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The models describing macroscopic magnetic per-
turbations that evolve slowly compared to the Alfvén ve-
locity are reviewed. The perturbations of interest include
tearing modes, resistive interchange and ballooning
modes, internal kink modes, resistive wall modes, and
resonant magnetic perturbations. Two important fea-
tures that distinguish the various models are their de-
scriptions of parallel dynamics and of ion gyration. The
evolution of macroscopic modes is generally character-
ized by resonances that result in the development of small
scales. For processes involving magnetic reconnection,
for example, all scales from the ion down to the electron
Larmor radius are generated nonlinearly. The magneto-
hydrodynamic model assumes that the gradient lengths
are always greater than the ion Larmor radius and thus
is unable to properly describe the resonances. The drift
models rely on a much more detailed description of the
motion that enables them to capture many of the features
of the short-scale phenomena, but they remain limited by
their local description of the effects of gyration, and by

their inability to describe the effects of wave-particle
interactions in the parallel dynamics. These limitations
are remedied by the gyrokinetic model, which provides a
consistent, first-principles description of all the dynam-
ics below the ion cyclotron frequency, but this model is
computationally costly and its range of practical appli-
cability remains to be established. Lastly, the gyrofluid
models constitute a family of closures based on the mo-
ments of the gyrokinetic equations. These models offer an
attractive compromise between fidelity and computa-
tional cost but have only recently begun to be applied to
macroscopic evolution.
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I. INTRODUCTION

Macroscopic instabilities eject large fractions of the
energy stored in fusion plasmas onto the plasma-facing
components and thus are very dangerous. Controlling
these instabilities is necessary for the success of fusion.1
The most useful tool for doing so has been the ideal
magnetohydrodynamic ~MHD! model,2 which plays a
central role in guiding the design and operation of fusion
devices. Remarkably, the MHD model provides quanti-
tative predictions both for the amplitude of the response
of stable plasmas to external perturbations,3 and for the
waveforms and stability thresholds for the external kink4

and peeling-ballooning modes.5

The MHD model is much less successful, however,
in predicting the characteristic time scales for macro-
scopic plasma instabilities. The characteristic time tA for
ideal MHD instabilities may be obtained from the bal-
ance between inertia and the kink force, mi n]V0]t ;
J ! B, where mi is the ion mass, n is the plasma density,
V is the plasma velocity, B is the magnetic field, and J "
¹ ! B0m0 is the plasma current density. One finds

tA " L0VA ,

where

VA " B0Mm0 nmi " Alfvén velocity

L " dimension of the plasma

B " 6B6 " magnitude of the magnetic field.*E-mail: flw@mail.utexas.edu
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The time tA, called the Alfvén time, is the time it would
take for the entire plasma to move out of its initial vol-
ume as a result of an ideal instability. Under normal
conditions in fusion experiments, the characteristic growth
time for macroscopic instabilities is much longer than the
Alfvén time.

In an effort to describe more slowly growing modes,
such as the internal kink, tearing modes, and resistive
edge-localized modes ~ELM!, several linear6–8 and
nonlinear9–13 codes solving the resistive MHD equa-
tions have been developed. These codes have enjoyed
some successes in modeling the results of experiments
with comparatively high collision frequency,14–17 but
they have been largely unable to predict quantitatively
the occurrence or evolution of long-wavelength,
sub-Alfvénic instabilities in low-collisionality experi-
ments.18,19 In particular, existing MHD codes are un-
able to predict the period of sawtooth oscillations, the
repetition frequency of the ELM, and either the onset
threshold or the saturation amplitude for the neoclassi-
cal tearing mode ~NTM!. The instabilities of interest
share the following characteristic properties:

1. Sub-Alfvénic evolution. Their evolution takes place
over a time t that is intermediate between the Alfvén
time tA and the confinement time tE ~tA ## t ## tE !. We
will see that this circumstance causes resonances that are
responsible for the second characteristic property.

2. Localized short-scale structures. Due to resonant
phenomena and nonlinearity, long-wavelength modes ex-
hibit localized, short-wavelength structures that play an
important role in setting the rate of evolution of the mode
~Fig. 1!. Studies show that magnetic reconnection, in
particular, generates singular current structures of width

less than the electron skin depth, l ## de, where de " c0
vpe is the electron skin depth and vpe is the electron
plasma frequency.20

3. Failure of the flute ordering. Near the resonant
layers, the perturbations tend to be highly elongated along
the magnetic field, giving flux surfaces the appearance of
grooved columns ~Fig. 2!. In the region where such geo-
metric conditions prevail ~see Fig. 1!, the so-called flute
ordering, k5 ## k4, makes it possible to eliminate the
compressional Alfvén dynamics.21 This is the basis for
the reduced MHD model22,23 and several reduced two-
fluid models that offer the advantages of simplicity and
physical transparency.24–26 In fusion experiments, unfor-
tunately, k5 ; ek4, where the inverse aspect ratio e is
typically no smaller than 103 or so. Consequently, the
flute ordering is generally considered inadequate for the
global description of long-wavelength modes. It is often
used, however, in local asymptotic investigations of the
dynamics in the singular layers, especially those involv-
ing kinetic effects.

A consequence of these properties is that the evolu-
tion of sub-Alfvénic modes cannot be decoupled from
the turbulence responsible for anomalous transport. The
reason for this is that the scales characterizing the sub-
Alfvénic singular structures, such as the ion Larmor ra-
dius, are generally indistinguishable from the scales of
the turbulence. Thus, any model that offers a suitable
description of the macroscopic modes near the resonant
surfaces will also exhibit microscopic instabilities such
as modes driven by the ion temperature gradient ~ITG!,
trapped electrons ~TEM!, etc.27 The microscopic insta-
bilities can sometimes be avoided by choosing param-
eters such that these modes are stable, for example,
by neglecting temperature gradients and using large

Fig. 1. Internal-kink wave function. The solid line represents
the m " n " 1 harmonic of the displacement j associ-
ated with an internal kink mode, as a function of the
minor radius r. The dashed-dotted line represents the
safety factor q, which measures the winding ratio of
the field lines on the toroidal flux surfaces. The wave
function has macroscopic extent but exhibits singular
behavior at the resonant surface rs where q " m0n "1.
Note that the short-scale structure ~the drop at r " rs! is
localized in the region where the flute ordering applies
~shaded band!. In this region the singularity is resolved
by inertia.

Fig. 2. Illustration of the distortion of a resonant magnetic
surface, showing that near the resonant surface, the
perturbation has a tendency to vary more rapidly in
the direction perpendicular to the field than along the
field. This tendency is described by the flute ordering
k5 ## k4.
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anomalous transport coefficients to damp the remaining
drift instabilities,28–30 but this approach can be justified
only in the presence of a scale separation between the
turbulence and the resonant long-wavelength modes ~e.g.,
for magnetic islands of width W $$ ri !.

The necessity of including the turbulent dynamics
implies that the order of the system for any description of
macroscopic sub-Alfvénic modes ~i.e., the number of
degrees of freedom, or the number of variables that have
to be advanced in time! greatly exceeds that encountered
in other domains of fusion theory. Until now, the order
has generally been kept manageable by using fluid de-
scriptions of the plasma, but this is unsatisfactory for
several reasons. From the macroscopic point of view,
fluid models fail to account for many phenomena, such
as parallel heat flows, the effects of trapped particles, and
neoclassical effects, that are important at the small col-
lision frequencies that prevail in fusion experiments. From
the microscopic point of view, the effect of collisionless
kinetic damping ~Landau damping! is known to suppress
large-scale flows within the flux surfaces. These flows,
which are generated nonlinearly by the turbulence, are
called zonal flows by analogy with the east-west atmo-
spheric flows along the earth’s latitude lines. Existing
fluid models either neglect Landau damping altogether,
resulting in underestimation of the threshold and growth
time for the instabilities, or they include a phenomeno-
logical model for Landau damping31 that overestimates
the damping of the zonal flows32 and the amplitude of the
turbulence.33

These observations have spurred efforts to develop
kinetic models able to describe the evolution of macro-
scopic electromagnetic disturbances. In view of the very
large order ~i.e., number of degrees of freedom! of ki-
netic models, however, the problem is likely to remain
challenging even for the next generation of computers.

In response to the difficulty of the problem, consid-
erable efforts have been devoted to the development of
models with reduced order. The methods for doing this
can be separated into analytic methods ~reduction! and
numerical methods ~discretization schemes and time-
stepping algorithms!. Continued progress will clearly ben-
efit from combining the insights associated with these
two types of methods. The goal of the present lecture is
to review the underlying ideas so as to provide a basis for
future progress.

The primary consideration in developing models is
the time and space scales of interest. We begin by dis-
cussing these in order to justify some of the properties
listed above for the modes of interest.

