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Abstract
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been
extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions
and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst
are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation
for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It
is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear
MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses.
Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity
and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in
stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ∼ 5×10−3

at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation
amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients,
the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ∼ 2 × 10−3 and the beam ion losses take place
continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored
beam energy is higher for higher dissipation coefficients.

1. Introduction

Energetic-particle transport and losses enhanced by Alfvén
eigenmodes are an important concern for burning plasmas.
Computer simulation is a powerful tool to investigate
the interaction between Alfvén eigenmodes and energetic
particles. We performed the first numerical demonstration
of toroidal Alfvén eigenmode (TAE) bursts with parameters
similar to a TFTR experiment and reproduced many of the
experimental characteristics [1, 2]. These include (a) the
synchronization of multiple TAEs, (b) modulation depth of
the drop in the stored beam energy and (c) the stored beam
energy. It was demonstrated by the surface of section plots
that both the resonance overlap of different eigenmodes [3]
and the disappearance of Kolmogorov–Arnold–Moser (KAM)
surfaces in phase space due to overlap of higher order islands

created by a single eigenmode lead to particle loss. However,
the saturation amplitude δB/B ∼ 2 × 10−2 in the simulation
results is higher than the value δB/B ∼ 10−3 which we
inferred [2] from the plasma displacement that was measured
in the plasma edge region with normalized radius ρ > 0.8 [4].
In the experiment, the plasma displacement (ξ ) was estimated
from the density fluctuation (δn) measurement assuming a
relation ξ ∼ δn/(∂n/∂r) where ∂n/∂r is the radial gradient
of the equilibrium density profile. In the region close to the
plasma centre, |∂n/∂r| is very small and the error bars for the
displacement become infinitely large [4]. A possibility where
the TAE saturation amplitude in the central region is larger
than δB/B ∼ 10−3, which is the amplitude in the edge region,
is not excluded.

Recently, we investigated the nonlinear MHD effects on a
single Alfvén eigenmode instability using hybrid simulations
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of an MHD fluid interacting with energetic particles [5].
To clarify the role of the MHD nonlinearity, the nonlinear
MHD results were compared with results from a linear MHD
simulation, where only linear MHD equations were solved
together with a nonlinear response of the energetic particles.
When the TAE saturation level is δB/B ! 10−3, no significant
difference was found between the results of the linear MHD
and the nonlinear MHD simulations. On the other hand, when
the TAE saturation level is δB/B ∼ 10−2 in the linear MHD
simulation, the saturation level in the nonlinear MHD case
is found to be reduced to half the result of the linear MHD
simulation. We found that the nonlinearly generated n = 0
and the higher n modes provide increased energy dissipation
that appears crucial for achieving a reduced TAE saturation
level. The total dissipation of all the toroidal mode numbers
increases before the saturation of the instability. The increased
dissipation leads to a reduction in the saturation amplitude even
though the damping rate of the n = 4 component, which was
the original TAE carrier, slightly decreases before saturation.
We emphasize that this is a new picture for the mechanism by
which nonlinear MHD effects cause saturation that is different
from the other works [6, 7].

There is still a need to investigate the nonlinear MHD
effects in TAE bursts using realistic parameters. The
challenge of this work is to demonstrate saturation amplitudes
that are closer to the value inferred from the experimental
plasma displacement measurements than the previous reduced
simulation [2]. Computer simulations of multiple Alfvén
eigenmodes taking account of nonlinear MHD effects have
been conducted [7–10]. In one of the simulations [9],
it was demonstrated that synchronized bursts of multiple
TAEs take place with the saturation level of the dominant
magnetic fluctuation harmonic δBm/n/B ∼ 4×10−3, although
the parameters are not very close to the experiment. In
the simulation results of the TAE bursts presented in [2], the
energetic-particle loss takes place when the TAE amplitude
reaches δB/B ∼ 5 × 10−3 while the saturation amplitude
is δB/B ∼ 2 × 10−2. These previous studies encouraged
us to simulate TAE bursts taking account of the nonlinear
MHD effects using physics parameters similar to the TFTR
experiment [1].

In this work, we have extended the MEGA code [11–13],
which is a hybrid simulation code for an MHD fluid interacting
with energetic particles, by implementing the energetic-
particle source, collisions and losses. We study the nonlinear
MHD effects on TAE bursts using two versions of the MEGA
code. With the standard version of the MEGA code, the
full nonlinear dynamics of both the MHD fluid and the
energetic particles is simulated. In the other version of the
MEGA code, only linear MHD equations are used while the
nonlinear particle dynamics is retained. We refer to this
version as the linear MHD simulation. It is demonstrated for
physical parameters close to the TFTR experiment that the
nonlinear MHD effects reduce the saturation amplitude to a
level δBm/n/B ∼ 5 × 10−3 for the dominant harmonic of the
radial magnetic fluctuation. The TAE bursts take place with a
time interval close to the experiment. The stored beam energy
drop associated with each burst has a modulation depth of
roughly 10%, which is also close to the inferred experimental
value of 7%.

