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Stability properties and mode signature for equilibria of a model of electron temperature gradient
!ETG" driven turbulence are investigated by Hamiltonian techniques. After deriving new infinite
families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a
sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria. Depending on the
sign of the equilibrium “translated” pressure gradient, stable equilibria can either be energy stable,
i.e., possess definite linearized perturbation energy !Hamiltonian", or spectrally stable with the
existence of negative energy modes. The ETG instability is then shown to arise through a Kre!n-type
bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two
modified drift waves admitted by the system. The Hamiltonian of the linearized system is then
explicitly transformed into normal form, which unambiguously defines mode signature. In
particular, the fast mode turns out to always be a positive energy mode, whereas the energy of the
slow mode can have either positive or negative sign. A reduced model with stable equilibria shear
flow that possess a continuous spectrum is also analyzed and brought to normal form by a special
integral transform. In this way it is seen how continuous spectra can have signature as well. © 2011
American Institute of Physics. #doi:10.1063/1.3569850$

I. INTRODUCTION

An important issue for the stability of equilibria of con-
tinuous media concerns the existence of negative energy
modes !NEMs", spectrally stable modes of oscillation of a
medium with negative energy. One reason NEMs are impor-
tant is because equilibria with them, although linearly or
spectrally stable, can be destabilized by arbitrarily small per-
turbations. For example, if dissipation is added to the dynam-
ics so as to remove energy from a NEM, then it can be
proven that the mode becomes spectrally unstable. This is the
so-called Thompson–Tait theorem.1–4 On the intuitive level,
dissipation removes energy from the already negative energy
of the mode, which makes it more negative and increases the
amplitude of the mode. In nondissipative systems, NEMs can
become unstable with the presence of positive energy modes
!PEMs" through nonlinear coupling.5–10 By this means the
system can even develop finite-time singularities while con-
serving the energy of the nonlinear system.

In plasma physics, the study of NEMs has a long tradi-
tion dating to the early work of Sturrock11 on streaming
instabilities and Greene and Coppi4 on magnetohydrody-
namic !MHD" type dissipative instabilities in confinement
systems. NEMs have been studied in many plasma contexts;
for example, Vlasov–Maxwell dynamics,12–17 Maxwell
drift-kinetic18 theories, wave-wave interaction in the two-
stream instability,8,9,19 magnetic reconnection,20 ideal MHD
in the presence of equilibrium flows,21–23 magnetorotational
instability,24,25 and magnetosonic waves in the solar
atmosphere.26

In order to find NEMs it is, of course, necessary to ob-
tain the energy of the linear dynamics, and various means
have been used for accomplishing this. For example, the lin-
ear equations of motion can be manipulated in order to ob-
tain a quadratic conserved quantity, that is then deemed the
energy. However, without proper physical intuition, this can
give an incorrect answer, since energy signature cannot be
determined by the linear equations of motion alone. Alterna-
tively, one can appeal to the expression for the dielectric
energy for media in terms of a dielectric function, a common
practice. However, this also can give the wrong answer, as
was shown in Ref. 14. When one is dealing with reduced
fluid models that contain various physics, the situation be-
comes even more difficult. For these reasons we have argued
in Ref. 27 that the only reliable way to define energy is
within the Hamiltonian context. Indeed, once the Hamil-
tonian structure of the model under consideration is known,
an unambiguous definition of the energy of the system be-
comes available: the total energy corresponds to the Hamil-
tonian of the system and the energy of the linear dynamics
must come in a natural way from the second variation of this
nonlinearly conserved quantity. Moreover, the normal form
theory for linear Hamiltonian systems, provides a clear and
systematic way for determining the signature of modes in the
neighborhood of an equilibrium of the system. Indeed, for
systems with discrete degrees of freedom, the Hamiltonian of
the linearized system can always be cast, for stable modes,
into the sum of Hamiltonians of decoupled harmonic oscil-
lators, each of which possesses a characteristic frequency
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and a characteristic signature. Namely this signature, which,
for each mode, can be positive or negative depending on
whether the mode provides a positive or negative contribu-
tion to the total energy, provides a systematic way to identify
PEMs or NEMs of the system. Finally, given the existence of
the Hamiltonian structure, energy-based methods, akin to
“!W” of MHD, can be used to obtain sufficient conditions
for stability of equilibria or to indicate the presence of
NEMs. More precisely, an equilibrium has a NEM, if it is
spectrally stable but the second variation of its free energy
functional, evaluated at that equilibrium, has indefinite sign.
We also point out that, by virtue of its generality, the Hamil-
tonian approach, is applicable, unlike for instance traditional
methods based on the plasma dispersion relation, to the case
of arbitrary equilibria and is not restricted to the case of
plane wave perturbations.