I.A. Time Scales

Plasma displacements at the Alfvén velocity are ad-
equately described by the MHD model. The conclusions
from all the investigations of MHD dynamics is that
Alfvénic instabilities result in violent plasma motions

with nefarious consequences. In practice, however, mac-
roscopic modes almost always grow slowly compared to
the Alfvén time, for two reasons:

1. Slowness of control variables. The characteristic
time for changing the equilibrium, which is fixed by a
combination of plasma transport processes and exter-
nally controlled variables ~such as heating, current drive,
and shape control!, greatly exceeds theAlfvén time. When
a discharge crosses a stability threshold for a macro-
scopic mode, it will thus do so slowly compared to the
nominal growth rate of the instability. In this respect the
loss of stability is similar to that observed in the familiar
drinking-bird toy ~Fig. 3!. For the drinking bird, the cool-
ing of the head caused by evaporation of the liquid on the
surface of its beak creates a vacuum that draws fluid
from the bird’s trunk into its head, thereby creating an
inverted pendulum. The evaporation is slow compared to
the nominal tipping time ~the time for tipping if all the
fluid were located in the head!. As the center of gravity
rises, the frequency of the pendulum slows, much like the
frequency of precursor oscillations slow before a saw-
tooth crash in a tokamak. For small displacement, the
angle of oscillation u evolves according to

\u " g0
2gm tu ,

where the umlaut represents derivations with respect to
time, gm " _m0m is the rate at which mass rises from the
trunk to the head, and g0 "M2g0! is the nominal growth
rate, with g the acceleration of gravity and ! the length of
the bird’s neck. The solutions are Airy functions ~Fig. 4!
with argument t0t, where t " ~gmg0

2!%103 is a hybrid
between the nominal time for the instability ~in the case

Fig. 3. The drinking bird toy illustrates the crossing of an ideal
stability boundary ~the inverted pendulum instability!
by a slow transport process ~the evaporation of the
water on the bird’s beak!.
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of the plasma, tA! and the time describing the evolution
of the equilibrium.34 Callen et al. have compared exper-
imental observations of instabilities to the hybrid growth
calculated under various assumptions concerning the na-
ture of the underlying instability.35

2. Ideal saturation. For finite displacements, the in-
verted pendulum differs from ideal MHD instabilities in
that crossing an ideal MHD stability threshold generally
leads to the appearance of a nearby bifurcated equilib-
rium ~Fig. 5!. This constitutes the second reason for the
slowness of MHD dynamics. Specifically, the frozen-in
property of ideal MHD prevents the plasma from cross-
ing magnetic flux surfaces. In ideal MHD, an equilib-
rium consisting of nested flux surfaces is thus topologically

inalterable. As a result, both theory and simulations show
that ideal instabilities saturate, and equilibria driven
through a stability limit ~by heating, for example! settle
into new, bifurcated equilibria.36–38 Such bifurcated equi-
libria are sometimes observed in experiments,39– 42 but
more often, the presence of nonideal effects prevents
saturation. The development of the instability beyond the
ideal saturation amplitude is slowed to a time that is a
hybrid between the Alfvén time and a time characterizing
the dissipative processes ~such as resistivity! responsible
for the relaxation of the ideal MHD conservation prop-
erties. This is the case, in particular, for instabilities where
the rate is controlled by magnetic reconnection, such as
the internal kink mode.42 Another example is the resis-
tive wall mode, an external kink instability for which the
growth is fixed by the characteristic time for diffusion of
the magnetic field through the conducting wall, called
the wall time.

In conclusion, the macroscopic modes of interest in
fusion experiments are characterized by velocities that
are much smaller than the Alfvén velocity. This has im-
portant implications concerning the spatial behavior of
the modes, which we now consider.

I.B. Space Scales

The slow evolution of the plasma implies that its
state is never very far from equilibrium. Three-dimensional
~3-D! equilibria, however, are known to exhibit singular-
ities near resonant surfaces where the magnetic field lines
close upon themselves. The reason for this is as follows.

The force-balance condition,

J ! B " ¹p ,

specifies the current density perpendicular to the mag-
netic field, J4, that must flow in order to provide the
magnetic force that balances the gradient of the pressure
p:

J4 "
b

B
! ¹p , ~1!

where b " B0B. This perpendicular current, however, has
a nonvanishing divergence. In order to avoid charge
buildup, the circuit must be closed by a parallel current,
which is determined by the continuity equation, ¹{J " 0.
In terms of the parallel current J5" B{J0B, the continuity
takes the form

B{¹~J5 0B! " %¹{J4

" %¹p{¹ ! ~b0B! , ~2!

where we have used Eq. ~1! to eliminate J4. The pressure
in Eq. ~2!, however, is itself affected by the distortions of
the magnetic configurations. This can be seen by linear-
izing the parallel component of the equilibrium equation,

Fig. 4. Evolution of the displacement amplitude ~in arbitrary
units! for a system driven slowly through marginal sta-
bility, where t is the hybrid growth time.

Fig. 5. Amplitude of the displacement ~top! and shape ~bot-
tom! of a compressed spring undergoing an equilib-
rium bifurcation. As the compression parameter b rises
above the threshold bc determined by the stiffness of
the spring, the system evolves to a bifurcated equilib-
rium with a displacement amplitude that scales like the
square root of the transition parameter b% bc.
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B{¹p " 0. Defining the perturbations by Ip " p % p0 and
EB " B % B0, where the 0 subscripts denote a reference

axisymmetric state, we find

B0{¹ Ip " % EB{¹p0 . ~3!

Equations ~2! and ~3! are special cases of a common
type of equation that takes the general form

B{¹f " g ,

where g is a known function of space. Such equations,
called magnetic differential equations, play an important
role in magnetic confinement theory. In a suitable mag-
netic coordinate system ~c,u,z!, where c is the poloidal
flux and u and z are poloidal and toroidal angles, respec-
tively, the solution takes the form

f " i
Rq

Bz
(
m, n

gm, n

m % nq
exp~imu& inz! , ~4!

where

q " q~c! " safety factor

Bz " toroidal component of the magnetic field

R " major radius of the torus.

The gm,n are the Fourier coefficients of g,

g " (
m, n
[gm, n exp~imu& inz! .

The salient feature of the solution, Eq. ~4!, is its resonant
denominator, m % nq. The presence of this denominator
means that f is singular on every rational surface q"m0n,
unless the corresponding gm,n vanishes at that rational sur-
face. We next examine how the resonance affects 3-D
equilibria.

Applying the above solution to Eqs. ~2! and ~3!, there
follows

J5 0B " %i
Rq

Bz
(
m, n

~¹p{¹ ! ~b0B!!m, n

m % nq
exp~imu& inz!

~5!

and

Ip " %i
Rq

Bz0

dp0

dc (m, n

~ EB{¹c!m, n

m % nq
exp~imu& inz! .

~6!

Note that Eq. ~5!, unlike Eq. ~6!, applies to all orders in
the perturbation amplitude, but we now linearize this
equation in order to look at the effect of the pressure
singularity on the parallel current. Taking the gradient of
the pressure in Eq. ~6! leads to terms proportional to
~d0dc!~m % nq!%1 " ~m % nq!%2n dq0dc, further aggra-
vating the singularity. We conclude that the degree of the
current singularity is

J5 ; ~m % nq!%3 . ~7!

This shows that the resonances associated with closed
field lines lead to serious, nonintegrable singularities on
every rational surface. Physically, these singularities are
caused by the inability of the parallel current to neutral-
ize charge imbalances established across distinct closed
field lines.

In order to place the above result in perspective, the
following two considerations are relevant. First, the above
simplified analysis is valid only for low values of b "
2m0 p0B2, the ratio of kinetic to magnetic pressure. For
high-b configurations, a more complicated analysis of
the singularity, first carried out by Mercier,43 shows
that the precise degree of the singularity in Eq. ~7!
depends on a geometric property called the magnetic
well, which is associated with the curvature of the field
lines. Second, we note that the argument leading to the
result of Eq. ~7! depends on the linearization of the
equilibrium equation. As a result of nonlinear effects,
the pressure may evolve so as to reduce the gradients
on the low-order rational surfaces corresponding to the
long-wavelength mode. This is the case, in particular,
when the perturbation gives rise to isolated magnetic
islands.44 In the presence of an island, the infinite num-
ber of closed field lines on the rational surface is re-
placed by a single closed field line, the magnetic axis
of the island. Near the separatrix, the field lines weave
across each other in a chaotic fashion, creating an ergo-
dic layer where parallel currents can prevent the accu-
mulation of charge caused by the diamagnetic drifts in
Eq. ~1!, ~Ref. 45!, although the required currents may
be large.

For an ideally unstable mode, the singularities at the
resonant surfaces are resolved by inertia. As discussed
above, however, MHD instabilities grow much more
slowly than the Alfvén frequency, so that the width of the
resonance can be very narrow for modes of interest in
fusion. The width of the resonance may be estimated
from the dispersion relation v" k5VA with v" ig and k5
depending on the distance from the rational surface
through k5" ~m % nq!0Rq. The width of the resonance is
thus d ; g0VA6¹k56. When g ## vA, d ## r, the minor
radius.

In conclusion, resonant surface singularities in 3-D
equilibrium configurations are an inescapable fact of life
with far-reaching implications.

