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1. Introduction

From the early work of Lagrange [1] it became clear that ideal
fluid systems possess the canonical Hamiltonian form when one
adopts a fluid element description, the so-called Lagrangian vari-
able description. Because the Lagrangian description is particle-like
in nature, it is amenable to action functional and Hamiltonian
formulations. However, when Eulerian variables are incorporated
the canonical Hamiltonian structure for all ideal kinetic and fluid
theories is altered because the transformation from Lagrangian to
Eulerian variables is not canonical. This results in a Hamiltonian
theory in terms of noncanonical Poisson brackets (see, e.g., [2–7]
for review).

The present Letter concerns the proper treatment of the in-
compressibility constraint of fluid mechanics in the context of
the Eulerian Hamiltonian theory in terms of noncanonical Poisson
brackets. We do this by applying Dirac’s method for incorporating
constraints in Hamiltonian theories, a central element of which is
a Dirac bracket. In the past, researchers have used Dirac brackets
for various reasons in fluid mechanics [6,8–12], but the first works
to use it to explicitly enforce the incompressibility constraint for
Euler’s equation in three dimensions appear to be Refs. [13–15].
Here we first extend the work of these authors by constructing
the Dirac bracket for the ideal fluid with the inclusion of entropy
advection, which allows for the inclusion of any advected quantity
like salt concentration in the ocean. This generalization reveals that
Dirac brackets of the kind considered in Refs. [13–15], as well as
our generalization, can be written in a considerably simplified and
perspicuous form in terms of the projection operator that takes
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a general vector field to a solenoidal one. With this realization we
then construct the Dirac bracket for incompressible magnetohydro-
dynamics (MHD), thereby making clear its Hamiltonian structure.
We present these results together by starting from the full com-
pressible ideal MHD equations,

v̇ = −v · ∇v − ρ−1∇
(
ρ2 ∂U

∂ρ

)
+ ρ−1(∇ × B) × B, (1)

ρ̇ = −∇ · (ρv), (2)

Ḃ = ∇ × (v× B), (3)

ṡ = −v · ∇s, (4)

where v(x, t) is the velocity field, ρ(x, t) is the mass density,
B(x, t) is the magnetic field, and s(x, t) is the entropy per unit
mass. The function U (ρ, s) is the internal energy from which the
pressure P = ρ2∂U/∂ρ and temperature T = ∂U/∂s are derived.
All of these dynamical variables are functions of x ∈ U ⊂ R3 as
well as time. We suppose boundary conditions are such that no
surface terms appear in subsequent calculations which, e.g., would
be the case on a periodic box or all space. The observables of the
MHD system are functionals of these fields, denoted generically by
F [ρ,v,B, s]. In terms of these variables, this system has the fol-
lowing Hamiltonian (energy):

H[ρ,v,B, s] =
∫

d3x
(
1
2
ρv2 + ρU (ρ, s) + B2

2

)
, (5)

where v2 = |v|2 and B2 = |B|2. With the MHD noncanonical Pois-
son bracket of Refs. [2,16]

{F ,G} = −
∫

d3x
(
Fρ∇ · Gv + Fv · ∇Gρ

− ρ−1(∇ × v) · (Fv × Gv) + ρ−1∇s · (FsGv − FvGs)
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+
(
ρ−1Fv · [∇GB] − ρ−1Gv · [∇ FB]

)
· B

+ B ·
([

∇
(
ρ−1Fv

)]
· GB −

[
∇

(
ρ−1Gv

)]
· FB

))
, (6)

where Fv denotes the functional derivative of F with respect to
v, i.e. Fv = δF/δv, and the same holds for Fs , FB and Fρ . Here
the notation a · [M] · b = b · (a · [M]) is a scalar explicitly given by
aiMijb j (with repeated indices summed) for any vectors a and b
and any matrix (or dyad) [M]. The bracket (6) with Hamiltonian (5)
gives the MHD equations (1)–(4) in the form Ḟ = {F , H} (assuming
∇ · B = 0).

The Letter is organized as follows: In Section 2 we review
Dirac’s formalism for constrained Hamiltonian systems. Then, in
Section 3 this theory is used to obtain the noncanonical Poisson–
Dirac bracket for the incompressible ideal MHD equations includ-
ing entropy advection. Here we impose a primary constraint that
is a constant and uniform density and the rest follows from Dirac’s
algorithm. In particular, it is seen that the corresponding secondary
constraint is that the velocity field be solenoidal. We verify that
the Poisson–Dirac bracket indeed produces the correct equations
of motion. This is followed in Section 4 by a detailed comparison
to previous attempts at incorporating incompressibility in Hamil-
tonian formulations of incompressible ideal fluids. Finally, in Sec-
tion 5, we summarize and conclude. The Letter also has several
appendices that address various issues that arise in the text.

