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Abstract
To allow a non-zero ‘vorticity’ associated with the generalized momentum, the Lagrangian
describing general fluid-mechanical collective motions must incorporate a non-canonical
structure. The canonical formalism, symbolized by the basic Hamilton–Jacobi equation
P = ∇S relating the momentum ‘P ’ with the action ‘S’, does not permit finite vorticity. The
Lagrangian in the Eulerian view (suited for coupling with other fields such as the
electromagnetic) must include ‘topological constraints’ embodying this non-canonical feature.
Analyzing the role of the abstract fields (introduced as Lagrange multipliers) constituting the
constraints, we may unify the Lagrangians in both Eulerian and Lagrangian views. Relativistic
(Lorentz-invariant) formulation reveals the natural meaning of the Clebsch parametrization.

1. Introduction

From a non-linear field theory perspective, a ‘flow’ is hard
to categorize; adjectives invoked to describe it mostly tell
us what it is not—non-linear, non-Hermitian, non-canonical,
non-commutative (even non-Abelian etc). Classical fluid
mechanics, thus, still constitutes a rich resource of basic
concepts that need further elucidation; such concepts could
be just as relevant to other fields.

The existence of ‘vorticity’ or that of the fluid ‘helicity’
creates the central problem that makes totally non-trivial the
derivation of fluid mechanics by the standard methodology.
The very basic relation P = ∇S of the Hamilton–Jacobi
formalism forces zero vorticity (∇×P ≡ 0), and consequently,
an identically zero-helicity density for the vector field P
(conventionally named the momentum). A potential flow
P = ∇S is just right for single-particle dynamics because
it is devoid of a notion of a collection (bundle) of orbits (the
helicity is a geometric index measuring the twists of multiple
orbits). For P to be an appropriate representation for the ‘fluid’
momentum, its vorticity must be allowed to be non-zero, for
instance, to allow the streamlines to make linkages. To affect
the required departure from Hamilton–Jacobi type relations,
one has to invoke appropriate ‘topological constraints’ so that
the vector field P is imparted a finite helicity (vorticity).

Following the pioneering work of Serrin [1] on the
Lagrangian formalism of a fluid, which could produce only
a potential flow, different fluid-mechanical Lagrangians have
been proposed. Based on different perspectives, we have two
such groups: one invokes the use of a Lagrangian description
of fluid motion, and the other represents fluids by Eulerian
fields such as the momentum P . Or, in mathematical terms,
the former formulates fluid mechanics by an adjoint operator
on a Lie algebra space, while the latter can be regarded as
the dual of the former, i.e. a flow is a coadjoint operator
on the dual vector space of the Lie algebra space [2]. The
aim of this effort is to delineate an explicit relation between
these two representations, and to introduce a unified, Lorentz-
covariant Lagrangian that can be applied, inter alia, to construct
an efficient and accurate scheme for numerical analysis or
perturbation theory.

The classical Lagrangian description for particle motion
may be readily extended for a continuum by invoking the
diffeomorphism that describes the displacements of matter
in the Lagrangian view (section 2). While particle classical
mechanics is best framed in the Lagrangian view, standard
field theories tend to be Eulerian (section 3). One of
the most essential problems of the Lagrangian description
is that the very existence of a diffeomorphism collapses
when a dissipation is introduced as a singular perturbation
(physically, the streamlines may annihilate/create, reconnect
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or diffuse). Yet, the Lagrangian description is, by its canonical
Hamiltonian structure, very powerful, especially in the study
of ideal instabilities [3, 4]. It is in the quest for an Eulerian
representation that the incorporation of vorticity (and helicity)
emerges as a problem.

As is well known, an ideal fluid obeys a ‘non-
canonical’ Hamiltonian system [5]—the generator of the
infinite-dimensional dynamics is defined by a degenerate
symplectic operator, and its ‘defect’ (the cokernel of the
symplectic operator) represents a topological constraint on the
helicity (Casimir invariant) associated with the fluid vorticity.
Interestingly, the use of the Clebsch parametrization of the
flow field (with a finite vorticity) allows us to construct a
‘canonical’ system of equations. By introducing ‘parasite
variables’ as Lagrange multipliers on ‘abstract constraints’,
which alchemize into the Clebsch variables parametrizing the
flow field, we can formulate a Lagrangian that is capable of
describing a finite vorticity system [6–9].

However, the physical meaning of the ‘abstract
constraints’ is not obvious; some authors leave them just as
‘some constraints’ pertinent to streamlines, and others suggest
to connect one of them to entropy conservation; Kambe [10]
proposed a gauge-field implication of the vorticity. Suspending
the physical interpretation, the technical procedure is elegant
(for mathematical interpretation of Clebsch variables, see
[11–14]). Via the method of Lagrange multipliers for
constrained variational principle (immersing the constrained
manifold into an extended parameter space), we can convert
implicit constraints into explicit (linear) contact conditions (the
non-canonical Poisson bracket can be derived from a canonical
bracket in an extended parameter space [15, 16]). However,
we note that the formal ‘canonicalization’ by introducing
parasite variables goes in the opposite direction from the naı̈ve
strategy of resolving the topological constraint by removing the
constrained degree of freedom, i.e. separating the cokernel of
the symplectic operator. By analyzing the range of the Clebsch
parametrization [17], the ‘pleat’ hiding the superfluity of the
seemingly canonical variables will become clear (section 4).