I.C. Multiple Scale Methods

It is commonplace to note that, as exhibited by the
above discussion, the problem of describing the sub-
Alfvénic evolution of MHD modes is characterized by
multiple scales. A more interesting observation is that the
dynamically important scales occupy a small fraction of
the “scale space” v % t and k % x. Specifically, rapid
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events are intermittent, and short-scale structures have
localized extent in both space and scale. That is, m %
nq ## 1 restricts both the radial variable q and the scales
m and n. This creates uncountable opportunities for in-
genious schemes aimed at reducing both the number of
degrees of freedom and the time scales over which these
degrees of freedom have to be tracked. The aim of this
lecture is not only to describe some of these schemes but
also to explain the general ideas used to devise them. The
rapid evolution of computing technology means that the
number of degrees of freedom that can be evolved is
constantly growing, but at the cost of increasingly oner-
ous restrictions on properties like memory and data lo-
cality. This results in a constantly evolving landscape for
the set of computable models. There is thus a continuous
need for new strategies enabling the optimal use of ex-
isting resources. It is hoped that the present review will
provide a useful basis for researchers working on the
development of such new strategies.

We begin by introducing some general and basic
concepts in Sec. II. In particular, we introduce some of
the ideas from dynamical systems theory that frame later
discussions, and we compare and contrast the reduction
technique with implicit algorithms. In Sec. III, we de-
scribe fluid closures with particular attention to the drift
model, which is a two-fluid model that exploits the
properties of sub-Alfvénic dynamics to achieve higher
fidelity than generic two-fluid models. In Sec. IV, we
present a brief description of the gyrokinetic model. In
Sec. V, we describe the gyrofluid model, obtained by
taking the moments of the gyrokinetic equations. Lastly,
we summarize and discuss the results in Sec. VI.

II. GENERAL CONSIDERATIONS

II.A. General Formulation

It is often useful to think of the problem of predicting
the evolution of the plasma in general dynamical terms.
We denote the state of the plasma by the vector X. In the
real world, X has a countably infinite number of dimen-
sions ~when the fields are confined to a bounded volume,
the countable nature of the dimension of X can be seen by
expressing it in terms of a discrete Fourier series!. When
constructing a numerical model of the plasma, however,
it is necessary to restrict X to a finite number, the value
of which is limited by the memory of the computer.

We write the equation describing the evolution of X
in the form

X̂~t ! " F~X~t !, U~t !! , ~8!

where F represents the forces acting on the system and U
represents the input variables under the control of the
experimentalist. We see that the order of the system of
differential Eq. ~8! is equal to the dimension of X. We

consider systems that are, in some sense, close to a ref-
erence state X0~U! that is an equilibrium solution of the
dynamical equation,

X̂0 " F~X0, U!" 0 .

In general, the goal of the study is not merely to achieve
the capability of obtaining solutions X~t ! for any par-
ticular initial condition X~0! and set of input histories
or “waveforms” U~t !. Such a capability would cer-
tainly be useful for interpreting experiments and, if the
model represents the experiment sufficiently faithfully,
for predicting the results. It does little, however, to guide
experimentalists in choosing the optimal input histo-
ries. A more ambitious goal is to gain knowledge and
understanding of all the solutions and of how they de-
pend on U. That is, one would like to construct a map
of the geometry of the solution curves to Eq. ~8!, rather
than solve for a particular curve. The global understand-
ing that such a map provides is necessary in order to
guide the search for scenarios enabling the realization
and sustainment of a desirable operation point.

A great deal of insight into the properties of the
system can be gathered from the study of the linearized
system obtained by expanding the force in a Taylor series
about the equilibrium and retaining only the lowest-order
terms. In terms of x " X % X0, the system takes the form

_x~t ! " Mx~t ! , ~9!

where

M "
]F

]X !
X0

is an operator that takes the form of a matrix after dis-
cretization. An important feature of plasma systems is
that they are generally nonnormal: that is,

M*M ' MM* ,

where M* is the conjugate transpose of M. A famous
exception to this is ideal MHD, which is not only normal
but Hermitian2:

MMHD
* " MMHD .

In general, nonnormal M may give rise to strong ampli-
fication of applied perturbations even when the plasma is
stable.46–50 It is also responsible for the fact that the
eigenmodes of the resistive MHD equations do not con-
verge to those of the ideal MHD system as the resistivity
goes to zero. This is sometimes referred to as the Alfvén
paradox.51

If the system has a complete set of distinct eigenval-
ues sj and eigenvectors 6vj& indexed by j " j1, j2, . . . , jn,
such that

M6vj& " sj 6vj& , ~10!
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the general solution may be expressed in the form

6x~t !& "( esj t 6vj&^vj 6x0 & .

In general the eigenvalues sj will span several orders of
magnitude in frequency space. This is a nuisance, since
the dynamics of interest usually involve a restricted set of
modes with comparable frequencies or growth rates, while
many high-frequency modes are damped or radiated out
of the plasma and thus have small amplitudes. We next
discuss two general schemes for dealing with this problem.

II.B. Reduction versus Numerical Overstriding

The preceding discussion shows that the problems
we are interested in are characterized by multiple time
and space scales. Many of these scales, however, are
passive in the sense that the system rapidly reaches equi-
librium at that scale and subsequently evolves slowly,
adjusting continuously to changes in the parameters. In
modeling this evolution one faces a fundamental choice:

1. Analytic reduction. Eliminate the fast time scale
analytically and construct a model that describes only the
slow dynamics. Two important examples of reduction
that are used in every description of Alfvénic dynamics
are the quasi-neutrality approximation, which eliminates
space-charge oscillations, and the subluminal approxi-
mation, which eliminates electromagnetic radiation.

2. Numerical overstriding. Retain the fast dynam-
ics but use a time-advance algorithm that allows the
time step to exceed the short time scales. The most
effective methods of doing this are with implicit52–57

and semi-implicit algorithms.10,58–61 Other related meth-
ods that have recently been the subject of interest are
the projective integration and the heterogeneous multi-
scale methods.62,63

In order to explain and illustrate the above two ap-
proaches, we next consider the problem of maintaining
the vertical position of the plasma. The analysis pre-
sented below borrows freely from the landmark papers
by Lazarus and collaborators.64,65

Since the plasma inductance is independent of the
vertical position, vertical control of the plasma provides
a simpler example of a multiple time scale problem than
horizontal control, which is inherently nonlinear. The
fast time scale corresponds to the vertical oscillation of
the plasma around its equilibrium position, at a fre-
quency comparable to the Alfvén frequency. The slow
time scale corresponds to the L0R time for the dissipation
of current fluctuations induced in the position control
coils and the wall. In normal operation, vertical oscilla-
tions are damped, and the plasma resides very close to an
equilibrium state at all times. As the parameters of the
discharge ~such as the plasma current and pressure! are
varied, a feedback system changes the coil currents so as
to maintain the plasma at the desired position. We next

introduce a simple model for these dynamics. For the
sake of clarity, we base the presentation on current fila-
ments, but we note that models using distributed currents
result in dynamical equations with the same form, the
only changes being in the coefficients.

We consider a plasma represented by a filamentary
current ring immersed in an axisymmetric magnetic field.
The equation of motion for this ring is

mp ]z " %2pX0 Ip BX ,

where

z " displacement of the ring from its equilibrium
position at z " 0

X0 " radius of the ring

Ip " plasma current

BX " component of the magnetic field in the radial
direction.

It can be shown a posteriori that the changes in the plasma
current are negligible, so that we take Ip to be constant.
The magnetic field BX is created by external position
control coils as well as by eddy currents Iv flowing in the
coils and vacuum vessel, which is treated as a part of the
coil system for the purpose of the present stability analy-
sis. We expand the magnetic field about the equilibrium
position and use Biot-Savart’s law to relate it to the ex-
ternal current64,65:

BX " %
Iv

2pX0

]Mvp
]z

&
m0 IpGnz

4pX0
2

.

Here,

G "
Lext

m0 X0

& bp & !i 02 &
1

2
,

where

Lext " external inductance of the plasma

!i " internal inductivity

bp " ratio of kinetic to poloidal magnetic energy

Mvp " mutual inductance between the plasma and
external currents.

The parameter n, defined by

n " %
X0

BZ

]BZ

]X !
X"X0

,

is called the stability index for reasons that will soon
become clear. Substituting BX in the equation of motion
yields

mp ]z "
]Mvp
]z

Ip Iv%
m0 Ip

2Gn

2X0

z . ~11!
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The system is closed with the circuit equation for the
external current,

Îv& gv Iv&
Mvp
' Ip

Lv
_z " 0 , ~12!

where gv is the decay rate for the external currents, Lv is
the self-inductance of the external conductors, and the
prime denotes differentiation with respect to z. Equations
~11! and ~12! represent a third-order linear system de-
scribing the dynamics of the system formed by the plasma
and external conductors. These equations have the form
of Eq. ~9! with x " $z, _z, Mvp

' Iv Ip 0mp % and

M " "
0 1 0

%nv1
2 0 1

0 %ncv1
2 %gv

# , ~13!

where v1
2 "m0 Ip

2G02mp X0 is a characteristic frequency
for the vertical oscillation of the plasma in the stable
regime, and nc " 2~Mvp

' !2X0 0m0GLv measures the pas-
sive stabilization of the plasma by the external currents.
It is interesting to note that the above model for the plasma
and conductors takes the same form as the equations
derived by Watt to describe the centrifugal governor, one
of the first mechanical feedback systems to be investi-
gated for its stability in an attempt to prevent the problem
of “hunting,” the oscillation of the system about its de-
sired operating point.66 The governor may thus be seen as
a mechanical analogy for the tokamak, the flyballs play-

ing the role of the plasma and the steam engine playing
the role of the vacuum vessel ~Fig. 6!.

