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12228-900, São José dos Campos, São Paulo, Brazil
3 Departamento de Fı́sica, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná, Brazil
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Abstract
An explicit, area-preserving and integrable magnetic field line map for a single-null divertor
tokamak is obtained using a trajectory integration method to represent equilibrium magnetic
surfaces. The magnetic surfaces obtained from the map are capable of fitting different
geometries with freely specified position of the X-point, by varying free model parameters.
The safety factor profile of the map is independent of the geometric parameters and can also be
chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that
simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic
region near the separatrix passing through the X-point. The composed field line map is used to
analyze escape patterns (the connection length distribution and magnetic footprints on the
divertor plate) for two equilibrium configurations with different magnetic shear profiles at the
plasma edge.

(Some figures may appear in colour only in the online journal)

1. Introduction

It is well known that tokamak equilibria have magnetic
field lines that lie on nested isobaric toroidal surfaces called
magnetic surfaces [1], and that the cross-sectional shape of
these magnetic surfaces plays an important role in determining
plasma stability and confinement. Of interest here are divertor
tokamaks that possess equilibria with an ideal (integrable)
separatrix with one or two X-points that separates the closed
from open magnetic surfaces. The separatrix defines the
plasma border and diverts particles that escape from the plasma
to divertor plates [2].

External and internal resonances between the equilibrium
and perturbation magnetic fields break the ideal separatrix,
replacing it with a homoclinic tangle, and a resulting layer of
chaotic magnetic field lines that are by design guided to the
divertor collector plates [3, 4]. The escaping ions recombine
at the plates and form a neutral gas that can be pumped away
from the tokamak (reactor) core.

3 Permanent address: Departamento de Fisica, Universidade Tecnologica
Federal do Parana, 85505-390, Pato Branco, Parana, Brazil.

The X-points are formed when the magnetic field resulting
from external coils and the associated plasma response
create points of null poloidal magnetic field. A single-null
configuration has only one X-point, from which emanate
separatrix branches delimiting three different regions of the
tokamak vessel (cf figure 1). The plasma region is located
in the larger lobe of the separatrix above the X-point, while
another private flux region is located in a lobe below the
X-point. A region of external magnetic surfaces (or open
surfaces) surrounds both lobes. The external private flux
magnetic surfaces and external surfaces intercept the collector
plates and the corresponding magnetic field lines guide the
escaping plasma to this region which is designed to accept a
high-energy flux.

The divertor of ITER is designed to withstand a heat
load of 5–10 MW m−2 that is expected to come from alpha
particles resulting from fusion reactions taking place in the
plasma core [5]. The equilibrium description of magnetic
surfaces is obtained from large computer codes based on
numerical solutions of the Grad–Shafranov equation [6, 7].
This methodology, although necessary for designing divertor
geometries tailored to specific needs, may be too heavy for
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Figure 1. (a) Schematic view of a separatrix in rectangular coordinates indicating the meaning of each geometric parameter related to V (y)
for a single-null divertor configuration. (b) The potential function V (y) for the geometric parameters xMAX = 2, yMIN = 1; yMIN = −7;
yMAX = 4; yH1 = −5; yH2 = −2.75; yS = −4; y0 = −6.

studying some basic phenomena of field line dynamics near
the separatrix, such as chaotic transport. For such basic
phenomena it is often preferable to use magnetic field line
maps, which are much faster to compute yet still retain the basic
features one is looking for in studying divertor geometries.

Magnetic field line maps are sets of equations that provide
the coordinates of a magnetic field line at a fixed toroidal
angle. Given the coordinates of a field line in such a poloidal
plane, the map gives the coordinates after the field line has
traversed the torus one time the long way around. The principal
advantage of using field line maps is the assurance of the
symplectic character of the system, the sine qua non requisite
of Hamiltonian systems.

Previously magnetic field line maps have been used to
investigate phenomenological aspects of field line trajectories
and pattern deposition in divertor configurations. Some of
these maps have been obtained directly from the magnetic
field equations [8–10] by means of a procedure that uses
generalized Poincaré integrals [11]. Other divertor maps have
been obtained by the mathematical construction of appropriate
generating functions and canonical transformations [12–16].
Divertor maps using the geometry of the DIII-D tokamak have
been obtained by fitting experimental data to find appropriate
expressions for equilibrium Hamiltonians [17–19].

However, it may happen that the discretization procedure
used for obtaining field line maps from corresponding
magnetic field line equations results in a nonphysical
perturbation that is proportional to the discretization parameter.
Hence, systematic procedures for obtaining field line maps
from field line equations that preserve the symplectic property
are important tools. The symplectic property is particularly
important for studies of long ‘time’ (many toroidal transits)
transport, when extremely long orbits have to be considered.
A similar situation occurs in celestial mechanical numerical
studies of N -body problems using symplectic integrators.

We have recently proposed [22] the use of a general
method (the trajectory integration method of [23]) for
obtaining integrable symplectic field line maps with specified
fixed points and separatrices. For the single-null divertor
of [22], the fixed point was a single X-point placed between
the plasma boundary and the divertor plates, as described
above and in figure 1. We used this method to obtain an
integrable field line map compatible with the single null, and
then obtained a nonintegrable map by adding a perturbation
that describes an ‘ergodic’ limiter. The map obtained in [22]
for a single-null divertor was based on a specific equilibrium
plasma configuration with little freedom to choose different
configurations.

In this paper we apply the trajectory integration method to
obtain a symplectic field line map with adjustable parameters
for describing a variety of plasma equilibrium configurations
with a divertor. This procedure increases the complexity of
the equations but allows for tailoring the map to different
configurations, which is desirable when considering distinct
separatrix (and consequently internal and external surfaces)
divertor geometries. The safety factor associated with each
surface can also be chosen independently of the geometry
of the configuration adopted. This feature makes possible a
variety of studies; for example, the study of the influence of
the elongation of configurations or altering of safety factor
profiles on chaotic layer formation and deposition patterns of
magnetic field lines at collector plates.

