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Ion Larmor radius effects on collisionless magnetic reconnection in the presence of a guide field
are investigated by means of numerical simulations based on a gyrofluid model for compressible
plasmas. Compressibility along the magnetic field is seen to favour the distribution of ion guiding
center density along the neutral line, rather than along the separatrices, unlike the electron density.
On the other hand, increasing ion temperature reduces the intensity of localized ion guiding
center flows that develop in the direction parallel to the guide field. Numerical simulations suggest
that the width of these bar-shaped velocity layers scale linearly with the ion Larmor radius.
The increase of ion temperature radius causes also a reduction of the electron parallel velocity.
As a consequence, it is found that the cusp-like current profiles distinctive of non-dissipative
reconnection are strongly attenuated. The field structures are interpreted in terms of the behavior
of the four topological invariants of the system. Two of these are seen to behave similarly to
invariants of simpler models that do not account for parallel ion flow. The other two exhibit
different structures, partly as a consequence of the small electron/ion mass ratio. The origin of these
invariants at the gyrokinetic level is also discussed. The investigation of the field structures is
complemented by an analysis of the energetics of the system. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3697860]

I. INTRODUCTION

Magnetic reconnection is believed to play an important
role in a number of events occurring in laboratory and astro-
physical plasmas, classical examples of which are sawtooth
oscillations in tokamaks, magnetospheric substorms, and so-
lar flares.1,2 Much of the progress in the understanding of
magnetic reconnection has been possible thanks to the use of
reduced fluid models. In such models, typically a generalized
Ohm’s law accounts for different mechanisms, depending on
the phenomenon under consideration, that can break the
frozen-in condition and allow for the reconnection of mag-
netic field lines. In particular, for weakly collisional plasmas,
electron inertia can provide a relevant mechanism for modi-
fying the topology of the magnetic field. A distinctive feature
of reconnection mediated by electron inertia is its non-
dissipative nature, unlike, for instance, resistive reconnec-
tion. In particular, if other dissipative terms, possibly present
in the reduced model, are omitted, one expects the resulting
system to be Hamiltonian. Investigation of dissipationless
magnetic reconnection has been carried out by means of
Hamiltonian reduced fluid models in a number of works
(see, e.g., Refs. 3 and 4 and references therein), most of
which neglect ion Larmor radius effects. Investigation of
Hamiltonian magnetic reconnection in the presence of finite
Larmor radius (FLR) effects is then little developed, in com-
parison to the cold ion case. In order to fill this gap, a natural
tool to consider is represented by the so-called gyrofluid
models, e.g., Refs. 5–11, obtained by taking moments of the

gyrokinetics equations. The Hamiltonian structure of the
non-dissipative core of such models, however, is not known,
except for a very few reduced versions of them.

An early investigation of reconnection by means of a
Hamiltonian gyrofluid model was made in Ref. 12. In this
work, the effects of ion temperature on the growth rate of the
reconnecting mode and on the structures of the vorticity and
of the magnetic flux function had been investigated using a
reduced two-field gyrofluid model. More recently, the
advanced nonlinear phase of this model has been investi-
gated numerically, in order to elucidate the differences
between the effects due to ion and sonic Larmor radius.13

A richer Hamiltonian gyrofluid model, accounting for
electron inertia, was derived in Ref. 14. This model describes
the evolution of ion guiding center density, electron density,
and magnetic flux function. The analysis of its dispersion
relation revealed also the presence of a spectral gap between
the zero and the ion diamagnetic frequency. This feature rep-
resents a difference from what is observed in finite Larmor
radius models valid only for kqi ! 1 (where qi is the ion
Larmor radius and k the modulus of the wave vector). Nu-
merical simulations of the Hamiltonian three-field gyrofluid
model have been carried out in Refs. 15 and 16. These sug-
gested that increasing qi results in a flattening of the density
gradients inside the magnetic island. The presence of an
equilibrium density gradients, on the other hand, has been
shown to induce an island rotation at a frequency in good
agreement with the asymptotic linear theory.
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A more complete Hamiltonian model has been recently
derived in Ref. 17. This model, as the two and three-field
models of Refs. 12 and 14, is obtained as a truncation of the
gyrofluid model of Snyder and Hammett,9 but it accounts for
one more moment, namely, the parallel ion flow. The Hamil-
tonian structure of this four-field model reveals also the pres-
ence of four Lagrangian invariants. These extend the
Lagrangian invariants of the previously investigated models
and naturally group into two pairs, one depending on elec-
tron fields and the other one depending on ion guiding center
fields.

In this article, we present an investigation of magnetic
reconnection by means of the Hamiltonian gyrofluid four-
field model. The main purpose of this investigation is to
study the effect of finite ion Larmor radius on the evolution
of the magnetic, density, and velocity fields, in this more
complete setting, which accounts also for parallel compres-
sibility. Numerical simulations of the evolution of such
fields will be the main tool of investigation. Complemen-
tary to the direct analysis of the original variables (den-
sities, velocities, and magnetic fields) will be the analysis
in terms of the Lagrangian invariants suggested by the
Hamiltonian structure. Because these invariants are simply
advected quantities, their dynamics turns out to be rela-
tively easier to follow and predict, with respect to that of
the original physical fields. In particular, we will explore
the differences between the dynamics of the Lagrangian
invariants associated with the electron fields and that of the
invariants associated with the ion fields. Indeed, although
the former can be expected to have a behavior similar to
that of the two invariants G6 of the two and three-field
model, the dynamics of the latter has never been investi-
gated. We will also gain some insights about the physical
origin of such invariants, and of their advecting velocities,
by considering the derivation of the model from the gyroki-
netic Vlasov equation.