The evolution can be analyzed by taking the Laplace
transform. The dispersion relation, or the solubility con-
dition for the eigenmode Eq. ~10!, is a cubic polynomial
in s:

~s 2 & nv1
2!~s & gv !& sv1

2 nc " 0 . ~14!

The roots of the dispersion relation are plotted in Fig. 7.
Note that to improve readability, the parameter v10gv in
Fig. 7 is smaller than the values encountered in experi-
ments. In DIII-D, for example, v10gv; 4 ! 103.

In the limiting case where the coupling between the
plasma and external conductors can be neglected, nc " 0,
the roots are s "6v1M%n and s " %gv. The first pair of
roots corresponds to the vertical motion of the plasma,
and we see that for n # 0 the plasma is unstable. The
growth time is of the order of the Alfvén time, typically
a microsecond or less. For n $ 0, perturbing the equilib-
rium leads to oscillation at a frequency comparable to the

Fig. 6. Schematic of the Watt governor, a mechanical model
for the system formed by the plasma and external con-
ductors. In the governor, the spinning flyballs M act on
the throttle of a steam engine, which acts back on the
flyballs through the rotation rate of the axis.

Fig. 7. Roots of the dispersion relation for the vertical stability
problem as a function of the stability index n: ~a! growth
rate and ~b! frequency of the three roots, normalized to
the wall time gv

%1, for v10gv" 100 and nc " 1. In ~a!,
the hyperbola with asymptote ~dashed line! at n " %1
shows the growth rate calculated with the reduced model
and given in Eq. ~16!.
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Alfvén frequency. This motivates the designation of n as
a stability index. Note that a similar analysis for the hor-
izontal motion shows that in that case, stability requires
n # 302. The third and last root of Eq. ~14!, s " %gv,
corresponds to the damping of currents induced in the
conducting structures. A typical decay time for the vessel
currents is a few milliseconds.

The large disparity between the characteristic time
for the plasma motion and the current decay time, v1 $$
gv, enables the behavior of the roots of the dispersion
relation to be studied analytically. One finds that for nc '
0, the marginal stability point at n " 0 is moved to n "
%nc. For n # %nc, an Alfvénic instability develops. For
n $ %nc, by contrast, we find a pair of lightly damped
modes oscillating at the Alfvén frequency. That is, the
conducting vessel stabilizes the Alfvénic instability in
the parameter domain %nc # n # 0. In addition to the
pair of Alfvénic roots, however, there is a third root de-
scribing a slow mode with a rate of evolution that is
comparable to the inverse wall time, gv. The relatively
slow growth of this mode makes it susceptible to stabil-
ization by a feedback system. In order to do this, how-
ever, it is necessary to characterize its dynamics. We next
present the analytic reduction method that provides a
simple description for the slow mode.

II.B.1. Analytic Reduction

The reduction approach consists of two steps. In the
first step, one eliminates analytically the fast time scale
by taking the limit of mpr 0, corresponding to infinite
Alfvén time. In this limit, BX " 0 must be satisfied so that

z "
2Mvp

' X0

m0 IpGn
Iv .

This value of z represents the instantaneous “equilib-
rium” solution, in the sense that it is the solution that
satisfies force balance on the Alfvén time scale for that
particular value of Iv.

The second step consists of substituting the equilib-
rium solution in the external circuit equation to obtain an
equation describing the slow dynamics. We find

~1 & nc 0n! Îv& gv Iv " 0 . ~15!

The eigenvalue is

g0 " %gv 0~1 & nc 0n! . ~16!

Away from marginal stability, this value can be seen to be
an excellent approximation to the exact root ~Fig. 7!.

The above procedure is extremely general and un-
derlies almost every practical analysis of plasma evolu-
tion. As previously noted, the most frequently used
reduction consists of eliminating the space-charge oscil-
lations and light waves using a similar procedure. In
particular, several fast electron waves, such as electron
cyclotron oscillations, can be eliminated by taking the

limit of vanishing electron mass me in much the same
way that we took mpr 0 above.

Unfortunately, even when clear separation of scales
exists, it is sometimes impractical or impossible to carry
out an analytical reduction. A common obstacle is the
occurrence of spatial or temporal resonances, such that
the scale separation breaks down locally. The situation
may be further complicated by nonlinearity, such as cas-
cade processes, that may lead to a breakdown in scale
separation. In such cases, a numerical approach to the
problem of multiple scales may be preferable. We next
consider the most important of these approaches.

II.B.2. Implicit Algorithm

The problem with the direct numerical solution of
Eqs. ~11! and ~12! is the need to adopt time steps shorter
than the Alfvén time for accuracy as well as stability.
Since we know that the fast oscillations are damped, we
would like to find a stepping method that allows the
integration to proceed with time steps comparable to
the wall time, gv

%1. Implicit differencing provides such
a method.

We introduce a discretization of time according to
x j " x~t0 & jh! , where h is the time step and j "
0,1, 2, . . . , T0h, where T is the final integration time. A
general differencing algorithm for Eq. ~8! is

x j&1 " x j & h@~1 % u!F~x j !& uF~x j&1 !# .

For u" 0, the force operator is evaluated at the old time
step and the algorithm is explicit, whereas for u" 1

2
_ we

have a second-order accurate trapezoidal scheme. For
u" 1, lastly, the force is evaluated at the new time step
and the algorithm is fully implicit. The difficulty of the
above algorithm is that for u $ 0, it can be difficult to
determine the new state x j&1. In the fully implicit case,
for example, it is necessary to solve the equation

x j&1 % hF~x j&1 ! " x j ~17!

for x j&1. In general, this is a nonlinear equation and its
solution can be very demanding. The most straightfor-
ward method for inverting Eq. ~17! is to use Newton’s
algorithm, but this requires both calculating and storing
the Jacobian of F, a generally prohibitively large matrix.
Methods that avoid this have been developed and applied
to MHD models53 and two-fluid models.54

It is instructive to consider the solution of the im-
plicit algorithm for our simple vertical stability problem.
In that case F~x!" Mx is linear and the solution is

x j&1 " ~I % hM!%1x j , ~18!

where I is the unit matrix. Stepping forward until the
system has advanced a time t, we find

x~t ! " ~I % hM!%t0hx~0! .
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The evolution described by the above result becomes
more transparent when expressed in terms of a basis
formed of the eigenvectors of M. If T is the matrix for the
transformation to the eigenvector basis, M can be written
as

M " T%1ST ,

where S is the diagonal matrix, with elements Sij " sjdi, j ,
formed by the eigenvalues of M. Using T, Eq. ~18! takes
the form

x~t ! " T%1~I % hS!%t0hTx~0! , ~19!

where the diagonal matrix in the middle of the right side
is easily inverted and raised to the power of t0h, the
number of time steps. The transformation matrices T
may be ignored if one focuses on the evolution of the
eigenvectors.

The explicit advance, by comparison, yields

x~t ! " T%1~I & hS!t0hTx~0! .

The implicit and explicit advances may be compared to
the exact solution,

x~t ! " T%1 exp~St !Tx~0! .

Clearly, in the limit h r 0, these expressions are all
equivalent. Inspection of Eq. ~19!, however, shows that
for 6hs66 $$ 1, where the s6 " 6iv1Mn & nc are the
fastest eigenvalues of M, the oscillating modes evolve
according to

x~t ! ; exp$%7i
p

2
% log~hv1Mn & nc!& t

h'x6 ,

~20!

where x6 are the eigenvectors corresponding to the two
largest eigenvalues of M. That is, the Alfvénic oscilla-
tions are now damped, and their oscillation frequency
has been slowed to a value comparable with the time step
h. Even for large values of hv1, the logarithm term in
Eq. ~20! is usually not much larger than unity, so that the
fast modes will have a half-life comparable to the time
step. If the time step is chosen such that gvh ## 1, the
implicit scheme will describe the slow dynamics accu-
rately. By contrast, it is easy to see that the explicit scheme
results in the unphysical growth of the fast modes on the
scale of the time step. A comparison of the implicit so-
lution with the exact solution in the case of a stable
plasma ~n0nc " 0.2 $ 0! is shown in Fig. 8. We see that
the Alfvénic oscillations are damped in the first time
step, and the implicit solution thereafter tracks the long-
time average of the plasma position while taking steps
that greatly exceed the vertical oscillation frequency.