Previous works proposed discrete divertor maps with
varying elongation [20] and average shear [21]. However,
in these works these two characteristics cannot be varied
independently. In contrast, the trajectory integration method
provides integrable divertor maps for which these features
can be varied independently. Another advantage of the
map we obtain, in addition to the geometry and safety
factor versatility, is the assurance of the symplectic character.
Moreover, having a field line map that conveniently describes
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integrable equilibrium magnetic configurations, we can then
add other perturbations in an independent way in order to create
nonintegrable divertor maps.

The rest of the paper is organized as follows: in section 2
we outline the basics of the trajectory integration method and
show how it can be applied to obtain a map for a single-null
divertor configuration with many free parameters. Section 3
discusses the equilibrium magnetic field model used to obtain
a desired safety factor profile. Section 4 shows the effect
of adding a symmetry-breaking perturbation that destroys
integrability and allows for the existence of chaotic field lines.
Finally, section 5 is devoted to our conclusions.

2. Trajectory integration method

Now we describe the trajectory integration method, a versatile
and reliable method for obtaining symplectic field line maps for
configurations where desired fixed points are specified [22, 23].
Then, by direct application of this method we construct our
divertor map, a map that possesses the freedom to specify a
single or double-null point as needed in order to design suitable
divertor devices.

2.1. The method

The magnetic field line behavior in a toroidal plasma
device like a tokamak, in an equilibrium state, is known
to be described by a single degree-of-freedom Hamiltonian
system, in which the canonically coordinate variables are the
coordinates (or, more properly, suitable functions of these
coordinates) of the field line intersection with a given poloidal
surface of section [37]. The time-like coordinate is thus the
toroidal angle that parametrizes the field line equations. Note,
when the state being described is an equilibrium state, the
physical time does not explicitly appear. Hence, the field line
description has to be taken in the Lagrangian sense, and no
time-dependence whatsoever is meant. Internal or external
perturbations that break the toroidal symmetry introduce a
dependence on the toroidal coordinate that spoils integrability
and allows for the existence of chaotic field lines.

The basic idea of the trajectory integration method is
to exploit similarities between the Hamiltonian dynamics
describing the field line behavior and the one-dimensional
motion of a particle under a suitably chosen potential function
(in the latter case we obviously mean the physical time,
rather than a parametrization). The equilibrium points are
the extrema of the potential function, and we can tailor the
potential function to meet the desired fixed points of the field
line map.

The trajectory integration method can be summarized in
three steps (see [22, 23] for further details):

(1) Choose an adequate expression V (y) in a Hamiltonian
denoted by !,

!(x, y) = x2

2
+ V (y), (1)

with extremum points located at desired values of y.
These positions will correspond to the elliptic (O-points)

and hyperbolic (X-points) fixed points in the phase space
with coordinates (x, y). The equilibrium Hamiltonian
is integrable and V (y) must allow for analytic solutions
of the corresponding canonical equations. The potential
V (y) is an auxiliary expression used in the method, one
that generates closed surfaces of constant ! (level sets)
with the desired topology of the magnetic surfaces to be
represented by the map.

(2) Solve Hamilton’s equations,

dy

dt
= ∂!

∂x
,

dx

dt
= −∂!

∂y
, (2)

and find the continuous solutions (x(xi, yi, t), y(xi, yi,t)),
where xi and yi are the initial conditions for the solutions.
We emphasize that the meaning of t , in the field line map,
is a toroidal-like coordinate that parametrizes the field line
flow in a Lagrangian sense.

(3) Discretize the continuous solutions by making the
transformation

(x(xi, yi, t), y(xi, yi, t))

→ (xn+1(xn, yn, #), yn+1(xn, yn, #)). (3)

The resulting equations comprise the discrete map.

The parameter # is related to the rotation of the
field line between intersections with the surface of section,
after successive applications of the map equations. In an
equilibrium plasma this rotation is given by the rotational
transform, the inverse of which is usually called the safety
factor for stability reasons. Because the topology of the
magnetic surfaces and the fixed points of the map are
independent of #, we can reproduce any desirable safety
factor profile by imposing appropriate dependence #(!),
independently of the chosen geometry.

The larger the number of regions (and correspondingly
the matching points) the more free parameters the equilibrium
map has, which offers an unlimited capability for adjusting the
geometry of the magnetic surfaces. In this sense, the trajectory
integration method allows a high flexibility in the choice of
equilibrium parameters.

Although our map describes diverted magnetic fields
without toroidal corrections, close to the separatrix 1/x is
nearly constant, so if we make our layer small enough we get
a good approximation for the equilibrium field in large aspect
ratio tokamaks.

2.2. Map equations for a single-null divertor

For a single-null divertor the potential function V (y) must have
a double-well shape, so as to create curves in phase space with
two closed regions delimited by a separatrix, as is the case for
single-null divertor configurations. The expression for V (y)

will be written as six parabolic branches matching smoothly at
specified points, so as to ensure the integrability of Hamilton’s
equations. The continuous solutions of Hamilton’s equations
in each region will be oscillatory in t for positive concavity of
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V (y) and hyperbolic for regions of negative concavity. The
expressions for V (y) in each ‘parabolic’ region are given by

V (y) =






1
2a1(y − y0)

2 + b′ y ! y0
1
2a2(y − y0)

2 + b′ y0 ! y ! yH1

− 1
2a3(y − ys)

2 + b yH1 ! y ! ys

− 1
2a4(y − ys)

2 + b ys ! y ! yH2
1
2a5y

2 yH2 ! y ! 0
1
2a6y

2 0 ! y.

(4)

The continuous trajectories using (4) can be obtained by
solving equation (2) in each parabolic region. The internal
plasma surfaces will correspond to the solutions for ! ! b and
y > yS, while the divertor private flux surfaces will correspond
to the solutions for ! ! b and y < yS. The external surfaces
are those that satisfy ! > b.