In this work, we will show that the ‘constraints’ are
those of the initial condition (indeed, while introducing
the constraints, Lin [6] intended them to be precisely the
Lagrangian coordinates) by delineating an explicit relation
between the Lagrangian label and the Clebsch variables. The
former determine the initial identity of each infinitesimal
fluid element while the latter turn out to be the Eulerian
counterpart of Lagrangian label [18]. We will, then, establish
the equivalence of the Lagrangians in the two views (section 5)
as the ‘dual’ representation of the motion.

In section 6, we will use the Eulerian displacement as
a field variable, and formulate a new type of variational
principle. The Lorentz-invariant form of the Lagrangian takes
a very simple form, revealing the meaning of the Clebsch
parametrization (section 7).

2. Fluid mechanics in the Lagrangian view

To set the stage for our discussions on the comparison of
the Lagrangian and Eulerian formalisms, we begin with the

Lagrangian of a non-relativistic particle (mass m and charge e)
in the presence of an electromagnetic (EM) field:

L = LP + LEM, (1)

LP = P · v − H, (2)

LEM =
∫

LEM d3x =
∫

−1
4
FµνF

µν d3x, (3)

where

H = p2

2m
+ eφ

is the Hamiltonian,
P = p +

e

c
A

is the canonical momentum, and p is the mechanical
momentum. The vector and the scalar potentials define the
four potential Aµ = (φ, A) whose curl is the Faraday (field
strength) tensor

Fµν = ∂µAν − ∂νAµ.

The velocity v is related to the particle orbit q(t) (along which
LP is to be evaluated) by

v = q̇. (4)

The relation (4) is the essential input that ‘causes’ the motion
of the particle. Indeed, if we were to calculate the variation of∫

L dt for a general δv, we would find P = 0, and it is only
for the variation δq̇ (with fixed end points q(t0) and q(t1)), the
well-known Lagrange equation of motion follows.

Generalizing the single-particle orbit q(t) to a diffeomor-
phism Q(x0, t) in R3 (x0 is the initial position of each stream-
line), and introducing a particle-number density n, we con-
struct the fluid Lagrangian

LF =
∫

LF d3x =
∫

(P · V − HF ) n d3x (5)

by replacing the single-particle velocity q̇ in (4) by the flow
velocity

V (x, t) = Q̇|x,t = d
dt

Q(x0(x, t), t). (6)

Here, the time derivative d/dt is evaluated along each
streamline (orbit of the fluid element) staring from x0; we
denote by x0(x, t) the initial position of the streamline
being connected to the space-time position (x, t). To relate
(x, t) to (x0, 0), one needs the inverse map x0(x, t) :=
Q−1(x, t) of the diffeomorphism Q(x0, t), which traces-back
the streamlines. Since x0 is invariant on each streamline,
dx0(x, t)/dt = 0 when d/dt denotes the Lagrangian
derivative to be defined in (9), the time derivative on (6) is at
fixed x0 (the relations among x = Q(x0, t), x0 = Q−1(x, t),
and V will be discussed more explicitly in section 5).

The fluid Hamiltonian (density) HF consists of the kinetic
and potential energies plus an ‘internal (thermal) energy’ ε(n):

HF = H + ε(n). (7)
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Here, we consider a ‘barotropic fluid’ where ε is a function of
only n (‘homentropic’ fluid is a subclass). The fluid pressure
P may be defined by dU = −PdV where U = εnV is the total
internal energy, and V is the volume. The particle conservation
law d(nV ) = 0 leads, then, to the relation dε = (P/n2)dn.
The density n must obey

n(x, t) = n0(x0(x, t)) · D(x0)

D(x)
, (8)

where D(x0)/D(x) is the Jacobian of the transformation
x %→ x0. With the formal choice n0(x0) = δ(q0 − x0), (1)
is readily recovered with nd3 xdt giving the integral along the
orbit q(t).

In what follows we denote

Dtf = ∂t f + V · ∇f, (9)

D∗
t f = ∂t f + ∇ · (V f ). (10)

The particle conservation law

D∗
t n = 0 (11)

is a direct consequence of (8). By the criticality of the action∫
(LF + LEM) dt , fixing the space-time boundaries, we obtain,

from the variation δp, p = mV (=mQ̇), and from δQ, the
equation of motion

mDtV = −∇h + e

(
E +

1
c
V × B

)
, (12)

where E = −∇φ − ∂tA/c, B = ∇ × A, and the molar
enthalpy h is defined by

h = ∂(nε)

∂n
= ε +

P
n

. (13)

With (en, enV ) representing the charge and current den-
sities, the Maxwell equations follow from the variation δAµ.

Although the derivation of (12) is well known, a review
of its somewhat involved procedure will be useful for the
later discussions on the relation between the variation of Q
and its Eulerian counterpart (section 5): we first calculate the
responses of V (x, t) and n(x, t) to a perturbation Q(x0, t) →
Q′(x0, t). A vexing complication arises from the gap
between the Lagrangian view of the diffeomorphism Q(x0, t)

(operating on the ‘initial position’ x0) and the Eulerian view
of other fields to be evaluated at each space-time point (x, t).
To merge different views, we have to evaluate the variation δQ
in the Eulerian view:

δQ|x,t = (Q′(x0, t) − Q(x0, t))|x=Q(x0,t), t

= Q′(Q−1(x, t), t) − x

:= x′ − x.