It is important to note that for 3-D MHD models that
aim to describe the dynamics of shear Alfvén modes

accurately while treating the compressional wave implic-
itly, numerical damping such as that found above is un-
acceptable. Fortunately, it is possible to devise methods
that suppress the compressional wave through the use of
numerically enhanced dispersion, rather than dissipa-
tion.58,59,67,68 These methods are essential to the ability
of nonlinear MHD codes to model such slow processes
as magnetic island growth.56,69,70

The advantage of the method of implicit advance
becomes clear when considering a case where the plasma
approaches the ideal vertical stability threshold, n"%nc.
In that case, the system evolves through a sequence of
states such that the frequency of the fast oscillation mode,
the vertical oscillation, becomes comparable to the wall
time as the plasma approaches marginal stability. Near
marginal stability, the reduction method becomes invalid
due to the failure of the separation of time scales. The
breakdown of the reduced model is displayed by the sin-
gularity of the growth rate calculated with this model,
corresponding to the hyperbola in Fig. 7. The implicit
method, by contrast, offers greater flexibility by describ-
ing the slow dynamics correctly, irrespective of whether
the system is near marginal stability. Figure 9 shows the
evolution of the vertical position for two different initial
conditions for a plasma near the critical stability index,
with n0nc " %0.9 and v10gv"100. For these conditions
the plasma is unstable, with a growth rate comparable to
the wall time. This is near the limit of the growth rates
that can be stabilized with a feedback system. We see that
the implicit method gives an adequate description of the
evolution for time steps that exceed the Alfvén time,
hv1 " 2.0.

The price paid for the flexibility of the implicit method
is that the dimensionality of the model, or the order of the
system of differential equations, is a factor of 3 times

Fig. 8. Evolution of the vertical position ~top two lines! and of
the vessel current ~bottom two lines! for n " 0.2, nc "
1, and v10gv" 30.0. The continuous curves represent
the exact solution and the dots joined by straight seg-
ments represent the implicit numerical solution with
hv1 " 12.0.
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higher than that for the reduced model. For more com-
plex continuum models, such as MHD, the multiplier is
generally smaller. Of greater concern is the cost for non-
linear systems of the inversion in Eq. ~17!. This cost can
be avoided with semi-implicit methods, in which only an
operator approximating the dominant linear part of the
force F~X! is treated implicitly. Several fusion-MHD
codes have adopted this strategy.9,13,71

In conclusion, we see that the implicit and semi-
implicit methods constitute flexible techniques for inte-
grating multiple-time-scale problems in cases where the
separation of scales may disappear during the simulation.
The reduction method, by contrast, requires strict scale
separation for its validity but leads to a system of reduced
order. Despite its limitations, the reduction approach is
conceptually important for its ability to shed light on the
geometry of the solutions to the dynamical equation.

III. FLUID MODELS

The main task of fusion theory is to construct simpli-
fied descriptions of the Maxwell-Boltzmann equations that
describe the evolution of the low-density, high-temperature
plasmas used in experiments. By simplified description,
we mean either models of reduced order ~that is, with fewer
variables! or models that eliminate some of the time scales
through an implicit treatment. In order to successfully pre-
dict the phenomena described in Sec. I, a combination of
both of these approaches is necessary.The most useful tech-
niques for achieving such simplification make use of the
moment hierarchy. The principal application of the mo-
ment hierarchy is in the derivation of fluid models, and in
the present lecture we restrict consideration to this appli-
cation. We note, however, that the moment hierarchy also
has applications in kinetic theory, both to simplify the an-
alytic solution of the kinetic equations in transport theory21

and to construct implicit algorithms for particle-in-cell
~PIC! codes.72,73

III.A. The Moment Hierarchy

The moment hierarchy corresponds to the sequence
of equations obtained by taking successively higher-
order moments of the Boltzman equation,

]fs

]t
& v{¹fs &

es

ms

~E & v ! B!{
]fs

]v
" Cs~ f ! , ~21!

where

fs " distribution function for species s

es, ms " species charge and mass

Cs " collision operator.

Multiplying this equation k times by v and integrating
yields the k’th-order moment equation,

]Ms
~k!

]t
& ¹{Ms

~k&1!&
es

ms

@@EMs
~k%1! ##

& vcs @@b ! Ms
~k! ## " C~k! , ~22!

where vcs " es B0ms is the cyclotron frequency for spe-
cies s. Here, the k’th-order moment of the distribution
function is defined by

Ms
~k!~x, t ! "(d 3v fs~x, v, t !v. . .v , ~23!

where v. . .v denotes k factors of v, and where the brack-
ets @@{## indicate the sum over the cyclic permutations of
uncontracted indices. Thus, M~k! is in general a tensor of
rank k, although it is often contracted to lower rank. An
important characteristic of the moments is that high-
order moments weigh more heavily the contributions from
the high-velocity part of the distribution function, which
corresponds to the part of phase space where the distri-
bution is smallest. This makes high-order moments more
susceptible to numerical noise in computation.

The most often stated property of the moment hier-
archy is that each successive equation introduces a higher-
order moment, so that the chain must be closed, either by
appealing to some known features of the kinetic solution
or simply by truncation. A somewhat less widely appre-
ciated property is that for low-frequency evolution, in the
sense that ]M0]t ## vcsM, the moment hierarchy can be
partially solved for the high-order moments in terms of
the lower-order moments. This is the basis for all the
magnetized fluid models, including MHD and the drift
model. Before describing these models, we describe the
reduction of the fluid equations that can be achieved
under the assumptions v ## vpe and vph " v0k ## c,
where vph is the phase velocity of the waves of interest
and c is the speed of light.

Fig. 9. Evolution of the vertical position for the fastest- and
slowest-growing modes for n " %0.9, nc " 1, and v10
gv" 100.0. The time step is hv1 " 1.
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III.B. The Quasi-Neutral and Subluminal Approximations

Maxwell’s equation,

]E

]t
" c2~¹ ! B % m0 J! , ~24!

may be viewed as combining an equation for the two
parts of the electric field: the longitudinal ~¹{E! and the
transverse or solenoidal ~¹! E! parts. We consider each
part in turn.

The longitudinal part of Maxwell’s equation, ob-
tained by applying the divergence operator to Eq. ~24!, is
well known to be identical to the charge continuity
equation,

]r

]t
" %¹{J .

In a plasma, charge imbalance leads to extremely rapid
oscillations that do not influence the slow evolution
that is the subject of this lecture. It is interesting to
estimate the charge imbalance under the assumption that
the plasma velocity is no greater than the Alfvén veloc-
ity: e~ni % ne! " e0¹{E ; e0¹~VA B!. This leads to

~ni % ne !0n ; ~VA 0c!2~di 0L! , ~25!

where di " c0vpi " ri 0bi
102 is the ion skin depth. As a

result, almost all models for low-frequency plasma evo-
lution assume quasi-neutrality. That is, they neglect the
relative difference in the particle density. The adoption
of the quasi-neutrality approximation amounts to a re-
nunciation of the task of evolving the space charge as a
dynamical variable. Consistency with the continuity equa-
tion requires that the constraint ¹{J " 0 be satisfied.
This constraint may thus be thought of as the equilib-
rium condition for space-charge oscillations, where “equi-
librium” is to be understood in the sense that v ## vpe.
In principle, it is possible to use the equilibrium condi-
tion in conjunction with the momentum equations to
calculate the value of ¹{E, which can no longer be
determined from Poisson’s equation. This procedure is
cumbersome, however, and we avoid it by using the
quasi-neutrality approximation in conjunction with an-
other approximation that we refer to as the subluminal
approximation, because it relies on the smallness, com-
pared to the speed of light, of the phase velocity of the
waves under consideration.

The subluminal approximation is motivated by the
observation that the right side of the solenoidal part of
Maxwell’s equation becomes large for c0vphr `:

]

]t
¹ ! E " c2~¹2 B % m0¹ ! J! .

For slow dynamics, it is thus necessary for the current to
satisfy

¹ ! J " ¹2 B0m0 . ~26!

Again we find a cumbersome constraint on the current. In
the case of the subluminal approximation, the constraint
placed by the equilibrium Eq. ~26! must be used to elim-
inate the solenoidal part of E. Note that the subluminal
approximation is often identified with the Darwin ap-
proximation, although the latter retains relativistic cor-
rections to the particle motion that are neglected here.

We see from the above discussion that when taken
together, the quasi-neutrality and subluminal approxima-
tions specify both ¹{J and ¹! J, thereby eliminating the
need to solve for the longitudinal and transverse parts of
E separately. We may then use the electron momentum
equation,

me n
dVe

dt
" %ne~E & V ! B % hJ!

% ¹pe % ¹{Pe & J ! B ,

to solve for E in a straightforward way. Substituting the
resulting value for E into Faraday’s equation results in a
well-posed equation for the magnetic field B. If we ne-
glect electron inertia and introduce the auxiliary fields ZE
and ZB defined by74

ZE " %V ! B & J ! ZB0ne % ~¹pe & ¹{Pe !0ne & hJ

~27!

and

ZB " ~1 % de
2¹2 !B , ~28!

the result takes a form reminiscent of Faraday’s equation:

] ZB
]t

" %¹ ! ZE . ~29!