After applying the discretization procedure we obtain the
following map equations for each region:

• For yn < y0:

xn+1 = −(yn − y0)
√

a1 sin(
√

a1#) + xn cos(
√

a1#),

(5)

yn+1 = (yn − y0) cos(
√

a1#) +
xn√
a1

sin(
√

a1#) + y0.

(6)

• For y0 < yn < yH1:

xn+1 = −(yn − y0)
√

a2 sin(
√

a2#) + xn cos(
√

a2#),

(7)

yn+1 = (yn − y0) cos(
√

a2#) +
xn√
a2

sin(
√

a2#) + y0.

(8)

• For yH1 < yn < yS:

xn+1 = (yn − yS)
√

a3 sinh(
√

a3#) + xn cosh(
√

a3#),

(9)

yn+1 = (yn − yS) cosh(
√

a3#) +
xn√
a3

sinh(
√

a3#) + yS.

(10)

• For yS < yn < yH2:

xn+1 = (yn − yS)
√

a4 sinh(
√

a4#) + xn cosh(
√

a4#),

(11)

yn+1 = (yn − yS) cosh(
√

a4#) +
xn√
a4

sinh(
√

a4#) + yS.

(12)

• For yH2 < yn < 0:

xn+1 = −yn

√
a5 sin(

√
a5#) + xn cos(

√
a5#), (13)

yn+1 = yn cos(
√

a5#) +
xn√
a5

sin(
√

a5#). (14)

• For yn > 0:

xn+1 = −yn

√
a6 sin(

√
a6#) + xn cos(

√
a6#), (15)

yn+1 = yn cos(
√

a6#) +
xn√
a6

sin(
√

a6#). (16)

The map defined by equations (5)–(16) will trace out ellipses
in the phase space joined smoothly with the hyperbolas defined
by map equations (9)–(12). For our purposes, we will relate the
parameters in the above expressions to geometric parameters
that describe the separatrix formed in phase space by the
solution of Hamilton’s equations.

The geometric parameters chosen to fit a particular design
are the following: xMAX, xMIN, yMAX, yMIN, y0, yH1, yH2 and yS.
The meaning of each one of these parameters can be observed
in figure 1(a). The hyperbolic solutions at ! = !S, where !S

is the value of the Hamiltonian at the separatrix (given by b),
will trace out straight line segments connecting the X-point to
the ellipses formed by the oscillatory solutions. On controlling
the values of yH1 and yH2 we can determine the size of the
region where the separatrix can be approximated by straight
line segments.

The relationships between the geometric parameters of
the separatrix and the analytic parameters in the equations
defining V (y) can be found from the requirement that the value
of !S be constant at any point on the separatrix. This is a
particular situation, for ! is constant on any magnetic surface.
The matching relations at each point separating the parabolic
regions are the continuity of V (y) and its first derivative.

The relations obtained through this procedure are

b = x2
MAX

2
, b′ = x2

MAX

2
− x2

MIN

2
, (17)

a1 = x2
MIN

(yMIN − y0)2
, a2 = x2

MIN

(yH1 − y0)(yS − y0)
, (18)

a3 = −x2
MIN

[(yH1 − y0)(yH1 − yS) − (yH1 − yS)2]
, (19)

a4 = x2
MAX

(yH2 − yS)2 − yH2(yH2 − yS)
, a5 = x2

MAX

yH2yS
,

a6 = x2
MAX

y2
MAX

. (20)

In figure 1(b) we depict the graph of the potential function
V (y) for a given set of geometric parameter values with the six
parabolic regions. The figure also shows the connection points
y0, yH1, yS, yH2 delimiting the parabolic regions of V (y).

Although equations (5)–(16) result from the discretization
of continuous solutions for each region, these equations are not
able to map a point from a specific region of V (y) to another.
For example, we cannot use equations (11) and (12) to map
the point (in the surface of section) of coordinates (xn, yn)

into the next point (xn+1, yn+1), if yn < yH2 < yn+1. The map
equations to be used should be equations (13) and (14) instead,
at the exact ‘time’ marking the transition from the parabolic
region 4 to region 5.

It remains to gather two pieces of information to finish this
transformation. The first is the abscissa xH2 of the connection
point between regions 4 and 5. The second is the time
interval tH2 (in terms of the parameter #) spent to take (xn, yn)

into (xH2 , yH2). After incorporating this information we can
use the map equations (13)–(14), during the time interval
(# − tH2), necessary to transform the point (xH2 , yH2) into the
point (xn+1, yn+1). Finally, the connection point coordinates
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(xH2, yH2) are given by the continuous version of equations (11)
and (12) at t = tH2, according to

xH2 = (yn − yS)
√

a4 sinh(
√

a4tH2) + xn cosh(
√

a4tH2), (21)

yH2 = (yn − yS) cosh(
√

a4tH2) +
xn√
a4

sinh(
√

a4tH2) + yS.

(22)

Equating the field line Hamiltonian at (xn, yn) and at the
connection point (xH2, yH2) we find

xH2 = [x2
n − a4(yn − yS)

2 − a5y
2
H2 + 2b]1/2. (23)

Substituting equation (21) into (22) to eliminate the sinh term,
there results an expression for tH2, namely

tH2 = 1√
a4

cosh−1
[
xH2xn − a4(yn − yS)(yH2 − xS)

x2
n − a4(yn − yS)2

]
.

(24)

Therefore, the point (xn+1, yn+1) must be defined as follows:

xn+1 = −yH2
√

a5 sin(
√

a5(# − tH2))

+ xH2 cos(
√

a5(# − tH2)), (25)

yn+1 = yH2 cos(
√

a5(# − tH2))

+
xH2√
a5

sin(
√

a5(# − tH2)), (26)

which are equations that describe the transition from the
parabolic region 4 to 5.

This connection procedure must be applied for each
matching point at the boundaries of the parabolic regions.
Since the expression for V (y) of (4) has five such connection
points, each one will need two transition maps (since we will
have two crossing directions). Thus, the complete integrable
map will be composed of sixteen parts. The explicit map
equations are rather involved, although they contain only
elementary functions. The complete set of map equations
for each matching point is given in appendix A. The
symplectic property for the portions of the map that are ‘region
preserving’ as well the portions of the map that affect the
transitions between regions are automatically fulfilled, since
# depends only on !, as was demonstrated explicitly in [22].
Furthermore, the map can be inverted by changing the x and
t variables and considering negative #-values in the map
between regions.