Note that this δQ evaluates the variations of the streamlines,
originating from the common origins at x0 = Q−1(x, t). The

corresponding variations of the fields (that are functions of Q)
are given by the ‘Lie-derivatives’:

δV (x, t) = (Q̇′ − Q̇)|x,t

= d
dt

Q′(x′
0(x, t), t) − d

dt
Q(x0(x, t), t)

=
[

d
dt

Q′(x′
0(x

′, t), t) − d
dt

Q(x0(x, t), t)

]

−
[

d
dt

Q′(x′
0(x

′, t), t) − d
dt

Q′(x′
0(x, t), t)

]

= ∂tδQ + (V · ∇)δQ − (δQ · ∇)V ,

δn(x, t) = n′(x, t) − n(x, t)

= [n′(x′, t) − n(x, t)] − [n′(x′, t) − n′(x, t)]

=
[
n0

D(x0)

D(x′)
− n

]
− δQ · ∇n

= [n (1 − ∇ · δQ) − n] − δQ · ∇n

= −n∇ · δQ − δQ · ∇n

= −∇ · (nδQ).

After appropriate manipulations and integrations by parts to
collect terms multiplied by δQ, one obtains (12).

3. Fluid mechanics in the Eulerian view

The relative facility of the Lagrangian view to yield the
equations of motion disappears in the Eulerian case where
no a priori relation between the fluid velocity V and the
streamlines is assumed, and the unrestricted variation δV
yields P = 0. To reproduce properly the evolution equations,
we must appropriately ‘constrain’ V .

The measure nd3x dt , defined by (8), is the generalization
of the path integral for single orbit to the collective orbits.
It was argued, then, that imposing a physically motivated
‘restriction’ on n that leads to the conservation law (11), must
be a step in the right direction. Serrin, in a pioneering paper [1],
proposed the Lagrangian density

LF = (P · V − HF ) n + SD∗
t n, (14)

in which the variation of the Lagrange multiplier S does exactly
that. Note that, in the Lagrangian formulation, the particle
conservation (11) is built in through (8).

The Serrin Lagrangian, however, falls short to describe
general fluid mechanics; the momentum field is limited to
be such that P = ∇S (obtained by the variation δV ) which
describes only an ‘irrotational’ flow.

To derive flows with vorticity, a variety of authors
[6–8] have imposed additional constraints of the form
−n

∑ν
j=1 λ

jDtσj to the Serrin Lagrangian (14); depending
on author, ν varies from 1 to 3. As to be shown in (17), the
constrained Lagrangian yields a flow such that

P = ∇S +
ν∑

j=1

λj∇σj , (15)

corresponding to the so-called Clebsch parametrization of a
vector field, which does acquire a finite vorticity. However,
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the correct number ν of additional constraints as well as
their physical interpretation has been somewhat ambiguous.
Mathematically, a general three-dimensional vector field can
be cast into the form of (15) with ν = 2; however, in
formulating a variational principle, we have to vary each
functionλj orσj independently without violating the boundary
conditions, and for this requirement we need ν = 3; see [17].
In section 5, σj turns out to be the Eulerian representation of the
Lagrangian coordinates; thus ν must be indeed three [18, 19].

Let us follow the formal calculus: we start from a
Serrin–Lin Lagrangian density

LF =



P · V − HF −



DtS +
ν∑

j=1

λjDtσj







 n. (16)

In what follows, we choose ν = 3, and we apply the summation
rule to omit

∑ν
j=1. For the symmetry of expression (and for

an alternative interpretation of the formulation to be described
later), we have replaced SD∗

t n of the Serrin Lagrangian by
−nDtS. The variational principle δ

∫
(LF + LEM) d3x dt = 0

yields
δV ⇒ P = ∇S + λj∇σj , (17)

δp ⇒ p = mV , (18)

δS ⇒ D∗
t n = 0, (19)

δσj ⇒ D∗
t (nλ

j ) = 0 ⇒ Dtλ
j = 0, (20)

δλj ⇒ Dtσj = 0, (21)

δn ⇒ DtS = P · V − (H + h), (22)

and, by δAµ, Maxwell’s equations with the currents (en, enV ).
The particle conservation law is already apparent in (19).

The other equations combine to reproduce the equation of
motion; using Dt(∇f ) = ∇(Dtf ) − ∇V · ∇f , we obtain

DtP = Dt(∇S + λj∇σj )

= ∇[−(H + h) + P · V ] − ∇V · P

= −∇(eφ + h) +
e

c
[V × B + (V · ∇)A],

which is equivalent to (12). Therefore, the evolution of
the Serrin–Lin fields n, S, λj , µj dictated by the Lagrangian
density (16) is consistent to the fluid/plasma equations.