2. Simulation model

Several hybrid simulation models have been constructed
[14–18] to study the evolution of Alfvén eigenmodes
destabilized by energetic particles. In the MEGA code, the
bulk plasma is described by the nonlinear MHD equations and
the energetic ions are simulated with the δf particle method.
The MHD equations with the energetic-ion effects are given by

∂ρ

∂t
= −∇ · (ρv) + νn&(ρ − ρeq), (1)

ρ
∂

∂t
v = −ρ %ω × v − ρ∇

(
v2

2

)
− ∇p + (j − j ′

h) × B

+
4
3
∇(νρ∇ · v) − ∇ × (νρ %ω), (2)

∂B

∂t
= −∇ × E, (3)

∂p

∂t
= −∇ · (pv) − (γ − 1)p∇ · v + (γ − 1)

×
[
νρω2 +

4
3
νρ(∇ · v)2 + ηj · (j − jeq)

]

+νn&(p − peq), (4)

E = −v × B + η(j − jeq), (5)

j = 1
µ0

∇ × B, (6)

%ω = ∇ × v, (7)

where µ0 is the vacuum magnetic permeability, γ is the
adiabatic constant, ν and νn are the artificial viscosity and
diffusion coefficients chosen to maintain numerical stability
and all the other quantities are conventional. The subscript
‘eq’ represents the equilibrium variables. The energetic ion
contribution is included in the MHD momentum equation
(equation (2)) as the energetic ion current density j ′

h. The
energetic ion current density j ′

h in equation (2) includes
the contributions from parallel velocity, magnetic curvature
and gradient drifts, and magnetization current. The E × B
drift disappears in j ′

h due to quasi-neutrality [11]. We see
that the electromagnetic field is given by the standard MHD
description. This model is accurate under the condition that
the energetic-ion density is much less than the bulk plasma
density. The MHD equations are solved using a fourth-order
(in both space and time) finite difference scheme.

For the purposes of clarifying the nonlinear MHD effects,
linear MHD calculations were performed. In the linear MHD
equations, we use variables with δ such as δB that represent
the fluctuations, for example δB = B −Beq. Fluid velocity v
is also a fluctuation because there is no flow in the equilibrium.
In the linear MHD equations, first-order terms of fluctuations
are retained while the second and the higher order terms are
neglected. Equation (1) is linearized neglecting a term with
δρv to

∂ρ

∂t
= −∇ · (ρeqv) + νn&δρ . (8)
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The linear version of equation (2) is obtained neglecting the
terms with δρv, %ω × v, v2, δj × δB, and so on:

ρeq
∂

∂t
v = −∇p + (jeq − j ′

h eq) × δB + (δj − δj ′
h) × Beq

+
4
3
∇(νρeq∇ · v) − ∇ × (νρeq %ω). (9)

Equations (3), (6) and (7) are the same for the linear
MHD simulation. The linear equations transformed from
equations (4) and (5) are

∂p

∂t
= −∇ · (peqv) − (γ − 1)peq∇ · v + (γ − 1)ηδj · jeq

+νn&δp, (10)

E = −v × Beq + ηδj. (11)

Here, we have neglected the terms with δpv, ω2, (∇ · v)2, δj 2

and v × δB.
The energetic particles are simulated using the δf particle-

in-cell method with time-dependent equilibrium distribution
function f0. Energetic-particle source, collisions and losses
are implemented in the MEGA code. The drift-kinetic
description [19] is employed for the energetic particles. The
equations of guiding-centre motion for computational particle
is identical to that for the physical particle given by

d
dt

x = {x, H }, (12)

d
dt

v = {v, H } − νsv

(
1 +

v3
c

v3

)
, (13)

d
dt
λ = {λ, H } + C, (14)

where { } and H are the Poisson bracket and Hamiltonian H .
Here, x, v, λ(≡v‖/v) are spatial coordinates, total velocity
and pitch-angle variable. The explicit expression of the
Hamiltonian dynamics part can be found in [12, 13]. The
slowing-down rate νs is the inverse of the slowing-down time
νs = 1/τs, and the critical velocity vc is related to the critical
energy by Ec = 1

2mhv
2
c where mh is the energetic-particle

mass. The slowing-down time and the critical energy are given
by [20]

τs = 2.0 × 1019 AhTe(keV)3/2

Z2
hne(m−3) ln,e

(s), (15)

Ec = 14.8AhTe

[∑
i ni(Z

2
i /Ai) ln,i

ne ln,e

]2/3

, (16)

where A and Z are the atomic and charge numbers, T and n are
the temperature and number density, and ln, is the Coulomb
logarithm with subscripts i,e, h for ion, electron and energetic
particles, respectively. The summation in equation (16) is over
all the bulk ion species. The pitch-angle scattering term C

is introduced in equation (14). The pitch-angle scattering is
implemented at the end of each time step of simulation using
a Monte Carlo procedure [21], where a particle’s pitch angle
is altered according to the relation

λnew = λold(1 − 2νd&t) ± [(1 − λ2
old)2νd&t]1/2, (17)

where νd and &t are the pitch-angle scattering rate and time
step width, and ± denotes a randomly chosen sign with equal
probability for plus and minus.