Sample equilibrium magnetic surfaces obtained from the
complete set of map equations are shown in figure 2 for the
following parameters: xMAX = 2, yMIN = 1, yMIN = −7,
yMAX = 4, yH1 = −5, yH2 = −2.75, yS = −4 and y0 = −6.
As the general geometric properties of the magnetic surfaces
do not depend on the values chosen for #, we are able to set
# = 1 for all surfaces. The figure shows three different kinds
of surfaces: (i) the plasma magnetic surfaces (in black); (ii)
the divertor private flux surfaces (in red) and (iii) the external
surfaces (in green). Moreover we show in figure 2 a reference
surface for !95 (in blue) where ! = 95%!S.

The effects of changing various geometrical parameters
describing the equilibrium state are illustrated in figure 3,
where four cases with values different from those considered
in figure 2 are shown. Decreasing xMAX from 2 (as in figure 2)

Figure 2. Equilibrium magnetic surfaces obtained from the
single-null divertor map (see appendix A for the equations) with the
same geometric parameters as in figure 1(b). The surfaces in black
are in the plasma region. We depict in blue a reference magnetic
surface for which ! = 95%!S. The external surfaces and the
divertor private flux surfaces are depicted in green and red,
respectively.

to 1.5 yields an elongation, a stretching of the whole set of
plasma magnetic surfaces along the y-direction (cf figure 3(a)).
Increasing yMAX from 1 to 5 produces a stretching along
the y-direction that is less pronounced near the null point
(cf figure 3(d)). On changing yH2 and yS similar stretching
occurs, but along the x-direction (cf figures 3(b) and (c),
respectively). The variety of shapes we obtain from changing
these free equilibrium parameters demonstrates the versatility
of the field line map obtained by using our method.

3. Equilibrium magnetic field model

The Hamilton system with the Hamiltonian of equation (1)
has invariant curves in its phase space that are the magnetic
surfaces we want to obtain from the field line map. When the
continuous time t is replaced by the discretization parameter
# with a dependence on !, the resulting map no longer
represents solutions to the Hamiltonian system from which
it was originally derived. Rather, the invariant curves (in the
surface of section) obtained from the map have safety factors
generally different from the original continuous system. In
fact, the safety factor profile can be chosen arbitrarily by
specifying the function #(!) without affecting the topology
adopted for the magnetic surfaces. If one wishes to model a
known equilibrium state with a known winding number profile
(inverse of the safety factor) then one can input this information
into the map model.

If we adopt # = 1 for all values of !, then the map has a
safety factor profile identical to that of the original continuous
system. However, if we choose #(!) to match our known
equilibrium, then it turns out that a convenient representation
is given by the following:

# = T (!)

q(!)
, (27)
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Figure 3. Equilibrium magnetic surfaces obtained with (a) xMAX = 1.5; (b) yH2 = 1.5, (c) yS = 3.5 and (d) yMAX = 5. The other geometric
parameters are the same as in figure 1(b).

where T (!) is the rotation period of the invariant curves !

associated with the continuous system and q(!) is the safety
factor of the magnetic surface we intend to represent by the
invariant curve !.

The function T (!) can be found by computing the time
spent by the continuous trajectory in each region of V (y) using
a procedure similar to that explained in section 2, where, e.g.,
we found the time tH2 in equation (24). Doing this we obtain
an analytical expression for the rotation period associated
with the surfaces. There are different expressions depending
on the range of values of !. The analytic expressions for
all possible cases (closed plasma surfaces, divertor private
surfaces and external surfaces) are explicitly written in
appendix B.

Given the function T (!), any desired safety factor profile
q(!) can be obtained using equation (27), thereby representing
different equilibrium configurations with a variety of free
parameters. In principle, it is not even necessary to assign
a functional form of q(!), since it suffices to specify a set of
values of q(!) at given points in the tokamak vessel.

In the following we will consider a specific model with
a monotonic safety factor profile and a singularity at ! =
!S. The particular expression for q(!) with these features
is polynomial for 0 ! ! < !95 and logarithmic for

!95 < ! ! !S, i.e.

q(!) =
{
q0 + c1! + c2!2, ! ! !95

α ln(!S − !) + β, !95 ! !.
(28)

In the external region (! > !S) we suppose that the model
is symmetric with respect to ! = !S. In other words
q(!) = α ln(! − !S) + β, for ! > !S.

We choose the following free parameters: q0 = q(! = 0),
q95 and q ′

95, where q95 is the safety factor value at !95 and q ′
95

its derivative with respect to ! taken at ! = !95. The latter
is related to the magnetic shear for the reference surface by

ŝ95 = r95

q95

dq

dr

∣∣∣∣
r95

, (29)

where r95 =
√

2!95 is the midplane minor radius of the
magnetic surface labeled by !95. The relation between the
magnetic shear and the safety factor derivative is thus

q ′
95 = q95ŝ95

2!95
. (30)

The constants appearing in the equilibrium model given
by equation (28) are related to the physical free parameters

6
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Figure 4. (a) Radial safety factor profile for the equilibrium model of equation (28) for the plasma core (! < !S) and external regions
(! > !S), for q(0) = 1.1, q95 = 3.3, and ŝ95 = 1.8 (red/gray curve) and ŝ95 = 2.67 (black curve). The inset is a magnification of the region
surrounding the separatrix surface !S. (b) Radial safety factor profile for the model of equation (28) for the divertor region surfaces, where
q(! = b′) = 0.1 and q(0.95!S) = 1.

above by the following expressions:

c1 =
2(q95 − q0) − q ′

95!95

!95
, (31)

c2 =
q0 − q95 + q ′

95!95

!2
95

, (32)

α = q ′
95(!95 − !S), (33)

β = q ′
95 + q ′

95(!95 − !S) ln(!S − !95). (34)

Figure 4(a) depicts two radial safety factor profiles, both
using q0 = 1.1 and q95 = 3.3, but with different shear
parameter values at !95. Both curves increase monotonically
from 1.0 (at the magnetic axis) to 5.0 (at the separatrix !S),
but the smaller shear case (ŝ95 = 1.8, depicted in black) has a
slower ascent, whereas the larger shear (ŝ95 = 2.67, depicted
in red/gray) provides a steeper increase. However, near the
separatrix the slopes are different, as illustrated in the inset
of figure 4(a). This freedom of parameter choice is highly
desirable for fitting the model to the specific needs of a given
equilibrium configuration.