2. Dirac brackets

As stated above, Dirac’s theory is used for the derivation of the
Hamiltonian structure of Hamiltonian systems subjected to con-
straints. Dirac constructed his theory in terms of canonical Poisson
brackets and detailed expositions of his theory can be found in
Refs. [5,17–20]. However, it is not difficult to show that his pro-
cedure also works for noncanonical Poisson brackets (cf., e.g., an
Appendix of Ref. [10]). In this section, we recall a few basic facts
about Dirac brackets in infinite dimensions in the context of non-
canonical Poisson brackets.

If we impose K local constraints Φα(x) = 0 for α = 1, . . . , K on
a Hamiltonian system with a Hamiltonian H and a Poisson bracket
{·,·}, the Dirac bracket is obtained from the matrix C defined by
the Poisson brackets between the constraints,

Cαβ

(
x,x′) =

{
Φα(x),Φβ

(
x′)},

where we note that Cαβ(x,x′) = −Cβα(x′,x). If C has an inverse,
then the Dirac bracket is defined as follows:

{F ,G}∗ = {F ,G}
−

∫
d3x

∫
d3x′ {F ,Φα(x)

}
C−1

αβ

(
x,x′){Φβ

(
x′),G

}
, (7)

where the coefficients C−1
αβ (x,x′) satisfy

∫
d3x′ C−1

αβ

(
x,x′)Cβγ

(
x′,x′′)

=
∫

d3x′ Cαβ

(
x,x′)C−1

βγ

(
x′,x′′) = δαγ δ

(
x− x′′),

which implies C−1
αβ (x,x′) = −C−1

βα (x′,x).

This procedure is effective only when the coefficients C−1
αβ (x,x′)

can be found. If C is not invertible, then one needs, in general, sec-
ondary constraints to determine the Dirac bracket. The secondary
constraint is given by the consistency equation which states that
Φ̇1(x) = 0 for the Hamiltonian H +

∫
d3xu(x)Φ1(x) (where u(x)

are Lagrange multipliers). This translates into
∫

d3x
{
Φ1(x), H

}
µ(x) ≈ 0, (8)

for all functions µ such that
∫

d3xµ(x)C
(
x,x′) = 0.

Here the weak equality ≈ stands for an equality on the manifold
defined by Φ1(x) = 0. Eq. (8) gives the expression which has to be
satisfied by the secondary constraint.

3. Dirac bracket for ideal incompressible MHD

To construct the Hamiltonian theory of ideal incompressible
MHD, the first (primary) constraint is chosen to be a constant and
uniform density ρ0, i.e.

Φ1(x) = ρ(x) − ρ0.

However, the Dirac procedure can be performed for the case of
a nonuniform background density (see Appendix A). Given that
C11(x,x′) = 0, at least one secondary constraint is needed. This
secondary constraint, denoted Φ2(x), is given by {Φ1(x), H} = 0.
Since Φ̇1 = {Φ1(x), H} = −∇ · (ρv), a compatible secondary con-
straint is

Φ2(x) = ∇ · v,
since ρ is uniform and constant on the surface defined by the pri-
mary constraint. From the Poisson bracket (6), we compute the
elements Cαβ(x,x′) as

C11
(
x,x′) = 0,

C12
(
x,x′) = (δ

(
x− x′),

C21
(
x,x′) = −(δ

(
x− x′),

C22
(
x,x′) = ∇ ·

(
ρ−1(∇ × v) × ∇δ

(
x− x′)).

From these expressions, we obtain the coefficients C−1
αβ (x,x′) as

C−1
11

(
x,x′) = (−1∇ ·

(
ρ−1(∇ × v) × ∇(−1δ

(
x− x′)),

C−1
12

(
x,x′) = −(−1δ

(
x− x′),

C−1
21

(
x,x′) = (−1δ

(
x− x′),

C−1
22

(
x,x′) = 0,

where (−1 acts on a function f as (−1 f (x) = −(4π)−1 ∫
d3x′ ×

f (x′)/|x− x′|. Given the following expressions

{
Φ1(x),G

}
= −∇ · Gv,

{
Φ2(x),G

}
= −(Gρ − ∇ ·

(
ρ−1(∇ × v) × Gv

)
+ ∇ ·

(
ρ−1∇sGs

)

− ∇ ·
(
ρ−1[∇GB] · B

)
+ ∇ ·

(
ρ−1∇ · [BGB]

)
,

we deduce various contributions to the Dirac bracket (7):
∫ ∫

d3xd3x′ {F ,Φ1(x)
}
C−1
11

(
x,x′){Φ1

(
x′),G

}

= −
∫

d3x∇ · Fv(−1∇ ·
(
ρ−1(∇ × v) × ∇(−1∇ · Gv

)
,

∫ ∫
d3xd3x′ {F ,Φ1(x)

}
C−1
12

(
x,x′){Φ2

(
x′),G

}

=
∫

d3x∇ · Fv
(
Gρ + (−1∇ ·

(
ρ−1(∇ × v) × Gv

)