Given the Hamiltonian structure of the model, we also
know the expression of the conserved total energy of the sys-
tem and of the different forms of energies (kinetic, magnetic,
thermal and electrostatic) contributing to it. Through this, we
can obtain further information about how finite Larmor ra-
dius effects can influence the distribution of the total energy
into the different channels.

We remark that reconnection caused by electron inertia
has been recently investigated, by means of a three-
dimensional four-field gyrofluid model, in Ref. 18. In this pa-
per, the authors describe an acceleration of the reconnecting
instability growth, observed at the onset of nonlinearity.

Our paper is organized as follows. In Sec. II, we review
the four-field gyrofluid model equations and carry out some
analytical considerations about the zero and large Larmor ra-
dius limit. These will be of support to the analysis of the nu-
merical simulations. Section III is devoted to the analysis of
the influence of qi on the field structures. In Sec. IV, we
investigate the dynamics of the Lagrangian invariants of the
model and present some considerations about their origin at
the gyrokinetic level. Section V contains an analysis of
energy transfers during the reconnection process and their
dependence on qi. We conclude in Sec. VI.

II. THE COMPRESSIBLE ELECTROMAGNETIC
GYROFLUID MODEL

We consider the model of Ref. 17 adopting the follow-
ing normalized quantities:

t ¼ vA
L
t̂; x ¼ x̂

L
; di;e ¼

d̂i;e
L

; qi;s ¼
q̂i;s
L

;

ni;e ¼
L

d̂i

n̂i;e
n0

; ui;e ¼
L

d̂i

ûi;e
vA

; A ¼
Âk

BL
; / ¼ /̂

BLvA
;

(1)

where the carets denote dimensional quantities. In (1), L
indicates a characteristic magnetic equilibrium scale length,
vA is the Alfvén speed based on a characteristic toroidal mag-
netic field intensity B, d̂i;e are the ion and the electron skin
depth, respectively, q̂s ¼ cs=xci is the sonic Larmor radius,
where cs ¼ Te=mið Þ1=2 is the sound speed and xci ¼ eB=mi

is the ion cyclotron frequency. We indicate with
q̂i ¼ Ti=Teð Þ1=2q̂s the ion Larmor radius, mi;e are the ion and
electron mass, Ti;e the ion and electron temperature, and n0 is
a constant background density. n̂i;e represent the ion guiding
center and the electron density fluctuations, respectively,
whereas ûi;e are the ion guiding center and electron parallel
velocity. Finally, Âk is the parallel component of the mag-
netic vector potential and /̂ is the electrostatic potential.

In a Cartesian coordinate system (x, y, z), the equations
of the Hamiltonian compressible electromagnetic gyrofluid
model17 are

@ni
@t

þ ½U; ni' þ ½ui;A' ¼ 0; (2)

@D

@t
þ ½U;D' þ sq2s ½ni;A' ¼ 0; (3)

@ne
@t

þ ½/; ne' þ ½ue;A' ¼ 0; (4)

@F

@t
þ ½/;F' ( q2s ½ne;A' ¼ 0; (5)

where the brackets between two generic fields f and g are
defined by f ; g½ ' ¼ ẑ )rf *rg, with ẑ the unit vector along
the ignorable coordinate z that is parallel to the magnetic

guide field. Here, U ¼ C1=2
0 / is the gyro-averaged electro-

static potential, A ¼ C1=2
0 A is the gyro-averaged parallel

magnetic potential, D ¼ Aþ d2i ui is the ion guiding center

parallel canonical momentum, F ¼ A( d2eue is the electron
parallel canonical momentum, whereas s ¼ Ti=Te indicates
the ratio between ion and electron temperatures.

We adopt the gyro-averaged operator6 in its Padé
approximant form

C1=2
0 ¼ 1( q2i

2
r2

! "(1

: (6)

The system (2)–(5) is then closed by the quasi-neutrality
condition

ne ¼ C1=2
0 ni þ

C0 ( 1

q2i

! "
/; (7)

where C0 ¼ ðC1=2
0 Þ2, and by the Ampère’s law
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r2A ¼ ue ( C1=2
0 ui: (8)

The simple form of this compressible electromagnetic gyro-
fluid model makes transparent the interpretation of its equa-
tions. Equation (2) is the ion continuity equation expressing
the conservation of ion mass. The density of the ion guiding
centers is convected by the nonlocal value of the electrostatic
drift !vE ¼ ẑ*rU. Note that the gyro-averaged electric drift
is solenoidal, r ) !vE ¼ 0, so that the compression of the ion
fluid is due entirely to the last term of Eq. (2), representing
the contribution of the parallel velocity of the ions to the
divergence of the particle flux. Equation (3) represents the
conservation of the ion parallel momentum. The first two
terms form the total derivative of the ion parallel momentum
taken along a path moving with velocity !vE, whereas the last
term originates from the parallel ion pressure forces on a
fluid element. Equations (4) and (5) are the corresponding
mass and momentum conservation for the electron fluid in
which gyroradius effects do not appear.

We remark that the inclusion of a non-trivial evolution
for the ion guiding center density and parallel velocity breaks
also the approximate “interchangeability” between qi and qs
into the equations of the two-field model of Ref. 12.