The safety factor profile for the divertor private flux region
has the same expression as that of (28), where we fix ŝ95 = 2,
q95 = 1 and q(! = b′) = 0.1 the safety factor at the center of
the lower lobe. This profile is shown in figure 4(b).

4. Magnetic field line escape due to an ergodic
limiter

The concept of an ideal separatrix acting as a barrier that
separates the hot plasma from the tokamak chamber first wall
is an ideal scenario. Real discharges always have unavoidable
resonant perturbations. These resonances can be inherent to
the plasma dynamics [24–26], be the result of error fields
(asymmetries of the coil alignment) [27, 28], or be intentionally
caused by external conductors in order to control plasma
instabilities [29, 30]. Generally speaking, the effect of such

perturbations is to replace the ideal equilibrium separatrix
by a layer of chaotic magnetic field lines near the plasma
border.

Magnetic field lines in this chaotic layer can escape from
the confined plasma and eventually reach the divertor plates
carrying particles with them. To show how the divertor map
can be used to study the field line dynamics of such a chaotic
layer, here we simulate the effect of an ergodic limiter, which
is an arrangement of currents external to the plasma creating
a perturbing magnetic field that is strong in the vicinity of
the tokamak wall [31]. Ergodic limiters consists of a set of
filamentary conductors carrying electric currents in opposite
toroidal directions [32], in such a way that the contribution of
the poloidal component of the conductors is negligible. The
relevant currents are located at a specific toroidal position and
occupy a thin toroidal section.

If the ergodic limiter is composed of m pairs of toroidally
aligned conductors, then the resulting magnetic field resonates
with the equilibrium field lines lying on magnetic surfaces
with rational safety factor q = m/n, where m and n are
positive integers. Thus, the ergodic limiter causes a resonant
perturbation concentrated on the toroidal position occupied
by the conductor ring. If this ring is narrow enough, the
perturbation caused by the ergodic limiter can be approximated
by a delta-function kick at the limiter position, acting on the
equilibrium field lines so as to generate a nonintegrable field
line configuration.

The impulsive character of the resonant perturbation
allows us to obtain an analytical expression for the field line
map [38, 39]. The total map is a composition of two maps:
(i) an integrable divertor map, just like the one we obtained
from the trajectory integration method and (ii) a perturbative
map representing the effect of the ergodic limiter. Application
of the integrable divertor map represents a toroidal turn of a
magnetic field line through the tokamak until it reaches the
ergodic limiter position. A perturbative map follows that takes
the field line through the local ergodic limiter region.

7
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Figure 5. Phase portraits for the total field line map for (a) ŝ95 = 1.8 and (b) ŝ95 = 2.67. The remaining perturbation parameters are
C = 10−2 and m = 3.

We shall use the perturbative map proposed by Martin and
Taylor [33], which identifies the field line intersection with a
surface by the local coordinates (ρ, α). The latter are related to
the poloidal coordinates (r, θ) in the surface of section through
ρ = rc − r and α = rcθ , where rc is the minor radius of the
tokamak chamber (which is also the radius of the limiter coil,
neglecting the thickness of the vessel).

In the Martin–Taylor model a magnetic field line entering
the ergodic limiter at the point (ρ1, α1) emerges from it at the
point (ρ2, α2), where

α2 = α1 − Ce−mρ1/rc cos
(

mα1

rc

)
, (35)

ρ2 = ρ1 +
rc

m
ln

[
cos(mα2/rc)

cos(mα1/rc)

]
(36)

and the constant C represents the perturbation amplitude that
is related to the physical parameters by C = µ0gmIh/πrcB0

(in SI units). Here µ0 is the permeability of free space, Ih

is the current flowing on the limiter segments and B0 is the
equilibrium toroidal field (supposed to be uniform throughout
the vessel).

The total field line map (xn, yn) → (xn+1, yn+1) results
from the composition of the integrable divertor map MD,
yielding (xn, yn) → (x∗, y∗), and the perturbing map MP,
which gives (x∗, y∗) → (xn+1, yn+1). The iteration of the total
map requires a change of the parameter # each time the field
line emerges from the limiter region, since after the impulsive
perturbation a field line jumps to another magnetic surface
!(xn+1, yn+1) that has a different safety factor. Thus, we apply
equation (27) to select a corrected # parameter to map the field
line through the next toroidal turn.

We present numerical simulations using the following
perturbation parameters: C = 10−2, rc = 5 and m = 3. The
phase portraits shown in figure 5 were obtained by considering
55 initial conditions along the line x = 0 and in the interval
−4 < y < −2, and each initial condition was iterated 103

times. The equilibrium radial safety factors depicted in figure 4
were used, with the two cases considered therein: low shear as
in figure 5(a) and high shear as in figure 5(b).

A noteworthy aspect of these phase portraits is that,
although the initial conditions in both cases were chosen
within the plasma region, some chaotic magnetic field lines
close to the tokamak border penetrate the region external to
the ideal separatrix. Moreover, the equilibrium configuration
with larger shear ŝ95 of figure 5(b) presents a slightly wider
stochastic layer in comparison with the lower shear case of
figure 5(a).