What do the Serrin–Lin fields signify? The role of S is
best understood by referring to the original Serrin form (λj =
σj = 0). Although Serrin’s S is a Lagrange multiplier that
imposes particle conservation (11), we may proffer a different
interpretation. By moving (by integrating by parts) D∗

t from
n to S, as we did in (16), one may think of n as a Lagrange
multiplier demanding that LF must be a complete derivative
(evaluated through each streamline of V ) of some scalar field
S—this is nothing but Hamilton’s principle demanding the
criticality of the action integral with S as the ‘action’. Indeed, if
the thermal energy ε is neglected and λj = σj = 0 in (17) and
(22), we obtain the well-known Hamilton–Jacobi equations
∂t S = −H(x, P , t) and ∇S = P .

The additional fields λj and σj are, mathematically, the
constraints producing a finite vorticity in the bundle of stream-
lines of V , and violating (or generalizing) the Hamilton–Jacobi

equations; remember the discussion in the introduction. Their
physical meaning will be revealed in the following sections.

We end this section with actualizing the canonical
structure in the governing equations of the Serrin–Lin
variables. Plugging the Clebsch form (17) into the Serrin–Lin
Lagrangian density LF , we can simplify (16) as

L′
F = (nṠ + (j σ̇j ) − nHF |P=∇S+((j /n)∇σj

, (23)

where we denote ḟ := ∂t f , and define (j = nλj . We
observe that this Lagrangian density consists of a canonical
1-form (nṠ + (j σ̇j ) (i.e. the 2-form dn ∧ dS + d(j ∧ dσj

defines the symplectic structure) and a Hamiltonian density
nHF , thus the pairs n-S and (j -σj (j = 1, 2, 3) constitute
‘canonical variables’ obeying Hamilton’s equations: defining
the Hamiltonian

HF =
∫

nHF |P=∇S+((j /n)∇σj
d3x, (24)

the forgoing Euler–Lagrange equations (19)–(22) can be cast
into a system of canonical equations
{
ṅ = ∂SHF

Ṡ = −∂nHF ,

{
(̇j = ∂σj

HF

σ̇j = −∂(j HF
(j = 1, . . . , ν).

(25)

Here we choose ν = 3 (the similar canonical system with a
different ν will become a subject in the next section).

4. The relation between non-canonical and
canonical formalisms

As is well known, the standard plasma equations (11)–(12)
are non-canonical as a Hamiltonian system. However, we
have seen that the Serrin–Lin parametrization of the system
yields a canonical system (25); by the Serrin–Lin variables
obeying the canonical equations, we can construct the solution
of (11)–(12). Here, we analyze the exact relation between the
original non-canonical system and the canonicalized system.

We start by reviewing what we call non-canonical [5]. A
general Hamiltonian system (on a Hilbert space V ) is endowed
with a symplectic operator J and a HamiltonianH(u) (u ∈ V );
the evolution equation is written as

∂t u = J ∂uH(u),

where ∂uH(u) is the gradient of a (smooth) functional H(u).
We define the Poisson bracket by [F, G] := 〈J ∂uF, ∂uG〉,
where 〈u, v〉 is the inner product of V . The symplectic
operator J must be antisymmetric, and we demand Jacobi’s
law [[F, G], H ] + [[G, H ], F ] + [[H, F ], G] = 0. Generally,
J may be a function of u (then, we denote J (u)), and may
have a non-trivial kernel, i.e. there may exist v .= 0 such
that J (u)v = 0 (v may depend on u), and then, the system
is said non-canonical. If there exists a functional C(u) (.=
constant) such that J (u)∂uC(u) = 0, then, [C, F ] ≡ 0 (∀F ).
Such C(u) is called a Casimir invariant; because [H, C] = 0
(H : Hamiltonian), C is a constant of motion.

A trivial example of Casimir can be made by adding
an extra degree of freedom to a canonical system of a finite
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dimension: Let u = (u1, . . . , un) be a complete set of
canonical variables governed by ∂tu = J ∂uH . We consider
its extension ũ = (u, un+1). The superfluous component un+1

cannot be independent to u. For simplicity, let us assume that
un = un+1. The equation of motion for ũ may be written
as ∂t ũ = J̃ ∂ũH̃ with an extended Hamiltonian H̃ such that
∂unH̃ = ∂un+1H̃ = ∂unH , and an extended symplectic operator
J̃ such that J̃ i,j = J i,j (i, j = 1, . . . , n − 1), J̃ i,n =
J̃ i,n+1 = J i,n/2, J̃ n,j = J̃ n+1,j = J n,j /2 (i, j = 1, . . . , n)
and J̃ n+1,n+1 = J n,n/2. The kernel of J̃ is t (0, . . . , 0, 1, −1),
and hence, arbitrary f (un −un+1) is a Casimir representing the
above mentioned constraint.

The plasma equations (11)–(12) do have Casimirs [5].
Choosing u = t (n, P ) as the state vector, the evolution
equations can be cast into a Hamiltonian form

∂t

(
n

P

)
=

(
0 −∇·

−∇ −n−1(∇ × P )×

) (
∂nHF

∂P HF

)
(26)

with the conventional Hamiltonian (total energy; see (7))

HF =
∫

HF d3x =
∫

n

[ |P − eA/c|2

2m
+ eφ + ε(n)

]
d3x.

Note that this HF is represented by the naı̈ve state variables
u = t (n, P ), which is compared with the foregoing
Hamiltonian (24) in terms of the Serrin–Lin variables. The
block operator on the right-hand side of (26) defines the
symplectic structure. Evidently, two functionals

C1 =
∫

n d3x, CP =
∫

(∇ × P ) · P d3x

are Casimirs. The constancy of C1 is nothing but the particle
conservation law; CP is the so-called helicity.