In this paper, we investigate the presence of NEMs and
stability properties of a reduced model for electron tempera-
ture gradient !ETG" instabilities, in the Hamiltonian frame-
work. ETG turbulence has been considered as one of the
mechanisms that enhances anomalous particle and electron
thermal fluxes in tokamaks.28,29 The detection of NEMs, is
therefore important in order to see what potentially unstable
modes might lie dormant in the absence of dissipation. When
destabilized by dissipation, such modes might enhance the
anomalous transport across the confining magnetic field. We
note, however, that the methods applied for the ETG model,
can be applied, in principle, to any ideal plasma model.

The model for ETG turbulence considered here, has
been previously investigated in Refs. 30 and 31, and in Ref.
30 it was described how this model possesses a noncanonical
Hamiltonian formulation, with a Poisson bracket that turns
out to be essentially identical to that for reduced MHD32 !see
also Refs. 33 and 34".

In the present paper we first provide further information
about the Hamiltonian structure of the model by deriving
explicitly its families of Casimir invariants. We then deter-
mine sufficient conditions for stability of generic equilibria
by making use of the Energy-Casimir method. The investi-
gation of the presence of NEMs is carried out for the case of
homogeneous equilibria, for which we derive an explicit
condition for the presence of NEMs. This condition warns us
that NEMs are present if the value of the equilibrium pres-
sure gradient lies in a given interval whose end points de-
pend on the perpendicular wave vector and the magnetic
field curvature. In particular, the length of this interval
shrinks to zero as the perpendicular wave number goes to
infinity. After obtaining the eigenvalues and eigenvectors of
the system, we explicitly construct and carry out the trans-
formation that puts the Hamiltonian for the ETG model into
normal form. This is followed by considering inhomoge-
neous equilibria in a reduced system that has pure continuous
spectrum. The transformation to normal form is obtained and
signature is thus assigned to the continuum, for the first time
in a plasma fluid model.

The paper is organized as follows. In Sec. II we review
the model and its Hamiltonian formulation, and then derive
the Casimir invariants. In Sec. III we apply the Energy-
Casimir method and obtain conditions for energy stability. In

Sec. IV, after reviewing the theory of mode signature for
linear Hamiltonian systems we apply it to the ETG model.
Explicit conditions for the existence of NEMs, their relation-
ship to energy stability and spectral stability conditions com-
ing from the dispersion relation are derived, and the normal
form transformation is explicitly obtained. Next, in Sec. V,
we consider the reduced model that contains only stable con-
tinuous spectra. We show how an integral transform can be
used to map this system into normal form and thus define
signature for the continuous spectrum. Finally, we conclude
in Sec. VI.

II. HAMILTONIAN STRUCTURE OF THE ETG MODEL

The nondissipative ETG driven turbulence model of
Refs. 30 and 31 is given by

#

#t
!1 − $2"" = #",$2" + x$ + % p

&r
,&rx' , !1"

#

#t

p
&r

= % p
&r

,"' + #&rx,"$ , !2"

where two-dimensional slab geometry is assumed so that the
field variables, " the stream function and p the pressure, are
functions of the Cartesian coordinates !x ,y". The quantity
#f ,g$=#f /#x#g /#y−#f /#y#g /#x is the canonical Poisson
bracket. Equations !1" and !2" are written in the normalized
form described in Ref. 30, where the constant parameter r is
defined as

r =
Ln

2

LBLP
, !3"

with Ln, LB, and LP being the characteristic length scales of
variation of the background density, magnetic, and electron
pressure fields, respectively. The parameter r is thus related
to the mechanism providing the drive for the ETG instability.
In particular, in the limit r→0, corresponding to a flattening
of the electron pressure gradient, the linear dispersion rela-
tion indicates that ETG modes degenerate into marginally
stable drift waves.31

In Ref. 30, the authors showed that the systems Eqs. !1"
and !2" possess a Hamiltonian structure in terms of a nonca-
nonical Poisson bracket. This means !see, e.g., Refs. 10 and
33" that the system can be cast in the form

##i

#t
= (#i,H), i = 1, . . . ,n !4"

with #i!x , t" indicating a suitable set of n field variables !with
n=2 in our case" and H##1 , ¯ ,#n$ a Hamiltonian functional
that is conserved by the dynamics. The Poisson bracket (,)
appearing in Eq. !4" is an antisymmetric bilinear binary op-
erator satisfying the Leibniz rule and the Jacobi identity. For
the model of Eqs. !1" and !2", it was shown30 that, with the
choice #1=", #2= p, the Hamiltonian of the system is

H#",p$ =
1
2* d2x+"2 + ,$",2 −

p2

r
- !5"

and the Poisson bracket is
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(F,G) = −* d2x!!" − $2" − x"#L−1F",L−1G"$

+ !p + rx"!#L−1F",Gp$ + #Fp,L−1G"$"" , !6"

where the operator L, and its inverse L−1 are formally de-
fined so that Lf = f −$2f , and L−1Lf =LL−1f = f , for a generic
field f . The subscripts on F and G in Eq. !6" denote func-
tional derivatives with respect to the fields " or p.