− (−1∇ ·
(
ρ−1∇sGs

)
+ (−1∇ ·

(
ρ−1[∇GB] · B

)

− (−1∇ ·
(
ρ−1∇ · [BGB]

))
,
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∫ ∫
d3xd3x′ {F ,Φ2(x)

}
C−1
21

(
x,x′){Φ1

(
x′),G

}

= −
∫

d3x
(
Fρ + (−1∇ ·

(
ρ−1(∇ × v) × Fv

)

− (−1∇ ·
(
ρ−1∇sFs

)
+ (−1∇ ·

(
ρ−1[∇ FB] · B

)

− (−1∇ ·
(
ρ−1∇ · [BFB]

))
∇ · Gv.

From the contributions associated with C−1
12 and C−1

21 , we no-
tice that the part −

∫
d3x (Fρ∇ · Gv + Fv · ∇Gρ) of the Poisson

bracket (6) vanishes. We also notice that the terms in the Dirac
bracket only involve

Ḡv := Gv − ∇(−1∇ · Gv =: P · Gv. (9)

Two equivalent expressions for P acting on a vector a are P · a =
a− ∇(−1∇ · a = −∇ × (∇ × (−1a). The linear projection operator
P acting on vectors is symmetrical, in the sense that
∫

d3xa · P · b =
∫

d3xb · P · a,

for any vector fields a(x) and b(x). In addition, it satisfies the fol-
lowing properties:

P2 = P, P · ∇ = 0, P · ∇× = ∇×,

∇ × P = ∇×, ∇ · P = 0.

As a consequence, we notice that the functional derivatives Ḡv are
divergence-free, i.e. ∇ · Ḡv = 0. In terms of Ḡv given by Eq. (9) the
Dirac bracket is written in the following compact form:

{F ,G}∗ =
∫

d3x
(
ρ−1(∇ × v) · ( F̄v × Ḡv)

− ρ−1∇s · (FsḠv − F̄vGs)

−
(
ρ−1 F̄v · [∇GB] − ρ−1Ḡv · [∇ FB]

)
· B

− B ·
([

∇
(
ρ−1 F̄v

)]
· GB −

[
∇

(
ρ−1Ḡv

)]
· FB

))
. (10)

Upon comparison with bracket (6), we see that this bracket is pre-
cisely that of Refs. [2,16] with the functional derivatives Fv and Gv
replaced by the divergence-free functional derivatives F̄v and Ḡv
according to Eq. (9). In this procedure, the terms of the bracket (6)
in Fρ or Gρ disappear because ∇ · Ḡv = 0. We also note that if
we drop all terms but the first in Eq. (10), then with some ma-
nipulations one can show this bracket is equivalent to the one
obtained in Ref. [13], albeit in a significantly simplified and per-
spicuous form, and that this term corresponds to the bracket of
Ref. [21].

Because the Poisson bracket (10) is exactly the bracket of
Ref. [16] with the replacement of the functional derivatives by
projected functional derivatives, one wonders if one can always
construct Dirac brackets by this procedure. In Appendix B it is
shown that not all projections produce good brackets, only those
that define Hamiltonian vector fields (see also Appendix C).

Given that ∇ · F̄v = 0 for all observables F , we obtain the fol-
lowing family of Casimir invariants of the Poisson bracket (10):

C[s] =
∫

d3x f (s),

where f (s) is any function of the entropy, i.e. it commutes with
all the observables, {C[s],G}∗ = 0 for all G . This family origi-
nates from the family of Casimir invariants of the original Poisson
bracket (6) given by

∫
d3xρ f (s). Since ρ is constant (as a Casimir

invariant) and uniform, it can be taken out of the integral. This
follows since Dirac brackets built on brackets with Casimir invari-
ants retain those invariants (cf. Ref. [10]). As a consequence, the

term
∫
d3xρU (ρ, s) in the Hamiltonian is now a Casimir invariant,

so that it can be dropped from the Hamiltonian because it will
not give any contribution to the equations of motion (contrary to
the compressible fluid or compressible MHD cases). Upon setting
ρ0 = 1, the Hamiltonian becomes

H = 1
2

∫
d3x

(
v2 + B2). (11)

Therefore, the Hamiltonian theory for ideal Eulerian incompress-
ible MHD is given by the bracket (10) with the Hamiltonian (11).
The equations of motion follow: For the entropy s, this yields

ṡ = {s, H}∗ = −v̄ · ∇s,

where, as before, we use the ‘bar’ shorthand for solenoidal quan-
tities, i.e. v̄ = P · v, and evidently ∇ · v̄ = 0. Note s can be any
advected quantity such as the concentration of salt.

Similarly, the dynamical equation for B is obtained

Ḃ = {B, H}∗ = −v̄ · ∇B + B · ∇v̄ = ∇ × (v̄× B).