The model (2)–(5) describes both the “inertial”
(be ! me=mi) and the “kinetic” (be + me=mi) Alfvén wave
regimes19–21 in the low-be approximation (be ! 1), whereas
for be , me=mi, the model equations must be modified to
account for electron Landau damping. Here, the parameter
that distinguishes between these regimes is be ¼ pe=
B2=2l0ð Þ ¼ 2q2s=d

2
i which represents the ratio of the electron

thermal pressure to the magnetic pressure. In this work, how-
ever, we consider magnetic reconnection in the kinetic
Alfvén regime.

Because we are interested in the influence of the ion Lar-
mor radius qi of the reconnection process, we consider here
two extreme limits (qi ¼ 0 and qi ! 1) for which we can
obtain some analytical estimates on the behavior of the fields.

A. Cold ion limit

In the cold ion limit (qi ¼ 0), the gyrofluid equations
(2)–(5) become

@ni
@t

þ ½/; ni' þ ½ui;A' ¼ 0; (9)

@D

@t
þ ½/;D' ¼ 0; (10)

@ne
@t

þ ½/; ne' þ ½ue;A' ¼ 0; (11)

@F

@t
þ ½/;F' ( q2s ½ne;A' ¼ 0; (12)

whereas the closure relations (7) and (8) read

ne ¼ ni þr2/; (13)

r2A ¼ ue ( ui: (14)

In the absence of ion temperature, a topological conserva-
tion law becomes evident from Eq. (10) and corresponds to

a “frozen-in condition” for the ion fluid canonical momen-
tum D.

In the cold ion limit, there exists a rescaling that (up to
terms of order me=mi) puts in correspondence the gyrofluid
model with the low-be limit of the Fitzpatrick-Porcelli (FP)
four-field model.22 Indeed, Eqs. (9), (11), and (13) can be
linearly combined to give

@r2/
@t

þ /;r2/
# $

þ r2A;A
# $

¼ 0; (15)

which is the same vorticity equation appearing in the FP
model. From Eqs. (10) and (12), on the other hand, we can
obtain

@ui
@t

þ /; ui½ ' þ d2e
d2i

@ue
@t

þ /; ue½ '
! "

þ q2s
d2i

ne;A½ ' ¼ 0: (16)

Neglecting the term proportional to d2e=d
2
i and performing

the mapping ui ! ui=di; ne ! (Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=d2i be

p
, one obtains the

parallel velocity equation of the FP model in the low-be
expansion, i.e., when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbe=2Þ=ð1þ be=2Þ

p
,

ffiffiffiffiffiffiffiffiffiffi
be=2

p
(this is

expected, since the gyrofluid model is derived for plasmas
with be ! 1, whereas the FP model is valid also for
larger be).

The same rescaling for ne and ui, applied to Eqs. (11)
and (12), with the help of Eq. (14) and again neglecting
terms of order me=mi, yields the low-be FP equations for the
parallel magnetic perturbation Z and for the poloidal flux
function A. We observe that the terms of order me=mi retained
in the four-field gyrofluid model are neglected in most models.
We remark that discarding them, as in the FP model, seems,
however, not to affect important properties, such as the exis-
tence of a Hamiltonian structure for the model.

B. Large ion Larmor radius limit

For the opposite limit of very large ion Larmor radius
(qi ! þ1), we can deduce some information, about the as-
ymptotic behavior, from the linear quasi-neutrality condition
(7) and the parallel current density expression (8).

If we assume that the fields do not diverge as qi ! þ1
(an assumption that we verify a posteriori from the simula-
tions), then we can make use of the Ansatz

ne ¼ ne0 þ ene1 þ ) ) ) ;
ni ¼ ni0 þ eni1 þ ) ) ) ;
/ ¼ /0 þ e/1 þ ) ) ) ;

(17)

where e ¼ 1=q2i . At the leading order for e ! 0, from
Eq. (7), using the Padé approximation, we have

r4ne0 ¼ 0: (18)

For our simulations, we assume periodic fields vanishing at
the boundaries. Applying these conditions to Eq. (18)
implies ne0 ¼ 0. At the next order, we then have

r4

2
ne1 ¼ (r2ni0 (

r4

2
/0: (19)

042103-3 Comisso et al. Phys. Plasmas 19, 042103 (2012)

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



In particular, if the contribution of ni in the quasi-neutrality
relation is negligible, this implies, at the leading order, the
relation

/ , (q2i ne: (20)

By a similar argument, from the Padé approximant expres-
sion of the gyro-average operator, one obtains

U , ( 2

q2i
r(2/: (21)

Because of the presence of the inverse Laplacian operator,
Eq. (21) shows that the gyro-averaged potential U is charac-
terized by larger scales, compared to those of /. Concerning
the parallel current density, one has, analogously, the follow-
ing relation at the leading order:

r2A , ue; (22)

stating that the parallel current density is brought mainly by
the parallel electron velocity.