The evolution of the distribution function f with slowing
down, pitch-angle scattering and a particle source S is
described by

∂

∂t
f + {f, H } − νs

∂

v2∂v
[(v3 + v3

c )f ]

−νd
∂

∂λ

[
(1 − λ2)

∂

∂λ
f

]
= S(x, v, λ). (18)

We divide the Hamiltonian H into H0 the Hamiltonian in the
equilibrium field and H1 the perturbation. We describe an
equilibrium distribution function f0 which satisfies

∂

∂t
f0 + {f0, H0} − νs

∂

v2∂v
[(v3 + v3

c )f0]

−νd
∂

∂λ

[
(1 − λ2)

∂

∂λ
f0

]
= S(x, v, λ). (19)

Subtraction of equation (19) from equation (18) gives
the evolution of the perturbative distribution function
δf = f − f0 by

∂

∂t
δf + {δf, H0 + H1} + {f0, H1} − νs

∂

v2∂v
[(v3 + v3

c )δf ]

−νd
∂

∂λ

[
(1 − λ2)

∂

∂λ
δf

]
= 0. (20)

The evolution of δf along the computational particle orbit
defined by equations (12)–(14) is expressed by

d
dt
δf + {f0, H1} − 3νsδf = 0. (21)

Equations (12)–(14) do not satisfy Liouville’s theorem because
the slowing-down term is ‘compressible’ in phase space. Then,
the phase space volume (V ) occupied by each computational
particle varies in time. We should consider the time evolution
of V . The number of physical particles that each computational
particle represents is given by fV. As the number of physical
particles conserves along each computational particle orbit
with an exception of the particle source, the evolution of fV
follows

d
dt

(f V ) = SV. (22)

Equations (22) and (18) rewritten to (d/dt)f −3νsf = S give
the evolution equation of V ,

d
dt

V = −3νsV. (23)

We solve the evolution of both δf and V for each computational
particle.

A time-dependent solution of equation (19) should be
specified in advance of the simulation. Firstly, let us find a
solution that does not depend on the pitch-angle variable λ.
Such a solution can be found for an energetic-particle source
isotropic in velocity space with a spatial profile h(r), which is
a function of radial coordinate r ,

S(r, v) = 2νsh(r)√
πv2&v

exp

[

−
(

v − vb

&v

)2
]

, (24)
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where vb is the beam injection velocity or the energetic-particle
birth velocity, and the parameter &v is chosen to be 0.05vb for
numerical stability of the simulation of Alfvén eigenmodes.
The Gaussian factor in equation (24) is reduced to a delta
function δ(v − vb) in a limit &v → 0. We can find the
following time-dependent equilibrium solution neglecting the
{f0, H0} term:

f0(x, v, t) = h(r)

(v3 + v3
c )

[
erf

(
v′ − vb

&v

)
− erf

(
v − vb

&v

)]
,

(25)

v′ = {(v3 + v3
c ) exp[3νs(t + tinj)] − v3

c }1/3, (26)

where t = −tinj < 0 is the time when the beam injection
has started while the simulation starts at t = 0. The solution
f0 is a reasonable approximation for fusion alpha particles
that are born isotropic in velocity space. The time-dependent
distribution function given by equation (25) is reduced to the
slowing-down distribution in a limit t → ∞ and &v → 0,

f0(x, v, t) = 2h(r)

(v3 + v3
c )

(v ! vb)

= 0 (v > vb) (27)

Secondly, let us find a solution that depends on the pitch
angle. If we neglect the pitch-angle scattering and the
finite orbit effects for f0, we can find such a solution. We
introduce another pitch-angle variable , ≡ 2µB0/mv2 =
(1 − λ2)B0/B where µ is the magnetic moment, B0 and B are
the magnetic field strength at the plasma centre and the particle
location, respectively. If the energetic-particle source is
given by

S(r, v,,) = 2νsh(r)√
πv2&v

exp

[

−
(

v − vb

&v

)2
]

g(,), (28)

the time-dependent equilibrium distribution function is

f0(x, v,,, t) = h(r)

(v3 + v3
c )

[
erf

(
v′ − vb

&v

)

−erf
(

v − vb

&v

)]
g(,) (29)

because (∂/∂t), = 0, {,, H0} = 0 and (∂/∂v), = 0 hold in
equation (19).