Noncanonical Poisson brackets such as Eq. !6" are char-
acterized by the presence of so called Casimir invariants
!see, e.g., Ref. 10", due to degeneracy in the cosymplectic
operator of the bracket. More precisely, a Casimir invariant
of a Poisson bracket is a functional C!#1 , . . . ,#n" that satis-
fies

(C,F) = 0 !7"

for any functional F of the field variables. Because they com-
mute in particular with any H, Casimir functionals are pre-
served during the dynamics. In order to derive the Casimir
invariants of the ETG model, it is convenient to introduce the
variables

P =
p
&r

+ &rx, $ = " − $2" − x , !8"

which correspond to a “translated” pressure and to a variable
analogous to the potential vorticity of the Charney–
Hasegawa–Mima equation,35,36 respectively. In terms of
these variables the model equations read

#

#t
$ = − #L−1!$ + x",$$ + #P,&rx$ , !9"

#

#t
P = #P,L−1!$ + x"$ , !10"

whereas the Hamiltonian and the bracket become

H!$,P" =
1
2* d2x!!$ + x"L−1!$ + x" − P2 + 2&rPx" ,

!11"

(F,G) = −* d2x!$#F$,G$$ + P!#F$,GP$ + #FP,G$$"" ,

!12"

where the bracket is seen to be identical to that for reduced
MHD as first given in Ref. 32.

Applying Eq. !7" we deduce that the equations determin-
ing the Casimir invariants for our system are

#C$,$$ + #CP,P$ = 0,

!13"
#C$,P$ = 0.

By solving Eq. !13" we see that the system admits two inde-
pendent infinite families of Casimirs:

C1 =* d2xH!P", C2 =* d2x$F!P" , !14"

with H and F arbitrary functions. The dynamics described
by the inviscid ETG model is then subject to an infinite
number of constraints imposed by the conservation of the
Casimir invariants Eq. !14". For instance, as a consequence
of the conservation of C2, integrals of the potential vorticity
$ over regions bounded by contour lines of P will be con-
served during the dynamics !see Ref. 37".

Notice that the constant of motion I found in Ref. 30 is
given by

I =* d2x+ p2

r
+ 2!" − $2""p-

= 2&r* d2x$P +* d2xP2 − 2r* d2xx+" − $2" −
x

2
- ,

!15"

which is a linear combination of two particular Casimirs of
Eq. !14" with the realization that the time derivative of

− 2r* d2xx+" − $2" −
x

2
- !16"

vanishes if #" /#x and #" /#y vanish or are periodic at the
boundaries. From this fact one can then identify the presence
of a further constant of motion !which is not a Casimir",
corresponding to

* d2xx!" − $2"" . !17"

From Noether’s theorem one infers that this constant of mo-
tion reflects the invariance of the Hamiltonian with respect to
translations along the y direction.

III. ENERGY STABILITY

The Hamiltonian formalism provides a systematic proce-
dure for implementing the Energy-Casimir method for inves-
tigating stability of equilibria !see, e.g. Refs. 10, 38, and 39",
a stability method that originated in plasma physics in Refs.
40 and 41 that has often been referred to as nonlinear stabil-
ity. This method has been adopted in many works; for ex-
ample, in the context of fluid models for plasmas in Refs.
42–45. It provides sufficient conditions for stability by tak-
ing the second variation of the free energy, the Hamiltonian
plus Casimir invariants, and extracting conditions that are
necessary for definiteness. Because the method is based on
nonlinear constants of motion, the stability conditions ob-
tained are stronger than conditions that emerge from disper-
sion relations, i.e., spectral stability conditions, that follow
entirely from the linear equations of motion. Indeed this sec-
ond variation stability, which we will refer to simply as en-
ergy stability, implies linear stability,10,46 but the converse is
not true. In some works energy stability is called formal
stability when an additional convexity estimate is not pro-
vided. Usually these estimates are rather trivial and even
when they are provided they are only a small part of a math-
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ematically rigorous stability proof—for this reason we es-
chew this terminology.