III. ANALYSIS OF THE FIELD STRUCTURES

We solve the system of equations (2)–(5) using a pseu-
dospectral method on a domain fðx; yÞ : (p - x < p;
(2p - y < 2pg, with a grid of 1024* 128 points and
imposing double periodic boundary conditions. We consider
an initial equilibrium specified by

nieqðxÞ ¼ neq; neeqðxÞ ¼ neq; AeqðxÞ ¼
X11

n¼(11

ane
inx; (23)

where neq represent a uniform, nondrifting background den-
sity, and an are the Fourier coefficients of the function f ðxÞ
¼ 0:1=cosh2 x. An initial perturbation

~ni ¼ ~ni0 cosðxþ y=2Þ ( cosðx( y=2Þð Þ (24)

is added to the ion guiding center density field. The field / is
perturbed accordingly (see Eq. (7)), in such a way that the
initial perturbation on ne is zero. We present simulations
with de ¼ 0:2; di ¼ 2 and qs ¼ 0:4, whereas qi is varied in
order to investigate ion gyration effects. The corresponding
equilibrium is tearing unstable with linear stability parame-

ter23 D0 ¼ 59:9. In the regime of parameters that we study,

corresponding to D0de + min 1; de=qsð Þ1=3
h i

, with

qs ¼ q2i þ q2s
& '1=2

, we find that our results are in agreement

with the asymptotic formula cL . 0:2ky 2deq2s=p
& '1=3

for the

linear growth rate,24 where ky ¼ m2p=Ly is the wave vector,
with m integer wave number and Ly length of the domain
along the y direction.

In order to facilitate the comparison between simula-
tions obtained varying qi, we show in Fig. 1 the reconnected
flux ln dAXj j as a function of the normalized time cLt, for dif-
ferent values of qi, where the initial transient was not consid-
ered. In doing so, the nonlinear phase begins at the same
normalized time, and we can compare the structures of the

fields at the same level of reconnected flux, which indicates
that the corresponding magnetic islands have reached the
same growth level. From this figure, we also see that the
super-exponential phase, a well-known characteristic of
the collisionless regime,12,27–34 becomes more and more
evident increasing qi.

A. Island shape

As a first remark about the role of FLR effects on the
field structures, we discuss their influence on the magnetic
island shape. Ion gyration indeed modifies the distribution of
the parallel current density j ¼ (r2A inside the island sepa-
ratrix, which in turn is linked with the shape of the flux surfa-
ces. We note that this is a non-constant-A effect. Indeed,
when A is treated as a constant in x over the region between
the separatrices, the island shape is immutable.

Here, we compare two magnetic islands that differ in the
ion Larmor radius, one with cold ions and the other with large
qi. Figs. 2(a) and 2(b) show their shape at the beginning of the
super-exponential growth, when the reconnected flux is the
same for both cases (ln dAXj j . (4:2). At this stage of the
island evolution, the differences in the magnetic island shape
start to become particularly evident, since in the super-
exponential phase the island size goes from microscopic to
macroscopic. The angle between the y-axis and the island sep-
aratrix through the X-point is greater in the hot ion case. On
the other hand, the island width is greater in the cold ion limit.
However, as a result of the different shape of the separatrix,
the area of the island is about the same for cold and hot ions.
This difference in the shape of the islands reflects the different
distribution of the spectral power of the perturbed magnetic
flux dAmj j at x¼ 0. While the modes 0 and 1 are higher for
the cold ion limit, other significant modes shown in Figs. 2(e)
and 2(f) are much more relevant in the hot ion case.

In Ref. 35 it was shown, in the framework of low-b
reduced resistive MHD, that for thin m¼ 1 magnetic islands,
the width of the separatrix is given by the Abel transform of
the inverse parallel current density. Following this approach,
although in a numerical, rather than analytical framework,

FIG. 1. Growth rate of the reconnected flux: ln dAj j evaluated at the X-point
as a function of the normalized time cLt, for different values of qi.
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we calculate the integral of the parallel current density in the
x direction between the magnetic island separatrix

Iys ¼ (
ðxs

(xs

dxr2A; (25)

where xs is the x coordinate of the island separatrix. The pro-
file of the normalized quantity Iys=max Iys

& '
as a function of y

shown in Figs. 2(c) and 2(d) exhibits a flattening along most
of the neutral line for qi ¼ 0:8. This reflects the fact that the
thickness of the island varies little along most of the y-axis.

B. Parallel velocities and current density

Figs. 3(a) and 3(b) show contour plots of ui, for
qi ¼ 10(4 and qi ¼ 0:8 at the normalized time cLt ¼ 5:5. In

the first case, the maximum gradients of ui are narrowed
aligned along the neutral line, whereas they become broader
increasing qi. Moreover, for the cold ion case, these bar-
shaped velocity layers extend deeper into the magnetic
island. Their thickness dui can be evaluated from the profile
of ui=maxðuiÞ as a function of x through the island X-point,
shown in Fig. 3(c). The profiles suggest the following scaling
relation:

dui , qi (26)

that can be useful when evaluating the ion velocity shear
across the neutral line.

Unlike what happens for ions, no bar-shaped layers
along neutral line are present in the electron velocity field,
regardless the value of qi. Moreover, the electron velocity is
largest at the magnetic island separatrix for both cold and
hot ion cases. However, in the hot ion regime, narrow struc-
tures are present also in the island core, as shown in the con-
tour plots of Fig. 4, and even better in the profiles of ue as a
function of x, evaluated through the island O-point
(Figs. 4(c) and 4(d)). Note that the gradients near the separa-
trix at y¼ 0 are slightly different for qi ¼ 10(4 and qi ¼ 0:8.
On the contrary, the velocity gradients are strongly attenu-
ated approaching the X-point for the hot ion case, as it can
be appreciated by looking at the profiles of ue as a function
of x, evaluated through the island X-point (Figs. 4(e) and
4(f)).