Now we return to the question as to how the non-canonical
system (26) and the canonical system (25) are related. From
the forgoing practice of ‘non-canonicalization’ by ‘adding’ a
constrained parameter, one may expect that some superfluous
parameters have been ‘subtracted’ from the original non-
canonical system (26) to purify it canonically, and (25) is the
result of adjustment. Unfortunately, this is not the case. In
fact, the canonical system (25) is keeping the variable n that
is constrained by the Casimir C1 (as to be shown, CP can
play an interesting role in canonicalizing the system). Since
the relation between these two systems is rather involved,
we start by examining the ‘range’ of the canonicalized
dynamics (25) with varying ν (the number of the Clebsch pairs
λj and σj ).

Going back to (16), let us remember that ν can be
(mathematically) arbitrary; for every ν, we obtain a closed
canonical system that is consistent with the original non-
canonical system (26). In this sense, the canonical system
(25), with an arbitrary ν, is ‘embedded’ in the non-canonical
system (26).

Evidently, neither ν = 0 (P = ∇S) nor ν = 1
(P = ∇S + λ∇σ ) is sufficient for the canonical system to
describe the general dynamics; the former cannot have vorticity
() = ∇× P = 0), while the latter can encompass flows with
only integrable vortex lines () · ∇λ = ) · ∇σ = 0) [17].
However, one may claim that the canonical system (25) with

ν ! 1 describes some restricted (but self-consistent) classes
of dynamics. The ν = 0 canonical system describes the
dynamics in a subspace of irrotational flows; an irrotational
flow remains irrotational for ever, thus the dynamics is closed
in this subspace. The ν = 1 case is somewhat tricky. The
set of functions {∇S + λ∇σ } (the domain of the dynamical
system (25) for ν = 1) is not a linear subspace, because a
linear combination of two members may not be cast in a ν = 1
Clebsch form (reflecting the nonlinear nature of the Clebsch
parametrization including products λj∇σj ). This subclass
of dynamics is characterized by the helicity constraint. For
P = ∇S + λ∇σ , the helicity reads as CP =

∫
∇ · (S∇λ ×

∇σ )d3x. This CP , being an integral of an exact 3-form,
is fixed, when we give boundary conditions on the Clebsch
parameters S, λ, σ (a non-zero helicity is ‘external’ being
caused by inhomogeneous boundary values of the Clebsch
potentials). If CP is fixed (decomposed from the dynamical
variables), the kernel of the Poisson bracket is removed, and
hence, we obtain a canonical system endowed with a regular
symplectic 2-form; see Jackiw [20]. Hence, the ν = 1
canonical system can be deemed as a result of purification
pertinent to the helicity constraint (however, an over-
purification eliminating the general non-integrable vortex-line
dynamics).

On the other hand, we can also assume an arbitrarily large
ν. Apparently, ν > 3 (the coordinate-space dimension) is
‘superfluous’, i.e. the Clebsch parametrization (15) includes
inter-related components. To be precise, we say that the
set of variables (S, λ1, σ1, . . . , λ

ν, σν) contains superfluous
component, if the map

T : (S, λ1, σ1, . . . , λ
ν, σν) %−→ P := ∇S +

ν∑

j=1

λj∇σj

has a kernel, i.e. if there is a non-trivial element
(S, λ1, σ1, . . . , λ

ν, σν) such that ∇S +
∑ν

j=1 λ
j∇σj = 0.

Then, the parametrization T −1 is not unique.
Interestingly, even for ν = 1, 2 or 3, the Clebsch

parametrization includes superfluous components [17]. In fact,
for ∇ × (

∑ν
j=1 λ

j∇σj ) = 0, one can find an appropriate S to
satisfy this relation, and hence, any ν " 1 yields superfluous
component.

Superfluity does not guarantee the completeness; even
with a superfluous components, the range of the map T can
be smaller than the totality of physical variables, i.e. some P
cannot be parametrized. As mentioned above, ν = 1 (P =
∇S + λ∇σ ) is insufficient. We can show that ν = 2 suffices
for the completeness [17]. However, for the Hamiltonian
formalism, we need ν = 3 to avoid the boundary conditions
to connect the Clebsch parameters as a simultaneous equation
(i.e. in order to impose the boundary conditions separately on
every components).

In summary, the ν = 3 canonical system (25) is
densely embedded in the phase space of the original non-
canonical system (26); yet, the former contains superfluous
parameters that must be subject to some constraint. The non-
canonical property (or the topological defect), represented by
Ker(J ) = Coker(J ), of the original system (26) is subsumed
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into Ker(T ). At the surface, i.e. in the space of the technical
variables t (n, S,(1, σ1, . . .), the governing equation (25) is
canonical—there is no apparent constraint. Beneath this
parameter space, however, there must be a constraint by which
the parametrization T −1 can be evaluated. This constraint
turns out to be the initial condition.