For fusion alpha particles, the time-dependent equilibrium
given by equation (25) is a reasonable solution where the pitch-
angle scattering is considered but the finite orbit width effects
are neglected. When we neglect the pitch-angle scattering,
the time-dependent equilibrium given by equation (29) is
applicable to energetic ions created by neutral beam injection.
The 1/2 and 1/3 energy components can be modelled if we
adjust the value of vb. The time-dependent equilibrium is
expressed by the sum of the three injection energy components.
The time-dependent equilibrium distribution for the ion
cyclotron range of frequency (ICRF) heating is beyond the
scope of this work because the ICRF significantly modifies
the particle pitch angle resulting in highly anisotropic particle
distributions in velocity space. For a more realistic equilibrium
solution that takes account of the finite orbit width effects
and pitch-angle scattering, we should resort to the numerical
analysis of f0. In this work, we present the results using the

analytical equilibrium solution f0 given by equation (29) with
g(,) = δ(,) = δ(|λ| − 1).

In the δf particle simulation, the computational particles
should cover the whole phase space. Attention should be paid
to the particle loss process. If the computational particles that
reach the plasma boundary are just removed, the total phase
space volume decreases by the volume covered by the lost
particles. Then, alternative particles should be injected into
the plasma to cover the lost phase space volume elements.
However, it is not straightforward to find the injection location
proper to the lost particles. One clear method is to follow all
the lost particle orbits outside the plasma and return them into
the plasma. Then, the whole phase space inside the plasma
is covered by the computational particles of which orbits are
closed. In this work we set the particle loss boundary at r/a =
0.8 inside the plasma and model particle loss by setting δf = 0
for the computational particles outside the loss boundary. The
computational particles return across the loss boundary along
the physical particle orbits, and the computation of δf is
restarted with δf = 0 on the loss boundary. Phase space
inside the plasma is now a part of a larger phase space that
is covered by the computational particles of closed orbits.
If the simulation domain is extended to include the vacuum
region, the loss boundary can be set at a more realistic
location.

The coordinates employed in the simulation are cylindrical
coordinates (R,ϕ, z). The shape of the outermost magnetic
surface is circular. The bulk plasma density is uniform. The
number of grid points for the cylindrical coordinates (R,ϕ, z)

is 128 × 64 × 128 and the number of computational particles
is N = 6.6 × 105. For the purposes of data analysis, magnetic
flux coordinates (r,ϕ,ϑ), where ϑ is the poloidal angle, were
constructed for the MHD equilibrium. The equations of
motion and the evolution of δf and V for each computational
particle are solved using a fourth-order Runge–Kutta method.
We do not employ Richardson’s extrapolation although it
improves the numerical accuracy if two calculations with
different time steps are used. If we use calculations with time
steps &t and &t/2, the total computational cost is tripled from
a calculation with a single time step &t . The computational
particles are initially loaded randomly and uniformly in each
(R,ϕ, z) direction so that the simulation domain is covered by
the particles. The phase space volume and the major radius
of ith particle Vloading i and Rloading i at the particle loading
stage are related to each other by Vloading i = αRloading i using
a normalization factor α.

We perform the simulation of TAE bursts with parameters
similar to a TFTR experiment [1]. The parameters are
a = 0.75 m, R0 = 2.4 m, B0 = 1 T, beam injection
energy is 110 keV, and NBI power (Ph) is 10 MW. Both the
bulk and beam ions are deuterium. The bulk ion density is
2.8 × 1019 m−3. The beam injection velocity corresponds to
vb = 1.1vA. The safety factor profile and beam injection
profile are assumed as the same as in [2], q(r) = 1.2+1.8(r/a)2

and h(r) = exp[−(r/0.4a)2], respectively. The slowing-down
time and the critical velocity are assumed to be 100 ms and
vc = 0.65vA, respectively. The beam velocity is purely parallel
to the magnetic field to model the parallel beam injection.
The pitch-angle scattering is neglected. At all the time of
the simulation, the equilibrium distribution function f0 given
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by equation (27) should be fully covered by the computational
particles. Then, at the injection time t = −tinj, the velocity
space vmin 0 ≡ vb − 3&v ! v ! vb + 3&v ≡ vmax 0 is filled
with the computational particles. The computational particles
are injected with a velocity v = vmax 0. We can define the time
t = −tstart when the particle with v = vmin 0 at t = −tinj is
injected at v = vmax 0. The time tstart is given by

tstart = ln[(v3
max 0 + v3

c )/(v
3
min 0 + v3

c )]/3νs + tinj. (30)

The computational particles are injected with a constant
time interval. The injection time of the ith marker particle
(1 ! i ! N ) is given by

ti = (tstart + tend)i/N − tstart, (31)

where tend is the ending time of the simulation. For the
computational particles with ti ! 0, the initial velocity at
t = 0 is vi(t = 0) = vc{[(vmax 0/vc)