The magnetic field line escape is channeled to the divertor
plates. Although the chaotic field line region appears to
be uniform, chaotic field lines hit the divertor plates in a
nonuniform fashion [40]. We investigate this using the total
map described above, so as to obtain the position of strike
points of escaping magnetic field lines on the divertor plate,
as well as the number of toroidal turns performed by the lines
before reaching the plate. This gives valuable information on
the nonuniform deposition patterns of field lines on the divertor
plate. However, we must keep in mind that this is a picture of a
specific toroidal position of the field lines, and does not show
what occurs between two consecutive intersections with the
surface of section.

We choose, rather arbitrarily, to locate the divertor
collection plate at the position yH1 = −5. The point where
an escaping field line hits the divertor plate will be labeled
(xF, yH1, φF). If both of the conditions yn > yH1 and y∗ < yH1

are fulfilled, we consider the field line as hitting the divertor
plane between these two iterations.

If this situation is detected, we have to resort to a
modification of the iteration procedure to find numerically the
position of an escaping field line between two map iterations.
Then, we return to the fact that the integrable part of the
map was derived by first discretizing the continuous-time field
line equations. Hence, we can use the continuous version
of equations (9) and (10) to discover the exact final position

8
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Figure 6. (a) Distribution of connection lengths of field lines colliding with the divertor plate for the same parameters as in figure 5(a). The
inset shows a magnification of the box marked in red/gray. (b) Magnetic footprint corresponding to this case.

(xF, yH1, φF) of the line, which is

xF = −
[
x2

n − a2(yH1 − y0)
2 − a3(yn − yS)

2 + 2(b − b′)
]1/2

,

(37)

tF = 1√
a3

cosh−1
[
xF xn − a3(yn − yS)(yH1 − xS)

x2
n − a3(yn − yS)2

]
, (38)

where b and b′ are given by equation (17), and tF is the time
it takes for the field line until it reaches the plate at the final
toroidal angle φF, given by

φF = 2π
tF

#n

, (39)

where #n ≡ #(!(xn, yn)).
The number of toroidal turns necessary for the field line

to strike the divertor plate is also called its ‘connection length’
CL and it is given by

CL = N +
tF

#n

, (40)

where N is the number of map iterations (an integer number of
toroidal turns) before we stop the iteration in order to perform
the above-mentioned procedure for locating the exact hitting
point.

We investigate the distribution of connection lengths at
the divertor plate for the two considered equilibria. For this
we take 106 initial conditions at the plate y = yH1 and whose
horizontal coordinates are chosen to be close to the intersection
of the ideal separatrix with the divertor plate xsep = 0.7071.
Each initial condition was iterated until it returns to the divertor
plate. The lines depart from the divertor plate with positive
values of x and strike the plate with negative values.

Figures 6(a) and 7(a) show the connection length
distributions in terms of the field line displacement with respect
to the divertor plate position #x = xF −xS. Negative values of
#x correspond to positions in the external region and positive
values to positions in the divertor private flux regions. The

peaks denote high connection lengths, amounting to field lines
that stay in the plasma core for a comparatively large time.
We observed that such field lines are near the stable invariant
manifolds at the periphery of the chaotic region. Since these
manifolds present complicated (in fact, fractal) striations we
expect that the distribution of such peaks should present self-
similarity. Indeed, a magnification of a region with large
connection lengths shows a very complicated structure, which
is present at all small scales of the distribution.

As a result of this self-similar character inherited from the
fractal structure of the underlying chaotic saddle, the spatial
distribution of field lines hitting the divertor plates is likewise
fractal. We have obtained magnetic footprints, which are
formed by the striking points of field lines at the divertor plate
(φF, xF), their final horizontal coordinate being always yH1;
these are depicted in figures 6(b) and 7(b). The magnetic
footprints can be seen as marks on the divertor plate caused
by escaping lines. The final horizontal positions are written in
terms of the displacement #x with respect to the left branch
of the unperturbed separatrix intersection with the plate. For
this figure, positive values of #x correspond to final horizontal
positions outside the unperturbed separatrix.

The connection length distributions are different for each
equilibrium case, characterized by different values of the
magnetic shear at the reference surface. The low-shear case
(ŝ95 = 1.8) presents a region with high connection lengths
that is smaller than the case of ŝ95 = 2.67. Both cases
presents self-similarity in the distribution. This can be seen
by observing the enlargement insets shown in figures 6(a)
and 7(a). However, the latter case suggest a higher complexity
in the fractal distribution. This means that two points very
close at the plate can be reached by field lines with very
different connection length values for ŝ95. Moreover, the
range of connection length values is larger for the high-shear
considered. The consequence of this is a strongly nonuniform
deposition pattern of energy and particles, as the magnetic
shear at the edge increases.

9
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Figure 7. (a) Distribution of connection lengths of field lines colliding with the divertor plate for the same parameters as in figure 5(b). The
inset shows a magnification of the box marked in red/gray. (b) Magnetic footprint corresponding to this case.

Figures 6(b) and 7(b) show the structure of magnetic
footprints for the escape patterns whose connection length
distributions were depicted in figures 6(a) and 7(a),
respectively. The convoluted finger-like structures are similar
to results previously obtained by Evans and collaborators
through direct field line integration [34, 35]. The high-
shear case ŝ95 = 2.67 of figure 7(b) has a larger deposition
area for the field lines hitting the divertor plate, although
with the same contours as the low-shear case ŝ95 = 1.8
of figure 6(b). The combined results of connection length
distributions and magnetic footprint patterns indicate that high-
shear equilibrium configurations provide a better deposition
scenario than low-shear configurations, as far as the deposition
area on the divertor plate is concerned.

If, in a lowest order approximation, particles follow
the magnetic field lines until they reach the divertor plate,
magnetic footprints would be related to the heat deposition
pattern, which is experimentally accessible through bolometric
measurements. As a matter of fact, recent laboratory studies
reveal that the heat distribution pattern on divertor plates has
some degree of self-similarity, thus confirming the fractal
nature of magnetic footprints. Moreover, even in the presence
of collisions, the fractal pattern of the escape channels
persists, with some widening due to the random nature of the
collisions [36].