The structures in the parallel velocity fields are helpful
in understanding the behavior of the parallel current density
at the X-point, which we denote with jX. We observe that the
evolution of jX is characterized by much lower values in the
hot ion regime with respect to the cold ion case. Fig. 5(top),
where the perturbed current density at the X-point, djX, is
plotted as a function of the normalized time cLt, illustrates
that its maximum value decreases significantly when qi
increases. The sharp gradients (cusp-like profiles) distinctive
of collisionless reconnection29,31,36–39 remain confined in the
narrow electron layer d , de, as shown in Fig. 5(bottom).
For the various qi-regimes, we observe that the influence of
ui on jX is modest. In the cold ion limit, this had been already
observed in Ref. 40. In order to obtain a substantial contribu-
tion of ui in the reconnection process, it would be required to
consider large values of be not belonging to the regime of va-
lidity of this model and also not relevant, for instance, for
tokamak applications.

C. Ion guiding center and electron densities

The presence of compressible ion flow results in a non-
trivial evolution of the ion guiding center density in compari-
son to what is observed in the three-field model.15 Indeed,
from Fig. 6(a), one observes that ni develops two layers anti-
symmetric with respect to x¼ 0 and with strong gradients
along the x direction. These layers form as a consequence of
the four-cell pattern characterizing the stream function U at
qi ¼ 0. When ion temperature is increased, such gradients
tends to flatten (Fig. 6(b)), similarly to what we have seen
about the parallel velocity of the ion guiding centers. Again,

FIG. 2. Plots of the left (right) column refer to qi ¼ 10(4 (qi ¼ 0:8). First
row: contour plots of A, where the magnetic island separatrix at the corre-
sponding time have been superimposed (red dashed line). Second row: pro-
files of Iys=max Iys

& '
, where Iys ¼

Ð xs
(xs

dxj. Third row: perturbed magnetic
flux spectrum for the first 8 modes at x¼ 0. The times at which the plots
refer to are cLt ¼ 2:8 for qi ¼ 10(4 and cLt ¼ 2:5 for qi ¼ 0:8. At these nor-
malized times ln dAXj j . (4:2 for both cases.
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the profiles of ni as a function of x, shown in Fig. 6(c), for
different values of qi, help to evaluate this behavior.

We remark that because of the analogy described in Sec.
II A, for qi ¼ 10(4 the field ni plays a role analogous to that
of the generalized vorticity

x ¼ r2/þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ be=2
be=2

s
di

d2i þ d2e
Z (27)

of the FP model. Such generalized vorticity was indeed
observed to develop sheets aligned with the neutral line and
with strong transverse gradients, which could lead to a
Kelvin-Helmholtz instability for sufficiently high be.

41–44

Note also the analogy between the definition of x in Eq. (27)
and the quasi-neutrality condition (13), from which we can
make the identification ni ! (x.

The evolution of ne and its dependence on qi (shown in
Figs. 6(d)–6(f)) do not differ much from that of the 3-field

FIG. 3. Contour plots of ui for
qi ¼ 10(4 (a) and for qi ¼ 0:8 (b). The
magnetic island separatrix at the corre-
sponding time have been superimposed
(white line). Profiles of ui=maxðuiÞ as a
function of x, evaluated at y ¼ (2p
(through the island X-point), for differ-
ent values of qi (c). At the time which
the plots refer to (cLt ¼ 5:5), the corre-
sponding magnetic islands have reached
the same growth level.

FIG. 4. Contour plots and profiles of ue
as a function of x, evaluated at y¼ 0 and
y ¼ (2p, at cLt ¼ 5:5. The ion Larmor
radius is qi ¼ 10(4 (top row) and
qi ¼ 0:8 (bottom row). Contour plot of
the magnetic island separatrix at the cor-
responding time have been superimposed
(white line).
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gyrofluid model investigated in Ref. 15. This can be inter-
preted in terms of the behavior of two Lagrangian invariants
which we will review in Sec. IV.

We remark that although ni has a non-trivial evolution,
due to the effect of parallel compressibility, its contribution
in the quasi-neutrality relation is less relevant than that of ne,
except for a thin region around the neutral line (see Fig. 6).

IV. MODEL INVARIANTS

The system of gyrofluid equations (2)–(5) can be cast
into noncanonical Hamiltonian form,17 and its equations can
be written in terms of four topological invariants, defined as

I6 ¼ D6diqini; G6 ¼ F6deqsne: (28)

Indeed, using I6 and G6 as field variables, the gyrofluid sys-
tem can be written in the following form of advection
equations:

@I6
@t

þ ½U6; I6' ¼ 0; (29)

@G6

@t
þ ½/6;G6' ¼ 0; (30)

where

U6 ¼ U/ qi
di
A; /6 ¼ /6

qs
de

A (31)

are stream functions of the velocity fields !v6 ¼ ẑ*rU6

and v6 ¼ ẑ*r/6 that convect the fields I6 and G6,
respectively.

The invariants G6 and their stream functions /6 were
already present in simpler Hamiltonian models for reconnec-
tion, and their dynamics has been extensively studied in
Refs. 15, 25, 26, 33, and 43. The role of I6 and U6, on the
other hand, is presented here for the first time.