3 + 1] exp(3νsti) − 1}1/3.
For the ith computational particle with ti > 0, the particle
is injected at t = ti with v(t = ti) = vmax 0. After t = ti ,
the calculation for the ith computational particle is performed.
The energetic-particle parallel pressure at a grid point located
at x = xk , which enters into the energetic-particle current
density j ′

h through the curvature drift, is calculated by

ph‖(xk, t) =
N∑

i=1

mhv
2
‖i[f0(xi , vi , t) + δf (xi , vi , t)]

×Vi(t)A(xk − xi )1(t − ti)/(Rk&R&ϕ&z), (32)

where A(xk − xi ) is the shape factor of the particle-
in-cell method and 1(t − ti) is the Heaviside function,
and &R,&ϕ,&z are grid spans of each direction. For
the energetic-particle current density j ′

h, we use only the
fluctuation part of the energetic-particle pressure

δph‖(xk, t) =
N∑

i=1

mhv
2
‖iδf (xi , vi , t)Vi(t)A(xk − xi )

×1(t − ti)/(Rk&R&ϕ&z), (33)

because the temporal increase in energetic-particle pressure
due to the evolution of f0 modifies the plasma equilibrium. The
normalization factor α, which gives Vloading i by Vloading i =
αRloading i , is determined to be consistent with the heating
power neglecting the terms of the order of O(ε2) with ε =
&v/vb by

Ph =
N∑

i=1

Vloading i

1
2
mhv

2
b

h(rloading i )

(v3
b + v3

c )(tstart + tend)
, (34)

where rloading i is the radial coordinate at the particle loading
stage. The initial phase space volume is given by Vi(t = 0) =
Vloading i[vi(t = 0)3 + v3

c ]/(v3
b + v3

c ) for the ith particle with
ti ! 0 and Vi(t = ti) = Vloading i (v

3
max 0 + v3

c )/(v
3
b + v3

c ) for
ti > 0, to be consistent with the slowing-down process. The
spatial locations are the same as those at the particle loading
stage and δf = 0 at t = 0 for the particles with ti ! 0
and at t = ti for the particles with ti > 0. If we load the
computational particles completely uniformly in configuration
space with Vloading i = const. and approximate Vi(t) by
Vi(t) = Vloading i[vi(t)

3 +v3
c ]/(v3

b +v3
c ), this simulation scheme

approaches that developed in [22]. However, the evolution

Figure 1. Time evolution of (a) beam ion distribution function and
(b) stored beam energy for the co- and counter-injected beams in a
classical simulation.

of vi(t) which is given by equation (13) is affected by the
Hamiltonian (collisionless) dynamics whereas the evolution
of Vi(t) is caused only by the slowing-down collisions as
is given in equation (23). Then, it is not clear whether the
phase space volume of each computational particle Vi(t) can
be simply related to vi(t). This is the reason why we compute
the evolution of Vi(t) using equation (23). The computation
of Vi(t), the time-dependent f0 and the modelling of particle
losses are the new features of the present scheme compared
with the scheme developed in [22].

A classical simulation where there is no MHD fluctuation
was performed using the physics condition mentioned above
and tinj = 0 ms. The particle orbits are followed in the
equilibrium magnetic field taking account of the slowing-down
collisions. The computational particles are removed when they
slow down to vi(t) = 0.1vA. The time evolutions of the beam
ion distribution function and of the stored beam energy for
co- and counter-injected beams are shown in figure 1. The
distribution function in the figure is calculated on grid points
v = vk evenly spaced in velocity by

f0sim(vk, t)=
N∑

i=1

f0(xi , vi , t)Vi(t)Av(vk − vi)1(t − ti)/v
2
k ,

(35)

where Av(vk − vi) assigns each particle to the nearest velocity
grid point. We see the formation process of the slowing-down
distribution in figure 1(a). In figure 1(b), the stored beam
energy is saturated around t = 60 ms at levels roughly 700 in
the unit of the figure for each of the co- and counter-beams.
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Figure 2. Frequency spectra of radial velocity harmonics with
m/n = 0/0, 2/1, 3/2, 5/3, 7/4, 8/5, 10/6, 12/7 and 13/8 at
r/a = 0.5 from t = 0 to 10 ms for (a) linear MHD and (b) nonlinear
MHD simulations.