The equation for v is slightly more complicated, viz.

v̇ = {v, H}∗ = −P ·
[
(∇ × v) × v̄

]
+ P ·

[
(∇ × B) × B

]
. (12)

In particular, the property that ∇ · P = 0 implies that ∇ · v̇ = 0,
which is consistent with the constraint Φ2. We notice that the first
term in Eq. (12) was obtained in Ref. [13]. Since v̄ ≈ v (weak equal-
ity with the constraint Φ2), the equations for v and B becomes

v̇ = −v · ∇v − ∇ Pc + (∇ × B) × B,

Ḃ = ∇ × (v× B),

where the pressure-like term Pc is given by

Pc := − v2

2
− (−1∇ ·

(
(∇ × v) × v

)
+ (−1∇ ·

(
(∇ × B) × B

)
.

Given this equation for the pressure, Pc is not necessarily positive.
Lastly, we point out that there is no equation for the mass density
ρ , since it has been eliminated altogether from the theory.

The equations obtained above correspond to the traditional
equations for incompressible MHD. It should be noted that
∇ · v = 0 is no longer a constraint on the flow since it is a con-
served quantity. Actually, it is more than a conserved quantity
since it is a Casimir invariant. If one choses an initial condition
satisfying ∇ · v )= 0, then this quantity will remain constant under
the dynamics.

4. Comparisons between brackets for incompressible fluids

We focus now on ordinary fluids and in particular we con-
sider different formulations for describing the motion of an ideal
incompressible fluid. In his famous treatise Lagrange [1] provides
descriptions of both incompressible and compressible ideal fluids.
Lagrange uses what is now generally called the Lagrangian vari-
able description, whereby the dynamics of fluid elements, points,
are treated in a spatial domain, and he constructs the Lagrangian
for this infinite-dimensional system. If we let q denote the posi-
tion of a fluid element labeled by a, that lies in a domain U ⊂ R3

occupied by the fluid, then q : U → U at each time, or q(a, t).
To describe incompressible fluids, Lagrange adds the constraint
det |∂q/∂a| = 1. It naturally leads to what is now referred to as
the volume preserving diffeomorphism description of the incom-
pressible fluid. A formal description of this was introduced in Refs.
[22,23] for the Euler equations of an incompressible fluid. It was
based on the fact that diffeomorphisms form an infinite parame-
ter Lie group with a Lie algebra given by the commutator of vector
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fields. If D denotes vector fields of R3, then the commutator (Lie
bracket)

[V,W]L = (W · ∇)V − (V · ∇)W, (13)

is again a vector field for any V,W ∈ D, and it is an ele-
mentary exercise in vector calculus to show the Jacobi identity,
[U, [V,W]L]L + != 0 for all U,V,W ∈ D, where ! denotes the
two other terms obtained by cyclic permutation of (U,V,W).
If one restricts D to contain only divergence-free vector fields,
D̄ := {V ∈ D|∇ · V = 0}, then D̄ ⊂ D is a Lie subalgebra, as seen
by another elementary vector calculation that assures closure:
∇ · [V,W]L = 0 if V,W ∈ D̄. From the Lie bracket (13) one can
construct the Lie–Poisson bracket

{F ,G}L =
∫

d3xv · [Fv,Gv]L, (14)

which indeed satisfies the Jacobi identity for all functionals of v, it
being of the Lie–Poisson form. However, combined with the Hamil-
tonian H =

∫
d3x v2/2, it does not yield the correct equations of

motion for incompressible fluid mechanics since ∇ · v is not con-
served by the flow. The correct equations of motion are reproduced
by using constrained functional derivatives as explained in Refs.
[4,5,24].

Another bracket for incompressible fluids was proposed in
Ref. [25]:

{F ,G}0 =
∫

d3xω ·
[
(∇ × Fω) × (∇ × Gω)

]
.

For divergence free fields, we perform the change of variables ω =
∇ ×v. From the scalar invariance F (v) = F̃ (ω), we obtain ∇ × F̃ω =
Fv (we drop the tildes in what follows). For the Hamiltonian H =∫
d3x v2/2, the relation Hv = v leads to

∂ω

∂t
= ∇ × (v × ω),

which is the correct equation of motion for the vorticity in both
compressible and incompressible barotropic fluids. However, two
issues should be noted: (i) this bracket does not satisfy the Jacobi
identity for functionals defined on arbitrary vector fields ω. This is
easily seen by the following counter example:

F1 = 1
2

∫
d3xω · x̂y2, F2 = 1

2

∫
d3xω · ŷz2,

F3 =
∫

d3xω · ẑx,

which yields,

{
F1, {F2, F3}0

}
0 + != −

∫
d3xω · ∇(yz) )= 0, (15)

and (ii) it is not stated how the constraint ∇ · v = 0 is to be ap-
plied, and indeed the procedure of Ref. [25] also gives the correct
equation of motion for compressible barotropic fluids.