A. Origin of the topological invariants of the system

The introduction of the parallel ion flow, with respect
to the three-field gyrofluid model of Ref. 14, “symmetrizes”
the treatment of the electron and ion dynamics. This sym-
metry appears evident already in the model equations
(2)–(5) and occurs also in the symmetric form of the
Lagrangian invariants (28) and of the corresponding stream
functions (31). For the electron dynamics, the origin of
such stream functions, at the kinetic level, has been investi-
gated in Ref. 45, where the three-field model of Ref. 46 has
been extended to account for a kinetic electron response,
and in Refs. 47–49, where the analogy between the tempo-
ral evolution of the invariants Gþ and G( and that of the
drift-kinetic distribution function of the electrons at fixed
canonical momentum has been pointed out. More recently,
the relation of such invariants in the context of a different
hybrid fluid-kinetic model has also been discussed.50 Due
to the aforementioned symmetry, there exist analogous
reminiscences of the Lagrangian invariants I6 and of the
stream functions U6 at the gyrokinetic level. By following
a procedure analogous to that of Refs. 45, 47–50, we can
obtain information about the origin of I6 and U6 from ion
gyrokinetic equations.

We consider the ion gyrokinetic equation that Snyder and
Hammett9 used as starting point for the derivation of their
gyrofluid model and specify it to the hypotheses of our four-
field model (which is indeed a truncation of the model of
Ref. 9). This means that we assume a gyrokinetic distribution
function independent of z, a uniform equilibrium magnetic
field directed along ẑ, and no collisions. With these hypothe-
ses, the ion gyrokinetic equation (derived from Eq. (11) of
Ref. 9), in our normalization, reads

@F
@t

þ½h/i(vkhAi;F '( 1

di

@hAi
@t

þ½h/i;hAi'
! "

@F
@vk

¼0;

(32)

where F ðx; y; vk; t; lÞ is the gyrokinetic distribution function,
vk the parallel velocity coordinate, and l the magnetic
moment which is constant in the lowest order dynamics and,
therefore, appears as a parameter. The brackets hi indicate
the action of the gyroaverage operator, which, in Fourier
space, corresponds to J0ð

ffiffiffiffiffiffi
2l

p
k=xciÞ.

Equation (32) appears formally the same as the electron
kinetic equation of Ref. 45, provided one replaces the

FIG. 5. Time evolution of dj ¼ j( jeq evaluated at the X-point, for different
values of qi (top). Profiles of j ¼ (r2A as a function of x, evaluated at
y ¼ (2p (through the island X-point), for different values of qi (bottom), at
cLt ¼ 5:5.
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electrostatic and magnetic potential with their gyroaveraged
counterparts. Consequently, Eq. (32) can be cast in the
Lagrangian conservative form

@F
@t

þ ½u;F ' ¼ 0; (33)

where F ðx; y; p; t; lÞ ¼ F ðx; y; vk; t; lÞ is the distribution

function in terms of the canonical momentum divided by the
ion mass, whose expression reads p ¼ vk ( hAi=di. On the

other hand, u ¼ h/i( phAi(h Ai2=ð2diÞ is a generalized
stream function. As pointed out in Refs. 47–49, this form of
the kinetic equations puts in evidence the existence, in the
(gyro)kinetic description, of infinite Lagrangian invariants,
labelled by constant values of p, each of which is advected
by its own stream function. Such invariants take the place of
the invariants I6 of the gyrofluid model.

Consistently with the derivation by Snyder and Hammett,
we write the distribution function as F ¼ F0 þ f , where

F0ðvk; lÞ ¼
!n0

ð2pÞ3=2v2ti
e
(v2k=2v

2
ti(l=v2ti (34)

is a Maxwellian equilibrium distribution function, with
vti ¼ qi=di and !n0 indicating the normalized ion thermal
speed and background density, respectively. f ðx; y; vk; t; lÞ,
on the other hand, is the perturbation. We remark that, due to
our hypotheses, the time-independent part of the perturba-
tion, which is required in the general gyrofluid model, is
absent here. Applying the ordering of the gyrofluid model to
Eq. (32), one finds the following governing equation for f:

@

@t
f þ 1

di

vk
v2ti

F0hAi
! "

þ h/i( vkhAi; f þ
1

di

vk
v2ti

F0hAi
* +

¼ 0:

(35)

This equation still retains the form of an advection
equation for an infinity of Lagrangian invariants
f þ ð1=diÞðvk=v2tiÞF0hAi labelled by the value of the parallel
velocity and of the magnetic moment. Remark that the
advecting stream functions correspond namely to U6, when
vk ¼ 6vti and h/i and hAi are replaced by U and A, respec-
tively. Therefore, the gyrokinetic origin of U6 can be traced
back to the stream function h/i( vkhAi, which reflects the
motion of gyrocenters due to the gyroaveraged E* B flow,
as well as their free streaming along the gyroaveraged mag-
netic field. The reason why the values vk ¼ 6vti are those
selected in the four-field gyrofluid model must be a conse-
quence of the isothermal closure. Indeed, Eqs. (2)–(3) are
obtained from the first two moments of Eq. (35) imposing
pk ¼ sni, where pk is the parallel pressure. This condition
translates into

ð
dvkdlv

2
kf ¼

ð
dvkdlv

2
tif : (36)

Such closure can be formally obtained by a distribution func-
tion of the form

f ðx; y; vk; t; lÞ ¼ fþðx; y; t; lÞdðvk ( vtiÞ

( f(ðx; y; t; lÞdðvk þ vtiÞ: (37)

From Eq. (37), it is clear how the values vk ¼ 6vti are
selected in the isothermal closure.