3. Simulation results

3.1. Comparison of nonlinear and linear MHD runs

We compare the results of a nonlinear MHD run and a linear
MHD run for the dissipation coefficients ν = νn = η/µ0 =
10−7vAR0. In this work, viscosity, diffusion and resistivity in
the MHD equations are set to be equal to each other, ν = νn =
η/µ0. Frequency spectra of radial velocity harmonics with
m/n = 0/0, 2/1, 3/2, 5/3, 7/4, 8/5, 10/6, 12/7 and 13/8 at
r/a = 0.5 from t = 0 to 10 ms are shown in figure 2 for
(a) linear MHD and (b) nonlinear MHD simulations. The
TAE modes with toroidal mode numbers n = 2 and 3 are
dominant in the simulation results. In the nonlinear MHD
simulation, the modes with toroidal mode numbers n = 4
and 6 also have substantial amplitude. It is interesting to
note that there are peaks of n = 4 mode at higher frequency
∼100 kHz. These can be produced by the nonlinear coupling
of the dominant n = 2 mode. We see such a high-frequency
peak also in the TFTR experiment result shown in figure 2
of [1]. The spatial profiles of the two dominant TAE modes at
t = 3.2 ms in the nonlinear MHD run are shown in figure 3.
The amplitude evolutions of the dominant radial magnetic
fluctuation harmonics with m/n = 4/2 and m/n = 5/3
at each peak location inside the plasma are shown for the
nonlinear MHD and the linear MHD runs in figure 4. We
see in figure 4(a) that the synchronized TAE bursts take place
three times at t = 1.1, 3.2 and 4.5 ms. The amplitude of the
first burst is δBr/B ∼ 8 × 10−3 for m/n = 4/2 harmonic
and δBr/B ∼ 6 × 10−3 for m/n = 5/3 harmonic. After the
third burst, the amplitude of the two TAE modes reach steady

Figure 3. Radial velocity profiles of each poloidal harmonic of the
TAEs with toroidal mode numbers for (a) n = 2 and (b) n = 3 at
t = 3.2 ms in the nonlinear MHD run. Solid (dashed) lines show
cos(mϑ + nϕ) [sin(mϑ + nϕ)] harmonics with poloidal mode
number m labelled in the figure.

Figure 4. Evolution of the dominant radial magnetic fluctuation
harmonics with m/n = 4/2 and m/n = 5/3 at each peak location
for (a) nonlinear MHD run and (b) linear MHD run with
ν = νn = η/µ0 = 10−7vAR0.

levels δBr/B ∼ 2×10−3. In the linear MHD simulation result
shown in figure 4(b), three synchronized TAE bursts take place
with an average time interval of 4 ms. The amplitude of the
first burst is δBr/B ∼ 1.3 × 10−2 for m/n = 4/2 harmonic
and δBr/B ∼ 1.2 × 10−2 for m/n = 5/3 harmonic.
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Figure 5. Stored energy evolution of co- and counter-beams with
classical stored beam energy evolution for (a) nonlinear MHD run
and (b) linear MHD run with ν = νn = η/µ0 = 10−7vAR0.

The time evolutions of the stored beam energy for
nonlinear MHD and linear MHD runs are shown in figure 5
together with the classical simulation where there is no MHD
fluctuation. We see in figure 5(a) the drops in stored beam
energy at the first burst by 18% for the co-injected beam
and by 23% for the counter-injected beam. The stored beam
energy reaches steady levels at t = 10 ms while the classical
stored beam energy continues to increase. The saturation
levels of stored energy for the co-injected and the counter-
injected beams are, respectively, 22% and 12% of the classical
saturation levels shown in figure 1. For the linear MHD run,
we see in figure 5(b) the drops in the stored beam energy at the
first burst by 53% for the co-injected beam and by 85% for the
counter-injected beam. The drops in the linear MHD run are
significantly larger than those in the nonlinear run. The results
of the linear MHD and nonlinear MHD runs shown in figures 4
and 5 demonstrate that the amplitude of the TAE modes and the
beam ion losses induced by the TAE modes are significantly
reduced by the nonlinear MHD effects. The drop in the stored
counter-beam energy is larger than that of the co-beam, and the
stored counter-beam energy reaches lower levels in both the
linear and nonlinear MHD runs. The asymmetry in the beam
ion loss between the co- and counter-beams may arise from
the fact that the counter-beam (co-beam) interacts primarily
with the TAE poloidal harmonic m + 1 (m) when the major
poloidal harmonics are m and m + 1. As the m + 1 harmonic
is located radially on the outer side, the counter-beam ions are
more likely to be lost by the TAE modes.

To see the nonlinear MHD effects more clearly, the
stored beam energy loss rate is plotted versus radial magnetic
fluctuation amplitude with m/n = 4/2 at 0 ! t ! 3 ms for the
nonlinear MHD and linear MHD runs in figure 6. The stored

Figure 6. Stored beam energy loss rate versus radial magnetic
fluctuation amplitude with m/n = 4/2 at 0 ! t ! 3 ms for
nonlinear MHD and linear MHD runs. Arrows represent direction
of time. Data points are plotted every 0.03 ms.

beam energy loss rate plotted in the figure is a component
due to the particle losses and is roughly in proportion to the
beam ion loss rate. We see the curve for the linear MHD
run forms a large loop in the figure that corresponds to the
large magnetic fluctuation amplitude and the large beam ion
loss rate. On the other hand, the curve for the nonlinear
MHD run extends along the curve for the linear MHD run,
but is limited in the region of the small magnetic fluctuation
amplitude and the small beam ion loss rate. It is interesting
to note that the energy loss rate for the nonlinear MHD run
traces the same trajectory both when the magnetic fluctuation
grows and damps. There is a one-to-one relationship between
the magnetic fluctuation amplitude and the beam ion loss
rate for the nonlinear MHD run. However, the one-to-one
relationship does not apply to the linear MHD result. The
beam ion loss rate decreases while the magnetic fluctuation
amplitude is maintained at δBr/B " 10−2. Significant beam
ion redistribution and losses have already taken place, and lead
to the saturation and decrease in the beam ion loss rate.

