI)

×
[
vx(t1)

c
−
(
1 +

(1− βdII)(1− βdI)

βdI + βdII

)]
. (J.28)

It is noted that PI(t1) /= PI(t0), while PII(t1) = PII(t0). Under the condition (J.25),

it is negative

∆P (t1) < 0. (J.29)
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