B. Role of the topological invariants of the system

Equations (29) and (30) tell us that the topology of the
fields I6 and G6 is preserved during the evolution of the sys-
tem. These conservation laws set a substantial constraint on
the dynamics of the collisionless magnetic reconnection, and

FIG. 6. Contour plots of ni for
qi ¼ 10(4 (a) and qi ¼ 0:8 (b), and pro-
files of ni as a function of x, evaluated at
y ¼ p, for different values of qi (c).
Contour plots of ne for qi ¼ 10(4 (d)
and qi ¼ 0:8 (e), and profiles of ne as a
function of y, evaluated at x ¼ p=3, for
different values of qi (f). Contour plot of
the magnetic island separatrix at the cor-
responding time have been superim-
posed (white line). The plots refer to the
normalized time cLt ¼ 5:5.
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they provide a framework for interpreting the spatial struc-
tures of the original fields of the model.

Considering Eqs. (29), we note that since the stream
functions U6 correspond to velocity fields v6 that rotate in
opposite directions, the fields I6, advected by such velocity
fields, get then stretched accordingly. Indeed, from Fig. 7,
we see that the initial topology of the contour lines of Iþ is
preserved (the same happens for I(, not shown here), while
they are stretched, similarly to what was first observed for
the invariants G6 (Refs. 25, 26, and 33).

From the relations

Aþ d2i ui ¼
Iþ þ I(

2
; diqini ¼

Iþ ( I(
2

; (38)

we can deduce that the stretching process reflects also on the
fields ni and D ¼ Aþ d2i ui, which tend to exhibit structures
that become thinner with time. Because A ¼r (2C1=2

0 ue
(r(2C0ui, we also infer that A will have in general
“smoother” gradients, compared to ui.

For qi ! 0, we obtain I6 ! D and U6 ! /, and thus,
the stretching in opposite directions of Iþ and I( does not
occur because the magnetic contribution qiA=di to the velocity
fields v6 gets suppressed. This can be seen from Fig. 8 when
comparing the contour plots of Iþ for different values of qi.

In the cold ion limit, because of the Lagrangian conser-
vation of D, the ion guiding center velocity that develop near
the X-point is advected by / along the neutral line, leading
to the formation of bar-shaped layers, as shown in Fig. 3(a).
Furthermore, from Fig. 8, we note the broadening of the con-
tour lines of I6 near the X-point for large qi, which reflects
on the scaling relation for the width dui .

The evolution of the invariants G6 and their dependence
on qi do not differ much from those of the three-field gyro-
model,15 and they typically undergo phase mixing. This
reflects on the structures of ne and F ¼ A( d2eue by virtue of
the following relations:

A( d2eue ¼
Gþ þ G(

2
; deqsne ¼

Gþ ( G(

2
: (39)

The phase-mixing picture is valid for both cold and hot ion
regimes. However, as already observed in the three-field
model of Ref. 15, increasing ion temperature results in
smoother gradients of G6 inside the island (Fig. 9), leading

to a more uniform electron density in the island core, as
shown in Figs. 6(d)–6(f).

We note that, since the rotation of !v6 and v6 depends
on the electric charge of ions and electrons, then the fields I6
rotate in opposite directions with respect to G6, as we may
notice by comparing Figs. 8 and 9.

For qi ’ qs, due to the small electron/ion mass ratio, the
magnetic component present in the stream functions U6,
which is inversely proportional to di, gives a smaller contribu-
tion with respect to the magnetic component in /6, which is
inversely proportional to de. Consequently, in general, the
structures of U6 remain closer to those of U, whereas the
structures of /6 are greatly influenced by the magnetic island
shape, coming from the contribution due to A. This reflects, of
course, on the different ways in which I6 and G6 get

FIG. 7. Contour plots of Iþ for qi ¼ 0:4 at cLt ¼ 2 (a), cLt ¼ 3:5 (b), cLt ¼ 5 (c), cLt ¼ 6:5 (d). The magnetic island separatrix at the corresponding time have
been superimposed (red dashed line).

FIG. 8. Contour plots of Iþ for qi ¼ 10(4 (a) and qi ¼ 0:8 (b). Contour
plots of Uþ for qi ¼ 10(4 (c) and qi ¼ 0:8 (d). The magnetic island separa-
trix at the corresponding time have been superimposed (red dashed line).
The plots refer to the normalized time cLt ¼ 5:5.
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advected by the corresponding stream functions. We remark
that, in the parent gyro (drift)-kinetic models, a similar feature
concerns the terms quadratic in AðAÞ in the stream functions
that advect the gyro (drift)-kinetic distribution functions at
fixed canonical momentum (consider, for instance, the expres-
sion for u in Eq. (33) for the gyrokinetic case).

V. ANALYSIS OF THE ENERGY EVOLUTION

One of the fundamental characteristics of magnetic
reconnection is the rapid conversion of magnetic energy into
thermal, kinetic, and fast particle energy. Hence, it is impor-
tant to examine how the initial free energy is released into
the different channels. Here, we exclude considerations on
the particle acceleration problem, since we are dealing with
a purely fluid description of the plasma.