3.2. Dependence on dissipation

The nonlinear MHD run described in section 3.1 was continued
from t = 9.85 ms with the same dissipation coefficients
ν = νn = η/µ0 = 10−7vAR0 and two different coefficients
3 × 10−7vAR0 and 5 × 10−7vAR0. The beam injection
continues to the end of the simulation. The amplitude evolution
of the dominant radial magnetic fluctuation harmonics with
m/n = 4/2 and m/n = 5/3 is shown in figure 7. For
ν = νn = η/µ0 = 10−7vAR0 and 3×10−7vAR0, the amplitude
of the dominant radial magnetic fluctuation harmonics with
m/n = 4/2 and m/n = 5/3 is at steady levels, δBr/B ∼
2×10−3. One slight difference is that the magnetic fluctuation
level with m/n = 4/2 shown in figure 7(b) is higher than that
shown in figure 7(a). For ν = νn = η/µ0 = 5 × 10−7vAR0,
the time evolution shown in figure 7(c) is qualitatively different
from the lower dissipation coefficient cases. Five TAE bursts
take place with an average time interval of 1.7 ms. The
average maximum amplitude of the dominant radial magnetic
fluctuation harmonics with m/n = 4/2 is δBr/B ∼ 5 × 10−3.

The stored beam energy evolution is compared among
the different dissipation coefficients in figure 8. A classical
simulation where there is no MHD fluctuation was also
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Figure 7. Evolution of the dominant radial magnetic fluctuation
harmonics with m/n = 4/2 and m/n = 5/3 at each peak location
for nonlinear MHD run with (a) ν = νn = η/µ0 = 10−7vAR0,
(b) 3 × 10−7vAR0 and (c) 5 × 10−7vAR0.

performed starting from the same condition at t = 9.85 ms.
Figure 8(a) shows that the classical stored beam energy
increases in time due to the continuous beam injection. On
the other hand, we see in figures 8(b) and (c) that the stored
energy of co- and counter-beams gradually decreases for the
lower dissipation coefficients. Then, we know that the gradual
decrease in the stored beam energy is brought about by the
MHD fluctuations. We can conclude that the TAE modes with
the steady amplitude δBr/B ∼ 2×10−3 cause significant beam
ion losses that balance with the continuous beam injection. For
ν = νn = η/µ0 = 5 × 10−7vAR0, we see drops in the stored
beam energy associated with the TAE bursts in figures 8(b) and
(c). For the last TAE burst, the total stored beam energy drops
by 13% from t = 18.2 to 18.8 ms.

The stored beam energy loss rate is plotted versus radial
magnetic fluctuation amplitude with m/n = 4/2 at 10 ! t !
20 ms for ν = νn = η/µ0 = 5 × 10−7vAR0 in figure 9. The
stored beam energy loss rate plotted in the figure is a component
due to the particle losses and is roughly in proportion to the
beam ion loss rate. We see in figure 9 that the beam ion
loss rate can be fitted well with a quadratic function of the

Figure 8. Stored energy evolution of (a) classical co- and
counter-beams, and (b) co- and (c) counter-beams for nonlinear
MHD runs with ν = νn = η/µ0 = 10−7vAR0, 3 × 10−7vAR0 and
5 × 10−7vAR0.

magnetic fluctuation amplitude. The quadratic dependence
is consistent with the beam ion losses due to the resonance
overlap of the multiple TAE modes. We investigate as to how
the beam ion beta profile depends on the dissipation. The
beam beta profiles at t = 20 ms for the different dissipation
coefficients are compared in figure 10. The shape of the
profiles looks similar to each other. This suggests that the
beam beta profiles are close to a marginal stability state.
However, the absolute value is higher for higher dissipation
coefficients. The higher dissipation coefficients reduce the
TAE mode growth rate, and also lead to the bursting behaviour
and to the higher stored beam energy. The results indicate
that the stabilization of the TAE modes is essential to keep
the stored beam energy higher even when the time evolution is
bursting. More attention should be paid to the steady amplitude
TAE modes for energetic-particle confinement. Even if the
amplitude of the steady modes is low, it can result in significant
beam ion losses through resonance overlap of the multiple
modes, and can reduce the stored beam energy.

8
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Figure 9. Stored beam energy loss rate versus radial magnetic
fluctuation amplitude with m/n = 4/2 at 10 ! t ! 20 ms for
nonlinear MHD run with ν = νn = η/µ0 = 5 × 10−7vAR0. Data
points are plotted every 0.1 ms. Solid line is a quadratic fit to
the data.