5. Conclusions

The purpose of this paper was twofold. In the first place,
we offered a further example of application of the trajectory
integration method we previously used in a particular example
in [22]. Both cases refer to single-null divertor tokamak
configurations, i.e. both have a single x-point and an ideal
separatrix separating the closed magnetic surfaces of the
plasma core from the external surfaces. The latter surfaces are
expected to be destroyed by symmetry-breaking perturbations,
like those generated with an ergodic limiter, so as to yield a

chaotic field line region in the periphery. The divertor plate is
conveniently placed within this chaotic region in such a way
that escaping field lines from the chaotic region eventually hit
the divertor and are collected.

A desirable feature of the example considered in this paper
is that it can describe an equilibrium plasma model with a
number of free parameters. This provides a high level of
versatility for representing different magnetic geometries and
safety factor profiles for application to different tokamaks. For
example, the choice of safety factor profile is highly desirable
since it provides the capability of varying the safety factor at
the plasma edge and can simulate the effect of perturbations
with different resonances. Moreover, by construction the
maps obtained by the trajectory integration method are strictly
symplectic, which is an important feature when performing
long-time simulations, which are of importance, e.g. in
transport studies.

In the second place, we have used the equilibrium model
with the free parameters together with perturbation due to an
ergodic limiter model to investigate the dependence of field
line deposition patterns on the divertor plate with respect to
different parameters describing magnetic shear at the plasma
edge. The numerical diagnostics we have used were the
distribution of the connection lengths (the time it takes for
a field line to hit the divertor plate) and the magnetic footprints
(the deposition pattern of field lines on the divertor plate). Both
diagnostics suggest that high-sheared configurations produce
wider deposition areas in the divertor plate, which may reflect
better confinement properties, since the divertor aims to pump
out escaping particles from the plasma before they reach the
tokamak confinement vessel, where they can release impurities
that contaminate the plasma core.
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Appendix A. Explicit expression for the integrable
divertor map

When a point is mapped from one point to another point in the
same parabolic region, the complete set of map equations for
the integrable divertor map is the following

• For yn < y0 and K1 < y0:

xn+1 = −(yn − y0)
√

a1 sin(
√

a1#) + xn cos(
√

a1#),

(41)

yn+1 = (yn − y0) cos(
√

a1#) +
xn√
a1

sin(
√

a1#) + y0.

(42)

• For y0 < yn < yH1 and y0 < K2 < yH1:

xn+1 = −(yn − y0)
√

a2 sin(
√

a2#) + xn cos(
√

a2#),

(43)

yn+1 = (yn − y0) cos(
√

a2#) +
xn√
a2

sin(
√

a2#) + y0.

(44)

• For yH1 < yn < yS and yH1 < K3 < yS:

xn+1 = (yn − yS)
√

a3 sinh(
√

a3#) + xn cosh(
√

a3#),

(45)

yn+1 = (yn − yS) cosh(
√

a3#) +
xn√
a3

sinh(
√

a3#) + yS.

(46)

• For yS < yn < yH2 and yS < K4 < yH2:

xn+1 = (yn − yS)
√

a4 sinh(
√

a4#) + xn cosh(
√

a4#),

(47)

yn+1 = (yn − yS) cosh(
√

a4#) +
xn√
a4

sinh(
√

a4#) + yS.

(48)

• For yH2 < yn < 0 and yH2 < K5 < 0:

xn+1 = −yn

√
a5 sin(

√
a5#) + xn cos(

√
a5#), (49)

yn+1 = yn cos(
√

a5#) +
xn√
a5

sin(
√

a5#). (50)

• For yn > 0 and K6 > 0:

xn+1 = −yn

√
a6 sin(

√
a6#) + xn cos(

√
a6#), (51)

yn+1 = yn cos(
√

a6#) +
xn√
a6

sin(
√

a6#). (52)

When a point is mapped to a neighboring region we must use
the transition equations, that are given as follows:

• For yn < y0 and K1 > y0:

xn+1 = y0 cos(
√

a2(# − t0)), (53)

yn+1 = x0√
a2

sin(
√

a2(# − t0)) + y0, (54)

where
x0 = +

[
x2

n + a1(yn − y0)
2]1/2

, (55)

t0 = 1√
a1

cos−1
[

x0xn

x2
n + a1(yn − y0)2

]
. (56)

• For y0 < yn < yH1 and K2 < y0:

xn+1 = x∗
0 cos(

√
a1(# − t∗0 )), (57)

yn+1 =
x∗

0√
a1

sin(
√

a1(# − t∗0 )) + y0. (58)

where
x∗

0 = −
[
x2

n + a2(yn − y0)
2]1/2

, (59)

t∗0 = 1√
a2

cos−1
[

x∗
0xn

x2
n + a2(yn − y0)2

]
. (60)

• For y0 < yn < yH1 and K2 > yH1:
xn+1 = (yH1 − yS)

√
a3 sinh(

√
a3(# − tH1))

+ xH1 cosh(
√

a3(# − tH1)), (61)

yn+1 = (yH1 − yS) cosh(
√

a3(# − tH1))

+
xH1√
a3

sinh(
√

a3(# − tH1)) + yS. (62)

where
xH1 = +[x2

n + a2(yn − y0)
2 + a3(yH1 − yS)

2

+ 2(b′ − b)]1/2, (63)

tH1 = 1√
a2

cos−1
[
xH1xn + a2(yH1 − y0)(yn − y0))

x2
n + a2(yn − y0)2

]
.

(64)
• For yH1 < yn < yS and K3 < yH1

xn+1 = −(yH1 − y0)
√

a2 sin(
√

a2(# − t∗H1))

+ x∗
H1 cos(

√
a2(# − t∗H1), (65)

yn+1 = (yH1 − y0) cos(
√

a2(# − t∗H1))

+
x∗

H1√
a2

sin(
√

a2(# − t∗H1) + y0. (66)

where
x∗

H1 = −[x2
n − a2(yH1 − y0)

2 − a3(yn − yS)
2

+ 2(b − b′)]1/2, (67)

t∗H1 = 1√
a3

cosh−1
[
x∗

H1xn − a3(yn − yS)(yH1 − xS)

x2
n − a3(yn − yS)2

]
.