With regards to (i), if one considers vector fields that satisfy
ω = ∇ × v, then Eq. (15) gives zero (see Appendix D). Thus, one
might attempt to restrict the space of functionals on which this
bracket is defined in order to get a Lie algebra realization on such
functionals. Yet, since ω = ∇ ×v, it seems natural just to use v as a
variable to enforce the constraint ∇ ·ω = 0. This leads to a bracket
similar to Eq. (14), namely {F ,G}• =

∫
d3xv · [Fv,Gv]• , where

[V,W]• := ∇ × (V×W) = [V,W]L + V(∇ ·W) −W(∇ · V).

This bracket is not of Lie–Poisson type since [·,·]• does not sat-
isfy the Jacobi identity, as can be seen from the counterexample
(V1,V2,V3) = (xyx̂, yŷ, ẑ), giving [[V1,V2]•,V3]• + != yẑ. Thus

{F ,G}• has to be discarded even though it has the interesting
property {∇ · v, F }• = 0 for all observables F .

This returns us to issue (ii) above about enforcing ∇ · v = 0. The
failure of Eq. (14) to give the correct equations of motion can be
traced to the use of ∇ × Fω = Fv , which cannot be true for all
functionals because 0 = ∇ · ∇ × Fω = ∇ · Fv )= 0. Note, even if F [v]
is defined on divergence-free vector fields, it does not follow that
∇ · Fv = 0. This suggests introducing

∇ × Fω = Fv + Υ,

where Υ is chosen to enforce the constraint, i.e.

∇ × Fω = Fv − ∇(−1∇ · Fv = P · Fv. (16)

Now, inserting Eq. (16) into Eq. (14), we obtain the Dirac bracket of
Section 3. So the correct Poisson bracket for incompressible fluids
can be constructed as a Lie–Poisson bracket, from a projection of
the Lie bracket [·,·]L as follows:

[V,W]P := [P · V, P ·W]L,
where we notice an important property for verifying the Jacobi
identity is P · [P ·V, P ·W]L = [P ·V, P ·W]L (cf. Appendix C). Pre-
viously the need for the projection for the incompressible fluid was
observed in Refs. [5,21]. However, in light of our work, when pro-
jection is handled appropriately, this amounts to the Dirac bracket
construction of Ref. [13], which we here generalized.

In closing this section we make a few more remarks. In the
two-dimensional formulations of Refs. [2,26,27] there is no issue
with projection: unlike {·,·}0 and {·,·}• , the bracket given there sat-
isfies the Jacobi identity for all functionals of the scalar vorticity.
Also, in the compressible formulation the density is added as a dy-
namical variable (cf. the first term of Eq. (9) of Ref. [16]) and the
variations with respect to density in the Jacobi identity compen-
sate the failure of Jacobi for the second term alone (see footnotes
10 and 12 of Ref. [16]). Lastly we point out that care must be taken
when inserting projections on functional derivatives into Poisson
brackets, for the resulting Poisson bracket may not satisfy the Ja-
cobi identity (cf. Appendix B and Appendix C).

5. Conclusions

Here we have generalized the Dirac bracket approach of
Ref. [13] by including entropy advection. This produces a Hamilto-
nian description of an important missing piece of the dynamics
of incompressible fluids, viz. that of density advection. Recall,
∇ · v = 0 does not imply constant ρ , but that ρ be advected. If one
chooses ∇ · v as the primary constraint then one does not obtain a
bracket for an advected density. Thus, it would appear that density
advection cannot be produced by the Dirac bracket construction.
However, having done the calculation with entropy advection we
observe that ρ drops out of the picture and we obtain a bracket
that describes advection of a quantity s by a solenoidal velocity
field. Thus, if one just reinterprets s as ρ we obtain the missing
dynamics of density advection.

Performing the Dirac construction for MHD with density advec-
tion showed us that this approach is equivalent to direct projection
of the MHD bracket of Refs. [2,16] to solenoidal vector fields. It
is now evident how to construct brackets for a variety of incom-
pressible models. If it is Lie–Poisson, then one can proceed as in
Appendix C and if is not, then one can step through the Dirac
bracket construction. In fact, the Dirac construction is more general
and can be used to enforce any compatible constraints, as seen,
e.g., in Appendix A. Evidently, Dirac brackets provide a powerful
tool that extends well beyond the results of this Letter.
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Appendix A. Generalization to ideal MHD with nonuniform
background density

Suppose the density is constant but nonuniform, which might,
e.g., be an imposed stratification caused by gravity. It is interest-
ing to see where such an assumption leads when one follows the
Dirac construction. To this end we assume Φ1(x) = ρ − ρ0(x) = 0,
where ρ0 is the time-independent background density. Proceeding
as in Section 3, because {Φ1(x),Φ1(x′)} = 0 we obtain the sec-
ondary constraint that has the form

Φ2(x) = ∇ ·
(
ρ0(x)v

)
= 0. (A.1)

Although Eq. (A.1) is valid for compressible equilibria, to justify
such a constraint on physical grounds would require a mechanism
for maintaining the constraint or a time scale argument of some
sort. We will not pursue this here.