In addition to its use in fluid models, the above result is
also commonly used in hybrid kinetic simulations where
the ions are treated with a kinetic formulation while the
electrons are assumed to obey Eq. ~27! with some fluid
closure for Pe ~Ref. 73!.

To summarize, we see that the quasi-neutral and sub-
luminal approximations describe two different physical
circumstances and that they may, in principle, be used
separately. For the low-frequency dynamics considered
in this lecture, however, both approximations apply, and
their joint use results in a simple and elegant formulation
of the remaining field equation.

A similar reduction procedure may be followed to
eliminate the compressional Alfvén wave, leading to
the reduced MHD model.22,23 Comparison of the disper-
sion relation for the compressional Alfvén wave, v "
kVA, to that for the shear Alfvén wave, v" k5VA, shows
that the separation of scales for these two waves re-
quires that the flute ordering be satisfied, k5 ## k. As
discussed in Sec. I, this ordering is generally regarded
by the MHD community as unrealistic when applied
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outside the narrow boundary layers surrounding the res-
onant surfaces. We nevertheless adopt it for the gyro-
fluid model presented in Sec. V, in order to examine the
nonlocal effects of ion gyration that are omitted from
the fluid models discussed in the present section.

III.C. The Drift Model

The drift model is a special case of a family of clo-
sures called two-fluid models. Its aim is to describe dis-
turbances such that the plasma velocity

V ; VD ## VA ,

where VD " 6b ! ¹p 60eBn is the drift velocity. This
distinguishes it from other two-fluid models for which
the velocity is unrestricted. Before further describing the
drift model, however, it is useful to place it in context by
noting that all fluid models in a single-species plasma are
“two-fluid” models except, in a sense, MHD. The latter
assertion may seem surprising since, after all, MHD de-
scribes a conducting fluid and its equations are unmis-
takably different from the Navier-Stokes equations that
also purport to describe a single fluid. In particular, the
ion and electron velocity and density are distinct and can
all be computed from the MHD fields using ni % ne "
e¹{E0e and Vi % Ve " J0ne. So in what sense is the MHD
model “single fluid”? The answer is that the difference in
the velocity of the ions and electrons is small compared
to the plasma velocity, which in MHD is assumed to be of
order Vti , the ion thermal velocity. To be specific, we may
estimate the relative difference as follows:

~Vi % Ve !0Vi ; J0neVti; di 0Lbi
102 " ri 0Lbi ## 1 .

This estimate shows that the relative velocity difference
in MHD is small, although not as small as the relative
charge separation computed in Eq. ~25!. In conclusion,
MHD should be thought of as a “quasi-single-fluid” model,
in the same sense that it is a “quasi-neutral” model. Re-
turning to the drift model, we note that its value and
distinctiveness lies not in the multiplicity of fluids it
describes but rather in the sophisticated way in which it
uses magnetization to infer closure relations for many of
the high-order moments.

The drift model21,75 is a rigorous closure of the
moment equations based on the Chapman-Enskog pro-
cedure. Note that in gas-kinetic theory, the Chapman-
Enskog procedure requires that the scale lengths be smaller
than the mean-free path in every direction. The drift model
relaxes this condition considerably by relying on the Lar-
mor gyration to enforce isotropy in the directions per-
pendicular to the magnetic field. The conditions required
for its validity are that the Larmor radius be small com-
pared to the smallest-length scales in the plasma and that
the mean-free path be much shorter than the scale of
variation in the parallel direction:

k5lmfp ## 1

and

k4 ri ## 1 .

Unfortunately, the first of these conditions is seldom ap-
plicable in fusion experiments, and as we have discussed,
many modes of interest violate the second condition in
the resonant layers. As a result, in the context of fusion
theory, the drift model is generally regarded as a trunca-
tion of the moment hierarchy, and some of the terms
involving higher moments are often discarded for sim-
plicity. It does, however, offer a good description of the
perpendicular dynamics, and this enables it to account
for many observed phenomena.

The key idea behind the description of the perpen-
dicular dynamics in the drift model is to use the domi-
nance of the terms proportional to vcs in the moment
equations to express some of the moments in terms of
lower-order moments.76 Thus, the moment equations may
be rearranged to solve for Ms

~k!:

@@b ! Ms
~k! ## " %

1

vcs

Ss
~k! , ~30!

where

Ss
~k! "

]Ms
~k!

]t
& ¹{Ms

~k&1!&
es

ms

@@EMs
~k%1! ##% C~k! .

~31!

The value of this approach is that due to the factor of
10vcs ## 1, the moment on the left side can be evaluated
to any given accuracy in rs0L from the knowledge of the
right side to one lesser degree of accuracy in rs0L.

Unfortunately, the operator applied to the moment
on the left side of Eq. ~30! is not invertible, so that the
homogeneous equation

@@b ! Ms
~k! ## " 0 ~32!

has nontrivial solutions. The moments may thus be sep-
arated into two contributions: the solution of the homo-
geneous Eq. ~32! and the inhomogeneous solution.

The calculations involved in the solution of the mo-
ment Eqs. ~30! and ~31! are laborious and have been
described at length by other authors. Our purpose here is
merely to give a flavor of the arguments involved in their
derivation, particularly as regards the geometric origins
of their complicated tensorial structure, in the hope of
making their appearance less forbidding. To this end, we
briefly sketch the derivation of the gyroviscosity tensor,
omitting the species index for simplicity.

The gyroviscosity tensor is related to the second-
order moment by

Pg [ P % mnVV &
1

2
mnV 2I , ~33!
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where P " M~2! . We first note that the homogeneous
solution of Eq. ~32! for k " 2 can be seen to be the
gyrotropic tensor, which takes the form

PCGL " p4~I % bb!& p5bb .

The inhomogeneous part of the solution, by contrast,
takes the form

Pinhom "
1

vc

@b ! S~2! & 3bb ! ~b{S~2! !# .

The pressure tensor can thus be calculated from the first-
order solution of the kinetic equation. Direct evaluation
of the elements of M~3! that appear in S~2! shows that the
only contributions to this term come from the lowest-
order solution of the kinetic equation given by Df "
%rs{¹fM , where fM is the background Maxwellian dis-
tribution. Using Eq. ~33! leads then to the following ex-
pression of the gyroviscosity:

Pgv " P4& bP5&P5b . ~34!

Here P4 is the tensor

P4 "
p

4vc

@~b ! ¹!V4& ¹~b ! V4 !& transpose#

&
1

10vc

@~b ! ¹!q4& ¹~b ! q4 !& transpose# ,

~35!

where q4 is the perpendicular component of the heat
flux,

q4 " %
5

2

p

eB
b ! ¹T ,

and P5 is the vector

P5 "
p

vc

@b ! ¹V5& b{¹~b ! V4 !#

&
1

5vc

b{¹~b ! q4 ! . ~36!

We note that the form of the gyroviscosity given by Bra-
ginskii is based on the MHD ordering, where the electric
drift ~i.e., the E ! B velocity! is assumed to dominate.77

The present version, appropriate to the drift ordering,
was first derived by Mikhailovskii.78 Improved versions
of the drift model have been derived recently by several
authors.79–82 We also note that Pogutse and collabora-
tors83 have shown that retaining the ~formally small!
inertial terms in the pressure tensor leads to a nonlocal
description of the effects of finite Larmor radius that is
similar in form to the gyrofluid equations that we will
present in Sec. V. Similarly to the gyrofluid model and

unlike Mikhailovskii’s equations, the model of Pogutse
et al. leads to dispersion relations that offer a good ap-
proximation to their kinetic counterpart.83

In Sec. V, we present an alternative approach to the
development of fluid models, based on taking the mo-
ments of the gyrokinetic equation. In the following
~Sec. IV!, we begin by giving a description of the gyro-
kinetic model.

IV. THE GYROKINETIC MODEL

The gyrokinetic equation is a reduction of the Maxwell-
Vlasov system of equations obtained by averaging these
equations over the rapid time scale corresponding to Lar-
mor gyration.84–86 The averaging procedure allows for per-
turbations with small wavelengths across the magnetic
field, k4rs; 1, provided such perturbations have small
amplitude ~otherwise, the particles would cease exhibit-
ing identifiable Larmor gyrations; i.e., they would be de-
magnetized!. Because of the presence of the short-
wavelength perturbation, the guiding-center variables
acquire a dependence on the rapidly varying gyration phase.
In order to preserve the phase-space conservation proper-
ties of the Vlasov equation, the reduction procedure trans-
forms the equations to a new set of slowly varying variables,
called the gyro-center variables. In the limit where only
long wavelengths are present, k4rs ## 1, the gyrokinetic
model reduces to the drift kinetic model that serves as the
foundation for the theory of neoclassical transport. One
might expect that the restriction on the amplitude of the
perturbations would lead to a system that is effectively
linear, but the singularity of the leading-order equations
near closed field lines results in the nonlinear terms being
important there. Thus, although the gyrokinetic equation
is independent of the flute ordering, the interesting non-
linear dynamics it describes occur in regions where this
ordering is satisfied.