(68)
• For yH1 < yn < yS and K3 > yS:

xn+1 = xS cosh(
√

a4(# − tS)), (69)

yn+1 = xS√
a4

sinh(
√

a4(# − tS)) + yS. (70)

where
xS = +

[
x2

n − a3(yn − yS)
2]1/2

, (71)

tS = 1√
a3

cosh−1
[

xSxn

x2
n − a3(yn − yS)2

]
. (72)

• For yS < yn < yH2 and K4 < yS:

xn+1 = x∗
S cosh(

√
a3(# − t∗S )), (73)

yn+1 =
x∗

S√
a3

sinh(
√

a3(# − t∗S )) + yS. (74)

where
x∗

S = −
[
x2

n − a4(yn − yS)
2]1/2

, (75)

t∗S = 1√
a4

cosh−1
[

x∗
Sxn

x2
n − a4(yn − yS)2

]
. (76)
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• For yS < yn < yH2 and K4 > yH2:

xn+1 = −yH2
√

a5 sin(
√

a5(# − tH2))

+ xH2 cos(
√

a5(# − tH2)), (77)

yn+1 = yH2 cos(
√

a5(# − tH2))

+
xH2√
a5

sin(
√

a5(# − tH2)). (78)

where

xH2 =
[
x2

n − a4(yn − yS)
2 − a5y

2
H2 + 2b

]1/2
, (79)

tH2 = 1√
a4

cosh−1
[
xH2xn − a4(yn − yS)(yH2 − xS)

x2
n − a4(yn − yS)2

]
.

(80)

• For yH2 < yn < 0 and K5 < yH2:

xn+1 = (yH2 − yS)
√

a4 sinh(
√

a4(# − t∗H2))

+ x∗
H2 cosh(

√
a4(# − t∗H2)), (81)

yn+1 = (yH2 − yS) cosh(
√

a4(# − t∗H2))

+
x∗

H2√
a4

sinh(
√

a4(# − t∗H2) + yS. (82)

where

x∗
H2 = −

[
x2

n + a5y
2
n + a4(yH2 − yS)

2 − 2b
]1/2

, (83)

t∗H2 = 1√
a5

cos−1
[
x∗

H2xn + a5ynyH2

x2
n + a5y2

n

]
. (84)

• For yH2 < yn < 0 and K5 > 0:

xn+1 = xC cos(
√

a6(# − tC)), (85)

yn+1 = xC√
a6

sin(
√

a6(# − tC)). (86)

where
xC =

[
x2

n + a5y
2
n

]1/2
, (87)

tC = 1√
a5

cos−1
[

xCxn

x2
n + a5y2

n

]
. (88)

• For yn > 0 and K6 < 0 5:

xn+1 = x∗
C cos(

√
a5(# − t∗C)), (89)

yn+1 = x∗
C√
a5

sin(
√

a5(# − t∗C)). (90)

where
x∗

C = −
[
x2

n + a6y
2
n

]1/2
, (91)

t∗C = 1√
a6

cos−1
[

x∗
Cxn

x2
n + a6y2

n

]
. (92)

where we define the following quantities:

K1 = (yn − y0) cos(
√

a1#) +
xn√
a1

sin(
√

a1#) + y0, (93)

K2 = (yn − y0) cos(
√

a2#) +
xn√
a2

sin(
√

a2#) + y0, (94)

K3 = (yn − yS) cosh(
√

a3#) +
xn√
a3

sinh(
√

a3#) + yS,

(95)

K4 = (yn − yS) cosh(
√

a4#) +
xn√
a4

sinh(
√

a4#) + yS,

(96)

K5 = yn cos(
√

a5#) +
xn√
a5

sin(
√

a5#), (97)

K6 = yn cos(
√

a6#) +
xn√
a6

sin(
√

a6#). (98)

Appendix B. Natural rotation period of the magnetic
surfaces

The integrable map accepts any choice of safety factor
independently from the chosen geometry. To set a safety factor
q for a specific surface !(x, y) we must use a value for the
parameter # given by # = T/q, where T is the natural rotation
period of the surface !(x, y). In this appendix we give the
expressions for T (!).

• For y < yS and ! < [a2(yH1 − y0)
2/2 + b]′ (entirely

elliptic surfaces in the private flux region):

T = π

[
1√
a1

+
1√
a2

]
, (99)

• For y < yS and [a2(y − y0)
2/2 + b′] < ! < !S (surfaces

with hyperbolic contribution in the private flux region):

T =
[

π√
a1

+
2√
a2

cos−1
(

2! − 2b′− a2(yH1 − x0)
2

2! − 2b′

)1/2

+
1
a3

cosh−1
(

! + !S − a2(yH1 − y0)
2 − 2b′

!S − !

)]
,

(100)
• For y > yS and ! < a5y

2
H2/2 (entirely elliptic surfaces in

the plasma region):

T = π

[
1√
a6

+
1√
a5

]
, (101)

• For y > yS and a5y
2
H2/2 < ! < !S (surfaces with

hyperbolic contribution in the plasma region):

T =
[

π√
a6

+
2√
a5

cos−1
(

2! − a5y
2
H2

2!

)1/2

+
1
a4

cosh−1
(

! + !S − a5y
2
H2

!S − !

) ]
, (102)

• For ! > !S (surfaces external to the separatrix):

T =
[

π√
a1

+
π√
a6

+
2√
a2

cos−1
(

2! − 2b′ − a2(yH1 − y0)
2

2! − 2b′

)1/2

+
2√
a5

cos−1
(

2! − a5y
2
H2

2!

)1/2

+
2√
a4

cosh−1
(

2! − a5y
2
H2

2! − 2!S

)1/2

+
2√
a3

cosh−1
(

2! − 2b′ − a2(yH1 − y0)
2

2! − 2!S

)1/2 ]

(103)
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