To see the role of initial condition, let us invoke the
previous toy model of non-canonical system. We can
formulate a ‘canonicalized system’ whose solution coincides
with that of the non-canonical one for a selected initial
condition. Instead of the previous J̃ , we define K̃ such that
K̃i,j = J i,j (i, j = 1, . . . , n), K̃i,n+1 = 0 (i = 1, . . . , n),
K̃n+1,j = J n,j (j = 1, . . . , n − 1), K̃n+1,n = 0 and K̃n+1,n+1 =
J n,n. This K̃i,j is regular, and hence, ˙̃u = K̃∂ũH̃ is canonical.
Since u̇n = ˙un+1, the condition un = un+1 is satisfied if we
restrict the initial condition un(0) = un+1(0).

From this observation, one may speculate that (i) the
Lagrangian representation (labeling the streamlines by the
initial positions) is free from the topological defects, and (ii)
the Clebsch parametrization, leading to a seemingly canonical
(defect-free) formulation, may be somehow connected to the
Lagrangian representation. In the next section, we will
see how the Clebsch parametrization is connected with the
Lagrangian representation, and clarify the physical meaning
of the variables λj and σj .

5. Connection between the Lagrangian and Eulerian
views

As discussed in the previous section, we are assuming both
λj and σj to be the components of three-vectors λ and σ.
This interpretation of λj and σj will now be exploited to relate
the Lagrangian and Eulerian formulations of the Lagrangians,
respectively, given in sections 2 and 3. Through this analysis,
we will also find a simpler form of the Lagrangian that turns out
to be translatable to the most natural Lorentz-invariant form.

The key is the identity V ≡ Dtx (the Cartesian
parametrization of the vector field V ; Dt is the symbol of
the flow, which will be generalized to U ν∂ν in the Lorentz-
covariant formulation in section 7), by which one may write

P · V − λ · Dtσ = P · Dtξ − µ · Dtσ,

where ξ = x − σ and µ = λ − P [18]. The Serrin–Lin
Lagrangian density (16), then, transforms to

LF = (P · Dtξ − HF − DtS − µ · Dtσ) n. (27)

From this form, the equivalence between the Eulerian and the
previous Lagrangian (5) formalism will be established when
we connect Dtξ with Q̇.

In (27), the variation of µ forces Dtσ = 0 implying

Dtξ = Dtx ≡ V . (28)

This Eulerian representation of the flow velocity is compared
with the Lagrangian representation (6) that invoked the
diffeomorphism Q(x0, t). We will now show that σ (in its

fundamental choice) is nothing but x0, and hence, ξ = x − σ
is the ‘displacement’:

ξ = Q(x0, t) − x0. (29)

Here, the left-hand side is represented in the Eulerian frame
(x and t), while the right-hand side, in the Lagrangian
frame (x0 and t). Both sides are connected by invoking the
inverse map x0 = Q−1(x, t) and writing the right-hand side
as x − Q−1(x, t). We may regard the map Q−1(x, t) as
the fundamental Eulerian field that is the counterpart of the
diffeomorphism Q(x0, t), the fundamental Lagrangian field.

Let us show that x0 = Q−1(x, t) = σ(x, t). We note that
Dtσ = 0 implies that σ is constant along every streamline
defined by V and, therefore, must be a function only of the
initial condition. The simplest expression of such a σ is the
initial condition itself. Formally, we can construct σ by solving

∂tσ + (V · ∇)σ = 0 (30)

as a partial differential equation (PDE) for a given
initial condition σ(x, 0) = σ0(x). The ‘characteristics’
corresponding to the hyperbolic PDE (30) are determined by

d
dt

x = V (x, t), x(0) = x0. (31)

Both (30) and (31) share the same V . Solving (31) for
every initial value x0, we may construct the diffeomorphism
x = Q(x0, t). The V in (30) is now common with that of (6).
Therefore, by (28), we obtain

Q̇ = V = Dtξ. (32)

The interpretation of the field ξ as the ‘displacement’,
i.e. relation (29), is established by choosing an appropriate
initial condition for σ in solving (30). Using the inverse map
Q−1(x, t), we may write σ(x, t) = σ0(Q

−1(x, t)). The
simplest initial condition σ0(x) = x, i.e. σ0 is the identity,
leads to

σ(x, t) = Q−1(x, t) ≡ x0(x, t). (33)

We already mentioned that when σ = x0, ξ = x − σ is the
Eulerian representation of the ‘displacement’.

Now, the unification of the Lagrangian and Eulerian
representations is established: choosing n such that D∗

t n = 0,
satisfying (8), one may omit the constraining term (DtS)n in
(27). Also choosing σ such that Dtσ = 0, the corresponding
term vanishes in (27), and (32) allows us to write P · Dtξ =
P · Q̇. Then, (27) is nothing but the Lagrangian density of (5).

6. Simplified Eulerian representation

In the preceding argument, we tried to connect the Eulerian
formulation (27) to the Lagrangian view by interpreting the
term µ ·Dtσ as restricting ξ so that Dtξ = Q̇. Now, we return
to the Eulerian view, and proceed to derive a more elegant and
perspicacious form of the Lagrangian.