Formulated in terms of the canonical momentum P5,
the gyrokinetic equation takes the form

df

dt
[
]f

]t
&

dR

dt
{¹f &

dP5
dt

]f

]P5
" 0 , ~37!

where f represents the distribution of gyro-centers. The
evolution of the gyro-centers is governed by

dR

dt
" v5

B!

B5
!

&
b

eB5
!

! ~m¹B & e¹^Cgy&s ! ~38!

and
dP5
dt

" %
B!

B5
!
{~m¹B & e¹^Cgy&s ! . ~39!

Here m" mv4
202B, B! "¹ ! A! , and B5

! " b{B! , where
A! " A & ~P5 0e!b and

v5 "
1

m
~P5% e^A5 &! .
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The effective perturbation potential Cgy is

^Cgy &s [ ^f&s % P5^A5 &s 0m .

The gyro-averaged potentials are defined by

^f&s~R,m! [
1

2p
"(f~R & rs ! da ~40!

and

^A5 &s~R,m! [
1

2p
"(A5~R & rs ! da . ~41!

Lastly, the fields are determined by the quasi-neutrality
constraint and by Ampère’s law,

(
s
$ns &

es n0

Ts

~^ Nf&s % f!' " 0 ~42!

and

(
s
% bs

rs
2
^ NA5 &s % m0^J7s &s& " ¹2A5 , ~43!

where the notation ^ Nj&s denotes the average of the field j
over the Larmor orbits and the background Maxwellian
of species s.

The gyrokinetic model is widely used in the simula-
tion of turbulence in magnetic fusion devices,87 and it is
beginning to be used in the study of turbulence in the
solar wind and other astrophysical applications.88 The
numerical methods used to solve the gyrokinetic equa-
tions divide into PIC methods, the Eulerian method,89,90

and the semi-Lagrangian method.87 The PIC methods are
named after the computational macroparticles that they
use to advance the distribution function. It is important to
note, however, that unlike the so-called molecular dy-
namics codes that account for all interparticle forces, the
computational particles evolve under the action of the
mean fields only. That is, despite its misleading name,
the PIC method solves a continuum equation, the gyro-
kinetic equation, that describes the evolution of a differ-
entiable density f in phase space. The use of computational
particles can be interpreted as an application of the Monte
Carlo method to the calculation of the integrals that form
the moments of the distribution function.91 This interpre-
tation sheds light on the methods used to reduce noise
and informs ongoing research on algorithmic improve-
ments.92 We briefly describe the Monte Carlo method in
order to expose the differences between the Eulerian and
PIC methods.

The Monte Carlo ~MC! method for calculating inte-
grals consists in summing the values of the integrand
sampled at random points. The relative merits of this
method are illustrated by the example of calculating the
volume of a hypersphere of unit diameter using a strategy
inspired by the “battleship” game. The strategy consists

in scattering shots randomly across a hypercube with
sides of length unity that encloses the hypersphere whose
volume we seek to evaluate ~see Fig. 10!. The score is
incremented by unity for every “strike,” or every time a
shot falls within the hypersphere @red dots in Fig. 10
~color online!# . At the end of the game, the volume of the
sphere is estimated as V " S0N, the ratio of the score S
and the number of shots N. The standard deviation s for
a single shot is clearly of order unity. The variance of the
score is ^~S % ^S&!2&" Ns 2, where ^S& is the average of
the volumes calculated over a large number of games.
The standard deviation in the estimate for the volume
thus has the scaling

~dV !MC ; sN%102 .

We next compare the accuracy of the MC approxi-
mation to that of a deterministic method based on a first-
order accurate integration algorithm, such as those used
in shock-capturing methods. The deterministic method
divides the enclosing volume into a grid of N cells, each
of size h, where N " h%d . It subsequently estimates the
volume of the hypersphere as the product of the volume
of the cells and the number of cells that lie within the
hypersphere. The error is then proportional to the prod-
uct of the volume of the cells, h d , and the number of cells
lying across the surface of the sphere, ~10h!d%1, since

Fig. 10. Illustration of an application of the Monte Carlo method
to calculate the volume of a hypersphere for dimen-
sion d " 3. The closed circles represent hits, or points
falling within the sphere, and the open circles repre-
sent misses, or points falling outside the sphere. The
ratio of the number of hits to the total number of
points approaches p06 when the number of points
Nr `.
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part of the volume of these bounding cells should be
included in the total. It follows that the error scales like
h, or

~dV !grid ; N%10d .

In conclusion, we see that the MC method is competitive
with a first-order accurate Eulerian method for d " 2,
precisely the dimensionality of the ~v4,v5! integrals called
for by the gyrokinetic method. In the case of the full
Vlasov equation, by contrast, d " 3 and the PIC method
has an advantage. This advantage may be offset, how-
ever, by using a higher-order algorithm in the Eulerian
method.

Following early work by Naitou et al.93 on the in-
ternal kink and by Sydora on microscopic magnetic is-
lands,94 several efforts have been undertaken to apply
the gyrokinetic model more broadly to long-wavelength
modes.95 One of the challenges involves the treatment
of the very rapid streaming of the electrons along the
magnetic field.96–99 Recent advances have enabled the
simulation of Alfvén eigenmodes.92 More widespread
investigations of the gyrokinetic dynamics of long-
wavelength disturbances appear likely to lead to impor-
tant insights in the years preceding ITER operations.

V. THE GYROFLUID MODEL

It has been known for some time that taking the
moments of the gyrokinetic equation yields reduced mod-
els for the plasma dynamics, the so-called gyrofluid mod-
els, that include the nonlocal response of the plasma
resulting from particle gyration.100–102 After their discov-
ery, these models enjoyed a brief period of success in the
context of simulations of turbulent transport. They were
abandoned, however, when it was discovered that they
overestimated the damping of the zonal flows, thereby
overestimating the overall strength of the turbulent trans-
port.32,33,103 More recently, gyrofluid models have en-
joyed a resurgence in applications where nonlinear
electromagnetic effects are important,104,105 such as in
the study of magnetic reconnection.61,106,107 In this sec-
tion we describe a simple version of this model obtained
by keeping only a few low-order moments.

A distinctive feature of gyrofluid closures is that due
to the nonalgebraic dependence of the gyro-averaging
operator on the velocity, the moment equations at every
order, including the lowest, contain moments of arbi-
trarily high order. This is in contrast to the conventional
moment hierarchy, where each equation for the n’th mo-
ment contains terms involving at most the n & 1’th mo-
ment. For example, in gyrofluid theories the lowest-
order moment equation takes the form

dn

dt
& Nb{¹u5&

1

2
~ Z¹42 Sv!{¹T4& {{{ " 0 , ~44!

where

d

dt
"
]

]t
& Sv{¹

is the convective derivative along the orbit-averaged ve-
locity Sv, itself expressed in terms of the orbit-averaged
electrostatic potential F" G0

102f according to

Sv " b0 ! ¹F .

The magnetic field is

Nb " ~B0 & B0 ! ¹C!0B0 ,

where C" G0
102c is the orbit-averaged projection of the

magnetic potential along the magnetic field.
Dorland and Hammett showed that the gyro-averaging

operations could be modeled by the operator G0
102 defined

as follows101:

G0
102j " exp%1

2
t¹4

2& I0
102~%t¹4

2 !j , ~45!

where t" Ts0Tref and I0 is the modified Bessel function
of the first kind. The definition in Eq. ~45! may be inter-
preted in terms of its series expansion,

G0
102 " 1 & (

n"1

`

an~t¹4
2 !n " 1 & ~t02!¹2 & {{{ .

In practice, the definition Eq. ~45! is most easily imple-
mented in spectral or pseudo-spectral codes where
G0

102~k! acts on the fields as a simple multiplier that can
be evaluated directly in terms of the norm k of the
wavevector. In finite difference or finite element codes,
by contrast, the action of G0

102 must be evaluated using
an approximate form, usually the lowest-order Padé
approximant:

G0
102 " %1 &

1

2
ri

2¹2&%1

.

This operator is straightforward to evaluate numerically.

V.A. The Electromagnetic Gyrofluid Model

We present a simple gyrofluid model108 that illus-
trates the physics described by such models and, we hope,
will motivate the development of more detailed and re-
alistic models. In order to keep the presentation simple,
we omit the Landau damping and collisional transport
terms from the presentation; for the most part, restoring
these terms is straightforward, if not trivial. Keeping only
the first two moments of the gyrokinetic equations for
electrons and ions and neglecting the electron gyroradius
and field-line curvature yields the following simple and
physically transparent model:
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]ni

]t
& SvE{¹ni " 0 , ~46!

]ne

]t
& vE{¹ne % VA

2¹5 J " 0 , ~47!

and

]

]t
~c% de

2 J !% de
2 vE{¹J & ¹5~ne % f! " 0 , ~48!

where

ni " density of ion guiding centers

ne " electron particle density

c " parallel component of the vector potential.

The system is closed by Ampère’s law,

J " ¹2c ,

and the quasi-neutrality equation,

ne " G0
102 ni & ~G0 % 1!f0t . ~49!