The total energy of the four-field gyrofluid model corre-
sponds to the following Hamiltonian functional:

H¼1

2

ð
d2xðsq2s n

2
i þq2s n

2
eþd2i u

2
i þd2eu

2
eþ jrAj2þUni(/neÞ:

(40)

The terms in Eq. (40) represent, respectively, the ion and elec-
tron thermal energies (Ethi and Ethe), the parallel ion and electron
kinetic energies (Eki and Eke), the magnetic energy (EB) and the
electrostatic energy of the ions (Eeli ) and electrons (Eele ).

From Fig. 10, we can see that only a small amount of the
total energy (less than 1.5%) is dissipated numerically at the
end of the simulations. In particular, the decrease rate of the
total energy is much less than that of the magnetic energy.

This indicates that the magnetic energy decline is due to a
transformation (in principle reversible) into other forms of
energy and not to numerical dissipation of the total energy.

We first observe that the amount of EB converted into
other forms of energy during the reconnection process is
about the same for qi ¼ 10(4 and qi ¼ 0:8. However, the
way in which this energy is transformed is quite different in
the two cases. In the cold ion regime, the reconnection pro-
cess converts EB initially mainly into Ethe . For cLt > 4, the
increase in Eele prevails and it eventually remains compara-
ble to that of Ethe . On the other hand, in the hot ion regime,
EB is transformed mainly into Eele . Since we have seen
from Fig. 6 that, in the hot ion regime, the fluctuations of
ne have lower amplitude, it is expected that dEthe;qi¼0:8

<dEthe;qi¼10(4 .
Then, we compare the following approximate expres-

sions obtained for Eele using the quasi-neutrality condition
(13) in the cold ion limit:

qi ! 0 ) Eele . ( 1

2

ð
d2xner(2ne: (41)

FIG. 9. Contour plots of Gþ for qi ¼ 10(4 (a) and qi ¼ 0:8 (b). Contour
plots of /þ for qi ¼ 10(4 (c) and qi ¼ 0:8 (d). The magnetic island separa-
trix at the corresponding time have been superimposed (red dashed line).
The plots refer to the normalized time cLt ¼ 5:5.

FIG. 10. Time variations of the energy components with respect to their ini-
tial value, expressed as dEi cLtð Þ=Etot 0ð Þ, for qi ¼ 10(4 (top) and qi ¼ 0:8
(bottom).

042103-10 Comisso et al. Phys. Plasmas 19, 042103 (2012)

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



The contribution of ni is neglected since we observed that
ne + ni. In the opposite limit qi ! 1, the relation (20)
approximately holds (for our simulations even the largest
value of qi is smaller than 1, but because qi is always multi-
plied times differential operators, this behaviour is observed
when the small scales of the strong nonlinear phase are
formed). Therefore, we have

qi ! 1 ) Eele .
1

2

ð
d2xq2i n

2
e ; (42)

where, also in this case, we assumed ni ! ne. The smaller
scale structures of the electron density in the cold ion limit
reflect on the spectral distribution, which is concentrated in
higher wave vectors than in the hot ion regime. Due to
the presence of the operator r(2 in (41), this leads to
dEele;qi¼0:8 > dEele;qi¼10(4 , in spite of the larger amplitude of
ne for cold ions.

The relatively small fraction of energy going into Eki in
both cases reflects the relatively small amplitude of the fluc-
tuations of ui. Analogously, dEthi grows little even for large
qi, due to the modest amplitude of the fluctuations in ni.

VI. CONCLUSIONS

We investigated plasma and magnetic dynamics by
means of a gyrofluid model which allows for magnetic
reconnection mediated by electron inertia. Unlike its closest
predecessor, the three-field gyrofluid model of Refs. 14 and
15, the system studied here, accounts also for parallel ion
guiding center flow. The presence of such flow, in turn,
drives the evolution of the ion guiding center density, which
was purely advected in the three-field model. Our analysis
reveals that, in the cold ion limit, ni and ui develop thin
layers, with opposite parities with respect to the x¼ 0 axis.
An analogous feature was observed in the parallel flow and
generalized vorticity, respectively, of the Fitzpatrick-Porcelli
model, to which the present gyrofluid model can be mapped
in the limit be ! 1; qi ! 0; de=di ! 0. Adding ion temper-
ature effects results in a broadening of these layers.

Due to the low-b limitation of the gyrofluid model, how-
ever, we observed that the amplitudes of the fluctuations in
ui and ni remain small, when compared to those of ne and ue.
The dynamics of the latter quantities, indeed, does not differ
much from that observed in the three-field model.

The cusp-like profiles of the parallel current density at
the X-point, a well known characteristic of collisionless
reconnection, have been observed to decrease their ampli-
tude when qi increases.

Concerning the magnetic dynamics, we observed that
ion temperature modifies the island shape by increasing the
angle between the separatrix and the y axis and yielding
more elongated islands. The spectrum of the magnetic flux
function suggests that this could be due to higher-m modes
becoming relevant in the hot ion regime.

The structures in the density and velocity fields have
been interpreted in terms of the invariants I6 and G6. Here,
the main novelty resides in the difference between the behav-
ior of I6 and G6, due to the small mass ratio and the opposite

charge of electrons and ions. Indeed, the fields !v6 are much
less affected by the contribution of the magnetic potential and
consequently advect I6 differently than the way v6 advect
G6. This explains the qualitatively different structures form-
ing in electron and ion-related fields.

Finally, similarly to G6 and v6, also I6 and !v6 have
been shown to possess counterparts at the gyrokinetic level.
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