Figure 10. Comparison of beam ion beta profile for different
dissipation coefficients at t = 20 ms.

4. Discussion and summary

The MEGA code, a hybrid simulation code for nonlinear mag-
netohydrodynamics (MHD) and energetic-particle dynamics,
has been extended to simulate recurrent bursts of Alfvén eigen-
modes by implementing the energetic-particle source, colli-
sions and losses. The Alfvén eigenmode bursts with synchro-
nization of multiple modes and beam ion losses at each burst
have been successfully simulated with nonlinear MHD effects
for the physics condition similar to a reduced simulation for
a TFTR experiment. It was demonstrated with a comparison
between the nonlinear MHD and linear MHD simulations that
the nonlinear MHD effects significantly reduce both the satu-
ration amplitude of the Alfvén eigenmodes and the beam ion
losses. Two types of time evolution were found depending on
the MHD dissipation coefficients, namely viscosity, resistivity
and diffusivity. The Alfvén eigenmode bursts take place for
higher dissipation coefficients with roughly 10% drop in the
stored beam energy and the maximum amplitude of the domi-
nant magnetic fluctuation harmonic δBm/n/B ∼ 5×10−3 at the
mode peak location inside the plasma. When the dissipation
coefficients are low, the amplitude of the Alfvén eigenmodes
is at steady levels with δBm/n/B ∼ 2 × 10−3 inducing beam
ion losses. In both types of evolutions, the stored beam energy
is saturated at levels of 15% of that of the classical simula-
tion without MHD fluctuations. The spatial profiles of the
beam ion pressure are similar among the different dissipation
coefficient cases, and the stored beam energy is lower for the

steady amplitude evolution than for the bursting evolution. For
the bursting evolution in the nonlinear MHD simulation, we
found the beam ion loss rate has a quadratic dependence on the
magnetic fluctuation amplitude. The quadratic dependence is
consistent with the particle losses due to the resonance overlap
of the multiple Alfvén eigenmodes.

The saturation level of the stored beam energy in this
work is lower than that in the previous reduced simulation,
where the stored beam energy was about 40% of the classical
level [2]. This difference may arise from the particle loss
boundary set at r/a = 0.8 in the present simulations while
it was modelled in the previous work by taking account
of a limiter on which the plasma leans on the strong field
side but which permits the co-injected beam ions to excurse
outside the plasma. Such a realistic loss condition will lead
to a higher saturation level of the stored beam energy. We
also simplified the beam ion velocity distribution completely
parallel to the magnetic field, and neglected the 1/2 and 1/3
energy components. The finite Larmor radius effects of the
beam ions were also not considered. These simplifications
enhance the energetic-particle drive to the Alfvén eigenmodes.
If we improve these points, the time interval of the bursts
will become longer because the energetic-particle drive is
reduced. Let us point out a possibility that the threshold
value in dissipation coefficients for the bursting evolution
may be reduced for the weak energetic-particle drive with
the improved beam distribution, and a bursting evolution may
appear for the lower dissipation coefficients with the burst
time interval close to that found in this paper. The analytic
time-dependent solution of the energetic-particle equilibrium
distribution function was obtained in this work. The solution
can apply to fusion alpha particles with pitch-angle scattering
taken into account, and also to beam ions if we neglect pitch-
angle scattering. For more general energetic ions including
ICRF-heated ions, numerical solutions are needed for the time-
dependent equilibrium distribution.

Recently, an anomalous flattening of the beam ion spatial
profile was observed in the central region of the DIII-D plasma
with reversed magnetic shear [23]. The flattening of the
beam ion spatial profile has been reproduced by a computer
simulation where multiple TAE modes and reversed shear
Alfvén eigenmodes are used with amplitude fixed constant
[24, 25]. The amplitude δB/B ∼ 2 × 10−4 used in [24, 25] is
consistent with the measurement in the DIII-D experiment.
Large neutron deficits that indicate significant beam ion
losses were also observed on DIII-D and ASDEX Upgrade
[26]. In this paper, we obtained qualitatively similar results
with the steady amplitude of multiple Alfvén eigenmodes
accompanied by significant beam ion losses. We also found
the quadratic dependence of the energetic-particle loss rate on
the magnetic fluctuation amplitude for the bursting evolution.
The quadratic dependence of energetic-particle loss rate on
magnetic fluctuation amplitude was observed on ASDEX
Upgrade for the incoherent losses due to multiple Alfvén
eigenmodes and for the losses induced by a single Alfvén
eigenmode with amplitude larger than a threshold [27]. The
quadratic dependence is also observed for particle losses
induced by a single Alfvén eigenmode on LHD [28]. The
quadratic dependence indicates the emergence of stochasticity
in phase space. Simulations with more detailed modelling
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of the energetic-particle distribution are needed to reproduce
the up-to-date experimental observations and clarify how
stochasticity emerges for the lost particles observed on the fast
ion loss detectors.
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