From the Poisson bracket (6), we compute the elements
Cαβ(x,x′) as

C11
(
x,x′) = 0,

C12
(
x,x′) = Aδ

(
x− x′),

C21
(
x,x′) = −Aδ

(
x− x′),

C22
(
x,x′) = ∇ ·

(
ρ2
0ρ

−1(∇ × v) × ∇δ
(
x− x′)),

where A is the symmetric operator A f = ∇ · (ρ0∇ f ). Provided A
is invertible, we obtain the coefficients C−1

αβ (x,x′) as

C−1
11

(
x,x′) = A−1∇ ·

(
ρ2
0ρ

−1(∇ × v) × ∇A−1δ
(
x− x′)),

C−1
12

(
x,x′) = −A−1δ

(
x− x′),

C−1
21

(
x,x′) = A−1δ

(
x− x′),

C−1
22

(
x,x′) = 0.

Given the following expressions

{
Φ1(x),G

}
= −∇ · Gv,

{
Φ2(x),G

}
= −AGρ − ∇ ·

(
ρ0ρ

−1(∇ × v) × Gv
)

+ ∇ ·
(
ρ0ρ

−1∇sGs
)

− ∇ ·
(
ρ0ρ

−1[∇GB] · B
)
+ ∇ ·

(
ρ0ρ

−1∇ · [BGB]
)
,

we deduce various contributions to the Dirac bracket (7):
∫ ∫

d3xd3x′ {F ,Φ1(x)
}
C−1
11

(
x,x′){Φ1

(
x′),G

}

= −
∫

d3x∇ · FvA−1∇ ·
(
ρ2
0ρ

−1(∇ × v) × ∇A−1∇ · Gv
)
,

∫ ∫
d3xd3x′ {F ,Φ1(x)

}
C−1
12

(
x,x′){Φ2

(
x′),G

}

=
∫

d3x∇ · Fv
(
Gρ + A−1∇ ·

(
ρ0ρ

−1(∇ × v) × Gv
)

− A−1∇ ·
(
ρ0ρ

−1∇sGs
)
+ A−1∇ ·

(
ρ0ρ

−1[∇GB] · B
)

− A−1∇ ·
(
ρ0ρ

−1∇ · [BGB]
))

,
∫ ∫

d3xd3x′ {F ,Φ2(x)
}
C−1
21

(
x,x′){Φ1

(
x′),G

}

= −
∫

d3x
(
Fρ + A−1∇ ·

(
ρ0ρ

−1(∇ × v) × Fv
)

− A−1∇ ·
(
ρ0ρ

−1∇sFs
)
+ A−1∇ ·

(
ρ0ρ

−1[∇ FB] · B
)

− A−1∇ ·
(
ρ0ρ

−1∇ · [BFB]
))

∇ · Gv.

The Dirac bracket now reads

{F ,G}∗ =
∫

d3x
(
ρ−1(∇ × v) · ( F̂v × Ĝv)

− ρ−1∇s · (FsĜv − F̂vGs)

−
(
ρ−1 F̂v · [∇GB] − ρ−1Ĝv · [∇ FB]

)
· B

− B ·
([

∇
(
ρ−1 F̂v

)]
· GB −

[
∇

(
ρ−1Ĝv

)]
· FB

))
, (A.2)

where F̂v = P A · Fv = Fv −ρ0∇(A−1∇ · Fv). Observe that ∇ · F̂v = 0
for these equations, as was the case for the incompressible MHD.
We also notice that the Dirac bracket has the same form as that for
incompressible MHD, with the only difference being divergence-
free functional derivatives F̂v replacing F̄v .

In the same way as in Section 3, one term in the Hamiltonian
corresponds to a Casimir invariant. More precisely, from the prop-
erty that ∇ · F̂v = 0 for any observable F , it is shown that

C[s] =
∫

d3xρ f (ρ, s),

is a family of Casimir invariants, where f is any function of s
and ρ . Therefore the Hamiltonian is

H = 1
2

∫
d3x

(
ρ0v2 + B2),

and the internal energy U plays no role in the dynamics, just as
was the case for ideal incompressible MHD.

The two dynamical equations for s and B are similar than the
ones for incompressible MHD, and are given by

ṡ = −v · ∇s and Ḃ = ∇ × (v× B),

since v̂ = v − ρ0ρ−1∇(A−1∇ · (ρv)) ≈ v with the secondary con-
straint Φ2. The dynamical equation for v becomes

v̇ = −v · ∇v + ρ−1
0 (∇ × B) × B− ∇Wc,

where the Bernoulli-like term Wc is given by

Wc = −v2

2
− A−1∇ ·

(
ρ0(∇ × v) × v

)
+ A−1∇ ·

(
(∇ × B) × B

)
.