The two terms on the right side of Eq. ~49! both represent
contributions to the ion particle density, which differs
from the gyro-center density ni due to the gradient of the
local electric field that the ions experience along their
orbit. The resulting acceleration of the ions along their
orbits leads to a difference between the gyro-center and
particle densities, called the polarization density, which
is represented by the last term in Eq. ~49!.

The physical interpretation of the various equations
is as follows. The first, Eq. ~46!, is easily recognized as
the ion continuity equation, in which the ion density is
convected by the velocity composed of the electric drift
velocity. Naturally, due to their Larmor gyration, the ions
advance under the effect of the orbit-averaged value of
the electric drift. Note that the contribution of the parallel
velocity of the ions to the divergence of the particle flux
is neglected in Eq. ~46!. This has the effect of eliminating
sound waves from the model and is justified when the
sound wave frequency is much smaller than the fre-
quency of the perturbations, k5cs ## v. When this condi-
tion is satisfied, the inertia of the ions inhibits them from
flowing along the field lines in response to pressure im-
balances, and their velocity along the magnetic field re-
mains small. This condition is often satisfied in the singular
layers and in thin magnetic islands.

The second, Eq. ~47!, is the electron continuity equa-
tion expressing the conservation of electron mass. Since
the present model neglects the electron gyroradius, the
electrons are convected by the local value of the electric
drift and by the parallel flow, which is proportional to the
current since the model neglects the ion velocity. Note
that the electric drift is solenoidal ~¹{vE " 0!, so that the
compression of the electron fluid is due entirely to the

last term, representing the effect of the flow of electrons
along the magnetic field in response to the parallel forces
in the momentum equation.

The third and last, Eq. ~48!, describes the conserva-
tion of electron momentum and is often referred to as
Ohm’s law. Recalling the relationship of J to the electron
velocity, we see that the combination c% de

2 J is propor-
tional to the canonical momentum density of the elec-
trons. The first and last terms in Eq. ~48! can be recognized
as the inductive and electrostatic parts of the parallel
component of the electric field, respectively. The two
terms involving the currents form the total derivative of
the electron momentum along the trajectory of the elec-
tron fluid. Lastly, the parallel gradient of the density
represents the pressure forces acting on a fluid element.

It is instructive to examine the cold-ion limit of the
model. In this limit, the polarization density reduces to

lim
tr0
~G0 % 1!f0t " ¹2f ,

and G0
102r 1. The quasi-neutrality Eq. ~49! thus takes the

form

ne % ni " ¹2f .

The fact that we recover Poisson’s equation despite
having assumed quasi-neutrality is explained by the dis-
tinction between the “free” charge represented by the
gyro-centers and the actual space charge. The differ-
ence between the free and the total charge density is
due to the polarizability of the guiding center plasma
and may be thought of as a “bound” charge associated
with the gyro-center.

Taking the time derivative of the quasi-neutrality
equation and eliminating ne and ni with the continuity
equations yields the vorticity equation,

]V

]t
& vE{¹V " VA

2¹5 J ,

also referred to as the shear Alfvén equation. Here,

V " [z{¹ ! vE " ¹2f

is the component of the vorticity of the plasma along the
background magnetic field. The meaning of this equation
can be understood by thinking of the parallel component
of the current J as a measure of the winding density of
neighboring field lines. That is, if we adopt a particular
field line as our reference, the neighboring field lines will
wind around it like springs with a winding density mea-
sured by J. If the winding density is tighter down the
magnetic field than it is up the magnetic field, the gra-
dient of the tension in the wound field lines will act to
spin up the plasma in between, thereby increasing the
vorticityV and relaxing the inhomogeneity in the tension.
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V.B. Role of the Hamiltonian Property

A fundamental property of plasma, viewed as a dy-
namical system of charged particles, is that it is governed
by Hamilton’s equations. That is, the equations of motion
may be written in the form

X̂j " $H, Xj % ,

where H~X! is the Hamiltonian, the Xj are the dynamical
variables, and ${,{% represents the Poisson brackets. This
has important physical consequences, such as the exis-
tence of Poincaré invariants of the motion. In the colli-
sionless limit, the Hamiltonian property is inherited by
the Maxwell-Vlasov model.109 In the ideal and inviscid
limit, it is likewise inherited by the MHD model.

In view of the above considerations, demanding that
any prospective fluid model satisfy the Hamiltonian prop-
erty in the limit of vanishing collision frequency appears
to be a natural constraint on the closure scheme.110 Clearly,
this demand is also highly selective.26 Furthermore, the
Hamiltonian property confers some very desirable qual-
ities to the model. The most important of these is that it
guarantees the solvability of the equilibrium problem.
Since we have seen that long-wavelength plasma dynam-
ics often proceeds through a sequence of equilibrium or
near-equilibrium states, ensuring the solvability of the
equilibrium problem is clearly a high priority for any
prospective model, equal in importance to the conserva-
tion of energy and momentum.

In order to provide the context in which to present
the link between the Hamiltonian property and the equi-
librium solutions, we begin by describing the solvability
problem for the equilibrium problem. In a sense, we al-
ready confronted this problem in Sec. I when we ex-
plained the origin of the magnetic resonances near closed
field lines. The point is that although the force balance
condition is satisfied by the perpendicular current calcu-
lated in Eq. ~1!, it is by no means obvious that a finite
solution exists for the parallel current needed to satisfy
the continuity equation, ¹{J " 0. That is, the problem of
the solubility of the MHD equilibrium equations reduces
to the question of the existence of a solution to the mag-
netic differential Eq. ~2!. Clearly, in order for this equa-
tion to possess a single-valued solution, it is necessary
that the integral of the right side along any closed field
line vanish:

"( d!

B
¹{J4 " 0 . ~50!

It is easy to see that similar conditions occur for the
gyrofluid model presented here. For example, the elec-
tron continuity requires that the integral of vE{¹ne van-
ish along any closed field line, and Ohm’s law requires
the same of vE{¹J. Similar solubility conditions can also
be formulated in terms of integrals along closed stream
lines. Verifying such solubility conditions is sometimes

possible. Alternatively, it is occasionally possible to dem-
onstrate that a given model violates the equilibrium sol-
ubility conditions.111 More commonly, however, the
question cannot be resolved.

A virtue of the Hamiltonian property is that it not
only guarantees the solvability of the equilibrium equa-
tions but also provides first integrals of these equations.
In the case of MHD, for example, the Hamiltonian for-
mulation automatically guarantees that the solubility con-
dition of Eq. ~50! is satisfied and provides the integral of
Eq. ~2!, which is none other than the Grad-Shafranov
equation.112 To obtain these “first integrals” of the equi-
librium equations, we note that any extremum of the
Hamiltonian is automatically an equilibrium solution,
since the Poisson bracket acts on the functional deriva-
tive of its arguments. Thus, the Poisson bracket vanishes
automatically when acting on an extremal functional. In
order to obtain the most general solution possible, how-
ever, it is necessary to add to the Hamiltonian a linear
combination of a family of functionals C~X!, called Ca-
simirs, that are defined by the property that

$Xj ,C~X!% " 0

for all j, or, equivalently, that their Poisson bracket with
any other functional vanishes. These functionals de-
scribe quantities that are geometric invariants of the sys-
tem. That is, they are conserved regardless of the value of
the Hamiltonian, since

dC

dt
"

dX

dt
{¹C " $C, H % [ 0 .

Physically, Casimirs represent conserved quantities such
as the magnetic flux or the particle mass. Examples of
the use of the Hamiltonian property to solve the equilib-
rium equations can be found in Refs. 111 and 113.

In conclusion, we see that the Hamiltonian formula-
tion of a dynamical system leads to a new formulation of
the equilibrium condition,

dF

dX
" 0 ,

where

F~X! " H~X!& C~X! .

The variational form of the equilibrium equation does
not suffer from the problem with solubility conditions
and yields directly the first integrals of the equations
obtained by setting the time derivative to zero in the
dynamical equations. Furthermore, the second variation
of F~X! provides information on stability.114 Since F is
conserved, the positive definiteness of the second
variation,

d 2F $ 0 ,
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guarantees stability. In the case of MHD, the second vari-
ation of F, when expressed in terms of the displacement
field j, yields the well-known energy principle.

VI. SUMMARY

The predictive modeling of sub-Alfvénic plasma mo-
tions presents a formidable challenge due to the large
number of scales involved and the need to account for
kinetic effects as well as for the effects of coupling to
turbulent fluctuations. The techniques available for deal-
ing with the multiple scales can be broadly divided into
analytic reduction methods and numerical overstriding.
The most successful codes combine both techniques, using
reduction to eliminate space-charge oscillations, light
waves, and cyclotron oscillations, and using implicit or
semi-implicit algorithms to overcome the limitations
placed by the Alfvén and whistler waves. Kinetic meth-
ods, only briefly mentioned in this overview, are being
developed but have not reached maturity for long-
wavelength dynamics. Gyrofluid models, originally de-
veloped for the study of turbulence, appear to present
attractive possibilities for extending the capabilities of
two-fluid codes without incurring the cost associated with
the kinetic approach. In order to be applicable in regions
where the flute ordering is violated, however, these mod-
els need to be extended to include the quasi-static effects
associated with the compressional Alfvén wave.
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