The relation σ (x, t) = x0(x, t), established in (33), will
be applied in an alternative way to translate (27) in which ξ is
treated as an independent Eulerian field (and varies freely)

6



Plasma Phys. Control. Fusion 54 (2012) 014003 Z Yoshida and S M Mahajan

with fixing V . Note that the ‘velocity’ Dtξ, constituting
the coupling term P · Dtξ, and the physical velocity V are
independent, and their relation is reserved open in calculating
the variations—instead of connecting them, as we did in
section 5, we relate x to ξ for the variation, i.e. we promise
to evaluate all fields, excepting V , for x = ξ + σ with fixed
σ(= x0) such that Dtσ = 0. Under this protocol, we may
remove the term µ · Dtσ in (27), and write

LF = (P · Dtξ − HF − DtS) n |x=ξ+σ , (34)

where we have written

P = mV +
e

c
A, HF = mV 2

2
+ ε + eφ

with expressing the mechanical momentum p explicitly as mV
for simplicity (if we reserve p as a variable, the variation δp
yields p = mDtξ = mV , because ξ = x − σ and Dtσ = 0).

The Euler–Lagrange equations are

by δn,
LF

n
= h − ε (35)

by δV , P · (∇ξ) − ∇S = 0, (36)

by δS, D∗
t n = 0, (37)

by δξ, DtP = −∇(eφ + h) +
e

c
∇A · V . (38)

We easily verify that (38) yields the momentum equation (12).
To derive (38), we have to take into account the variation of
involved fields caused by the perturbation δx = δξ of the
observation point; we find δ(n d3x) = (∇n·δξ+n∇ ·δξ) d3x =
∇ · (nδξ) d3x, which shows a reciprocal relation with δn =
−∇ · (nδQ) given in section 2. We also have δφ = ∇φ · δξ,
and δ(A · V ) = (∇A · V ) · δξ. Here, V is freed from δξ
because we define the Dtξ with fixing V . We also note that
the variation of

∫
f |x=ξ+σ d3x due to δξ vanishes for every

scalar field (0-form) f because (∇f ·δξ) d3x and f (∇ ·δξ) d3x

cancel (it appears just a shift of the coordinate). By this fact,
the variation of ξ does not propagate to LEM.

Since explicit calculations are easier in the framework of
tensor calculus for relativistic formulation, we will explain the
details of variational principle in the next section.

7. Lorentz-invariant form

The Lagrangian density (34) can be generalized to be a
Lorentz-invariant form that reveals the deep structure of the
fluid Lagrangian.

Let us revisit the particle Lagrangian in the relativistic
framework, and recall some basic notation. The action of a
particle (in EM) is

S =
∫

−mc ds − e

c
Aµdxµ

=
∫

−
[
mcuµ +

e

c
Aµ

]
dxµ

=
∫

−
[
γmc2 + eφ −

(
mcuj +

e

c
Aj

)
vj

]
dt

≡
∫

LP dt (39)

(ds =
√

dxµdxµ = uµdxµ, uµ = dxµ/ds = (γ , γv/c)).
Following preliminaries set the stage for formulating a fluid
Lagrangian:

(a) For a free-particle (Aµ = 0), the particle Lagrangian
reads −mc2

√
1 − (v/c)2 = −mc2/γ . The corresponding

continuous Lagrangian density may be written as
−mc2n/γ leading to the action −

∫
mc2n/γ d4x.

(b) The density of the fluid element transforms with the frame.
The rest-frame (with respect to the fluid element) density
is a scalar denoted as n, while the density in an arbitrary
frame is γn and transforms like the zero component of a
four vector.

(c) In terms of the relativistic fluid four-velocity

Uµ = (γ , γV /c),

the non-relativistic ‘convective derivative’ reads

Dt = cγ−1Uµ∂µ,

where Uµ∂µ is Lorentz covariant.
(d) The relativistic fluid four-momentum density may be

defined as

pµ = (E/c)Uµ = (Eγ /c, EγV /c2), (40)

whereE is the energy density of the fluid (in the rest frame).
The effective rest-mass of a particle composing the fluid
is given by m̃ = E/c2. The fluid energy (sum of the
kinetic and thermal energies) is nγ E = nγ m̃c2 (in the
non-relativistic limit, we may write p0 = (m̃V 2/2+ε)/c).
The enthalpy is n∂(nE)/∂n = nE + P (see (13)), where

P = n2 ∂E
∂n

(41)

is the pressure. We note that this thermodynamic relation,
based on the particle conservation d(nV0) = 0 (V0 is the
proper volume), holds in the rest frame.

Now the relativistic version of the fluid Lagrangian (34)
is written in a manifestly covariant form:

LF = −
[
(EUµ + eAµ) U ν∂ν+µ + cU ν∂νS

]
n

∣∣
xµ=ξµ+σµ

.

(42)

Here, the xµ is four-dimensionalized including x0 = ct .
According to this, we set ξ0 = cτ with a function τ , and
σ0 = 0. A covariant vector +µ is defined as

+µ = (cτ, −ξ), (43)

which parametrizes the contravariant four-velocity:

U ν∂ν+µ|xµ=ξµ+σµ
= (γ , −γV /c) ≡ Uµ, (44)

UµU ν∂ν+µ|xµ=ξµ+σµ
= UµUµ = 1. (45)

The fluid Lagrangian (42) is the most natural generalization
of the particle Lagrangian given in (39). In comparison with
the non-relativistic formulation (34), however, one notes that

7
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an additional field ξ0 = cτ has sneaked in the four-vector +µ.
The role of this new field will be discussed later.