Again we notice that ∇ · (ρ0v) is conserved by the flow since it is
a Casimir invariant.

It should be noted that the second constraint Φ2 above had a
constant background density. Another choice would be to use the
constraint Φ2 with ρ replacing ρ0, i.e. use the following set of
constraints:

Φ1(x) = ρ − ρ0(x) and Φ2(x) = ∇ · (ρv).

Proceeding as above, the definition of the operator A naturally be-
comes A f = ∇ · (ρ∇ f ), and the expression for the Dirac bracket
obtained is identical to Eq. (A.2) with F̃v := Fv − ρ∇(A−1∇ · Fv),
which still satisfies ∇ · F̃v = 0.
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Appendix B. Hamiltonian–Dirac vector fields

Let Z denote a phase space manifold that is a symplectic or
Poisson manifold, and is thus equipped with a bracket operation
{·,·} :C∞(Z) × C∞(Z) → R. We suppose the bracket satisfies the
usual Lie enveloping algebra properties and can thus be written in
coordinates as

{ f , g} = ∂ f
∂za

Jab
∂ g

∂zb

for functions f , g ∈ C∞(Z), i.e. f , g : Z → R. Note the bracket
above is a generic Poisson bracket and may have any form or de-
generacy. Only the Lie algebra properties are required.

We impose an even number of constraints Φα ∈ C∞(Z), α =
1, . . . ,2m, and wish to project Hamiltonian vector fields on Z , el-
ements of X (Z), to Hamiltonian vector fields that are tangent to a
submanifold M := ⋂

α Φα , X (M).
Elements of X (Z) are linear operators, in particular, the ele-

ment generated by f ∈ C∞(Z) has the form

L f = −{ f ,·} = J ab
∂ f

∂zb
∂

∂za
,

and the commutator of two such elements satisfies [L f , Lg] =
−L{ f ,g} . Thus there is an isomorphism between the Lie algebra of
such linear operators and Poisson brackets. We wish to maintain
this structure for Hamiltonian vector fields projected onto X (M).

To project a Cartesian vector into a surface defined by φ =
constant, one uses the normal ∇φ to construct the following pro-
jection operator:

P := I− ∇φ∇φ

|∇φ|2 (B.1)

where I is the identity. Evidently P · ∇φ ≡ 0. Essentially this same
idea occurs in infinite dimensions in the context of Hilbert spaces
and is efficacious for application in quantum mechanics. However,
the problem at hand differs from these cases in that we are in-
terested in Hamiltonian vector fields (finite or infinite) and our
manifold is symplectic with no intrinsic notion of metric. Thus,
if we are to proceed without adding additional structure, we must
construct a projection operator using only the functions Φα and
cosymplectic form, J . With Eq. (B.1) as a guide we write

Pa
b = δab − Kαβ

∂Φα

∂zb
∂Φβ

∂zc
Jac

where Kαβ is chosen so that Hamiltonian vector fields generated
by any of the Φα are projected out, i.e. P · LΦα ≡ 0 for all α. Now
it is desired to find such a Kαβ in terms of the {Φα} and J alone.
Fortunately, a direct calculation reveals that the desired quantity is
given by Kαβ = {Φα,Φβ}−1. Thus we have achieved our goal if this
inverse exists. Assuming this is the case we obtain the following
Hamiltonian projection operator:

Pa
b = δab − {Φα,Φβ}−1 ∂Φα

∂zb
∂Φβ

∂zc
Jac .

Evidently

Λa
f := Pa

bL
b
f = Pa

b Jbd
∂ f

∂zd

= J ad
∂ f

∂zd
− {Φα,Φβ}−1 ∂Φα

∂zb
∂Φβ

∂zc
Jac J bd

∂ f

∂zd
, (B.2)

and ΛΦα ≡ 0 for all α. Also, an elementary calculation reveals the
P2 = P , as expected for a projection operator.

It remains to show that the set of projected vector fields of the
form Λ f = P · L f are Hamiltonian on the constraint submanifold:

[Λ f ,Λg] = −Λ{ f ,g}∗ , (B.3)

for some well-defined Poisson bracket { f , g}∗ . As the notation sug-
gests this turns out to be the Dirac bracket.

It is evident from Eq. (B.2) that Λa
f = −{ f , ·}∗ . Because

Eq. (B.3) is satisfied for a generic Poisson bracket, then it must
be true for the Dirac bracket as well. To see that it is true for a
generic Poisson bracket we write

[L f , Lg] = L f Lg − Lg L f = J bc∂c f ∂b
(
J rs∂s g∂r

)
− ( f ↔ g)

=
[
J bc∂b J rs∂c f ∂s g + J bc J rs∂c f ∂b∂s g

]
∂r − ( f ↔ g)

= −[ J rb∂b J cs∂c f ∂s g + J sc J rb∂b(∂c f ∂s g)

= −L{ f ,g},

where ∂b := ∂/∂zb and ∂b operates only on the term immediately
to its right unless parenthesis are included. In obtaining the second
equality, second derivative terms canceled in the usual way, and in
obtaining the third equality, antisymmetry, the Jacobi identity, and
relabeling were used.

All of the above can be formally extended to infinite dimensions
(see, e.g., Ref. [2]) by replacing partial derivatives by functional
derivatives, sums by integrals, and matrix multiplication by opera-
tor action.

Appendix C. Projections and Poisson brackets

Consider the general Poisson bracket,

{F ,G} =
∫

dµ
δF
δχ

J δG
δχ

,

where J is a cosymplectic operator (generally dependent on χ(µ))
that ensures this bracket satisfies the Jacobi identity. Now suppose
P is some projection operator, and consider

{F ,G} =
∫

dµ P
(

δF
δχ

)
JP

(
δG
δχ

)
=

∫
dµ

δF
δχ

P†JP
δG
δχ

. (C.1)

The bracket (C.1) does not in general satisfy the Jacobi identity.
However, if P is independent of χ it may.

If the bracket is Lie–Poisson, then projection onto subalgebras
always produces brackets that satisfy the Jacobi identity. Consider
the Lie–Poisson bracket

{F ,G} =
∫

dµ
δF
δχ

J δG
δχ

=
〈
χ, [Fχ ,Gχ ]

〉
.

In this construction Fχ ∈ g where g is a Lie algebra and hence Fχ

is a vector. Suppose P : g → k, where k is a vector subspace of g.
Then, (i) the bracket

{F ,G}P =
〈
χ, [P Fχ , PGχ ]

〉
, (C.2)

is defined, and (ii) it satisfies the Jacobi identity for arbitrary func-
tionals of χ , provided P [P Fχ , PGχ ] = [P Fχ , PGχ ], which is the
case if k is a subalgebra of g. This follows from the general Jacobi
identity theorem proven in Ref. [2] or more immediately from the
fact that Eq. (C.2) is a Lie–Poisson bracket for k.

Appendix D. Direct proof of Jacobi identity

We consider the bracket

{F ,G} =
∫

d3xω ·
[
(∇ × Fω) × (∇ × Gω)

]
. (D.1)

In order to prove the Jacobi identity for this kind of bracket, one
only needs to consider the explicit dependence of the bracket on ω
when taking the functional derivative δ{F ,G}/δω. In what follows,
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we let f := ∇ × Fω . The functional derivative of {F ,G} with respect
to ω contains three terms: one that comes from the explicit de-
pendence of the bracket on ω and two other terms that are the
second order functional derivatives of F and G . It has been shown
in Ref. [2] that the only important term comes from the explicit
dependence on the variables, i.e. on ω. So from {F ,G}ω = f × g,
we get

{
F , {G, H}

}
=

∫
d3xω ·

(
f× ∇ × (g× h)

)
.

Since ∇ · f = 0, this becomes

{
F , {G, H}

}
=

∫
d3xω ·

[
f× (h · ∇)g − f× (g · ∇)h

]
. (D.2)

If ∇ · ω = 0, there exists a vector v such that ω = ∇ × v. By sym-
metry of the operator ∇×, we obtain terms like ∇ ×[f× (h · ∇)g−
f× (g · ∇)h], which are transformed by the identity

∇ ×
[
f× (h · ∇)g

]

= f∇ ·
[
(h · ∇)g

]
+

[
(h · ∇)g · ∇

]
f− (f · ∇)

[
(h · ∇)g

]
.

Since ∇ · f = 0 (for all observable F ), the divergence terms in
Eq. (D.2) vanish, i.e. ∇ · [(h · ∇)g] = ∇ · [(g · ∇)h]. In addition, from
the following identity (f · ∇)[(h · ∇)g] = [(f · ∇)h · ∇]g + f ih j∂i∂ jg,
we have

∇ ×
[
f× (h · ∇)g − f× (g · ∇)h

]

= (h,g, f) − (f,h,g) − (g,h, f) + (f,g,h)

− f ih j∂i∂ jg+ f i g j∂i∂ jh,

where (f,g,h) := [(f · ∇)g · ∇]h. By adding the cyclic permutations
of F , G and H , we obtain

∇ ×
[
f× (h · ∇)g − f× (g · ∇)h

]
+ != 0.

As a consequence, the bracket (D.1) satisfies the Jacobi identity if
∇ · ω = 0.

From the bracket (D.1) with ∇ ·ω = 0, we perform the following
change of variables: ω = ∇ × v. This change of variables depends
on a gauge since v + ∇φ gives the same value for ω. For instance,
if we choose ∇ · v = 0, we obtain

∇ × Fω = Fv − ∇(−1∇ · Fv.
Thus, we end up with the Poisson bracket obtained with Dirac’s
procedure for constrained Hamiltonian systems.
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