Let us show that the variational principle gives the
relativistic fluid equations. By δS, we obtain the particle
conservation law

∂ν(nU ν) = 0. (46)

By δn, we find

LF

n
= n

∂E
∂n

UµU ν∂ν+µ = n
∂E
∂n

(47)

= P
n

. (48)

We note that the last equality (48), based on the thermodynamic
relation (41), holds only in the rest frame.

By δU ν , we obtain

Pν = P µ∂νσµ + c∂νS + EUν, (49)

where P µ = EUµ + eAµ.
The variation with respect to +µ (µ = 0, 1, 2, 3) consists

of five components (as mentioned above, V and, hence, Uµ

must be freed from δ+µ):
∫

(X
µ
(1) + X

µ
(2) + X

µ
(3) + X

µ
(4) + X

µ
(5))δ+µd4x = 0,

X
µ
(1) = ∂ν[n(EUµ + eAµ)U ν],

X
µ
(2) = −n(∂µE)UµU ν∂ν+µ = −n(∂µE),

X
µ
(3) = −en(∂µAµ)U ν∂ν+µ = −en(∂µAµ)Uµ,

X
µ
(4) = LF

n
(∂µn) = n(∂µE),

X
µ
(5) = −∂µLF .

In evaluating X
µ
(4) we have used (47). X

µ
(5) is due to δ(d4x) =

∂µδ+µd4x. We want to use (48) to evaluate X
µ
(5). For this

purpose, we have to calculate the perturbation of the proper
time-space volume [21]. Denoting

qµν = gµν − UµU ν,

which is the ‘projector’ orthogonal to U ν , we may write

δ(d4x) = qµν∂νδ+µ d4x.

Hence, we obtain

X
µ
(5) = −∂ν (qµνP) .

Combining all terms using (46) in X
µ
(1), we obtain the

familiar equation of motion (see, for example, [22]):

∂νT
µν − enFµνUν = 0, (50)

where
T µν = (nE + P)UµU ν − Pgµν (51)

is the standard energy–momentum tensor.
We remark that the zero-component (µ = 0) of (50)

has been derived by the variation of the new field +0 = cτ ,
which was fixed to ct in the non-relativistic version (34). In

the present framework, indeed, the derivation of the zero-
component (which primarily implies the energy conservation)
by the variation of +0 was not necessary—we can deduce it
from the other momentum equations (µ = 1, 2, 3) and the
particle conservation law (46); by contracting (50) with Uµ, we
obtain the isentropic relation nT U ν∂νS = 0 (T : temperature,
S: entropy); for example see [22, 23].

Hence, the introduction of the new field +0 was for the
symmetry of the covariant formulation. In a more general
matter-field coupling, however, the energy conservation law
may not be a consequence of the momentum equations and the
particle conservation law.

We end this section pointing out that the Eulerian field
+µ = xµ − σµ is the ‘displacement’ of the observation point
xµ from the initial point σµ of the fluid element. It is now
evident that the Clebsch potential σµ is the initial coordinate,
i.e. the Lagrangian label.

8. Concluding remarks

Analyzing how ‘vortices’ can be represented in Lagrangian
formalisms, we have delineated an explicit connection between
the Lagrangian and Eulerian descriptions—in an abstract
language, they are in a ‘duality relation’ of adjoint and
coadjoint representations of maps. More explicitly, the duality
is that of the Lagrangian description of the diffeomorphism
Q(x0, t) and the Eulerian description of the Lagrangian
coordinates Q(x, t)−1. The latter is nothing but the Clebsch
parameter σ, and by this translation, we could show the direct
equivalence of the Lagrangians in both views.

The parameter σ is the creator of vorticity; this connection,
however, is not apparent in the Lagrangian view in which every
topological constraint is recognized as an initial condition (this
naı̈veness can be a merit of the Lagrangian view). By analyzing
the range of the Clebsch parametrizations of different degree
(ν), we noted that the embedding of the given subclass of
canonical dynamics into the general phase space is rather
complicated; the ν = 0 class is confined in the linear subspace
of potential flows (giving the complete representation of every
potential flow), the ν = 1 class is confined in the zero-helicity
leaf of the Casimir foliation (not complete to represent every
zero-helicity flow, while containing superfluous components),
ν = 2 class is still not dense (while containing superfluous
components), and ν = 3 class is complete (containing
superfluous components).

As noted, the canonicalization by Casimir parametrization
(i.e. representation by Serrin–Lin fields) of the original non-
canonical system is not simply the separation of the constrained
degree of freedom (such as the helicity). The reader is referred
to section 2 of Mills et al [24] for an interesting comparison
of the Lagrangian and Eulerian views (the authors call the
former ‘Newcomb gauge’), in which the potential energy of
the Beltrami field, in its Eulerian representation, is shown to
be constrained directly by the helicity.

In this paper, we considered a single-species plasma
(putting e = 0, the model degenerates into that of a
neutral fluid). Generalization to multi-species plasma is
straightforward. However, the singular perturbation of limiting
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the electron inertia and the ion skin depth to zero is not evident;
the connection of the MHD model and two-fluid model seems
to be discontinuous.

A variational principle may merit in formulating
approximation schemes such as numerical or perturbative
methods. Eulerian Clebsch representation will be useful when
we consider an appropriate subclass of dynamics or structures
(for example, the ν = 1 integrable vortex-line structure).
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