For noncanonical Hamiltonian systems, equilibrium so-
lutions can be found by solving the equations that result from
extremizing the free energy functional. For our system the
free energy functional is given by F=H+C1+C2 !which is
not to be confused with the generic functional F of our Pois-
son brackets", with H given by Eq. !12" and C1,2 by Eq. !14".
For convenience we introduce the new variables according to
the transformation

% = $ + x, P̄ = P !18"

and then drop the bar on P̄ in the following. In terms of these
variables the Hamiltonian and the bracket become

H!%,P" =
1
2* d2x!%L−1% − P2 + 2&rPx" ,

(F,G) =* d2x!x − %"#F%,G%$ − P!#F%,GP$ + #FP,G%$" .

The free energy functional is then explicitly given by

F!%,P" =
1
2* d2x!%L−1% − P2 + 2&rPx" +* d2xH!P"

+* d2x!% − x"F!P" , !19"

and the equilibrium equations, obtained from setting the first
variation !F equal to zero, are

F% = L−1% + F!P" = 0, !20"

FP = − P + &rx + H!!P" + !% − x"F!!P" = 0, !21"

where the prime denotes derivative with respect to the argu-
ment of the function. Due to the presence of the arbitrary
functions in the Casimirs, such equilibrium equations pos-
sess free functions. Specifying these selects from a class of
equilibrium solutions. In particular, choosing F corresponds
to fixing the relation between the equilibrium stream func-
tion "eq=L−1%eq and the equilibrium translated pressure Peq.

As indicated above, an equilibrium solution of Eqs. !20"
and !21" is energy stable !and therefore linearly" stable, if the
second variation of F, evaluated at that equilibrium, has a
definite sign. In terms of the variables % and P, the second
variation of F reads

!2F =* d2x#!1 − F!!P"",L−1!%,2

+ !1 −2 F!!P"",L−1 $ !%,2 + F!!P"!!% + !P"2

− F!!P"!L−1$2!%"2 + !H"!P" − 1

+ !% − x"F"!P" − F!!P"",!P,2$ . !22"

From Eq. !22" one immediately obtains sufficient conditions
for positive definiteness of !2F in the case of no flow:

F!Peq" . 0 and H"!Peq" & 1. !23"

From Eq. !20", F!Peq".0 implies no flow, while
H"!Peq"&1 gives a condition on the pressure profile. Gen-
erally speaking, the situation with flow, when F!Peq"/0, is
expected to have NEMs.10 However, this case is more com-
plicated to analyze, with the Poincaré inequality often being
of use, but we will not pursue it further here.

IV. DISCRETE NEGATIVE ENERGY MODES

In this section, we first review the theory of NEMs in the
finite degree-of-freedom Hamiltonian context,47 since it ap-
plies directly to finite systems with discrete spectra !e.g. Ref.
8". Subsequently, after carrying out a spectral stability analy-
sis of the system linearized around homogeneous equilibria
with no flow, we make use of the Hamiltonian formalism in
order to detect the presence of NEMs among the stable
modes of the linearized system. Finally we carry out the
explicit transformation that casts the corresponding Hamil-
tonian into normal form.

A. Review of mode signature and normal forms
for linear Hamiltonian systems

A real canonical Hamiltonian linear system with N de-
grees of freedom is generated by the canonical Poisson
bracket

(f ,g) =
# f

#qi

#g

#pi
−

# f

#pi

#g

#qi , !24"

and a quadratic Hamiltonian

HL = 1
2Aijz

izj , !25"

where z= !q1 , . . . ,qN , p1 , . . . , pN", Aij are the elements of a
2N'2N matrix with constant coefficients, and repeated sum
notation is assumed with i , j=1,2 , . . . ,N. The resulting equa-
tions of motion can then be compactly written as

ż = JcAz , !26"

where

Jc = + 0N IN

− IN 0N
- !27"

is the 2N'2N canonical symplectic matrix !cosymplectic
form". Assuming

z = z̃ei(t + z̃!e−i(t, !28"

with ! indicating complex conjugate, Eq. !26" yields the
eigenvalue problem

i()z) = JcAz), ) = 1, . . . ,N , !29"

where we have dropped the tilde on the eigenvectors and
have added an eigenvalue label ). In what follows we will
assume distinct eigenvalues, precluding the existence of non-
trivial Jordan form and possible secular growth in time. We
also assume that the eigenvalues () are real, which is the
case of interest for detecting mode signature. Because our
dynamical variables are real, the remaining N eigenvalues
are given by (−)=−() and the corresponding eigenvectors
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are z)=z)
! . Defining *ªJc

−1, the symplectic two-form, we
construct the quantity

h!),+" ª i()z+
T*z) = z+

TAz), !30"

where T denotes transpose.
It can be easily shown that the property h!) ,+"

−h!+ ,)"=0 holds. Then, from this relation and the antisym-
metry of *, it follows that

h!),+" = 0, if + % − ) . !31"

On the other hand,

h!− ),)" = z−)
T Az) = z)

!T
Az) = i()z)

!T
*z), !32"

is clearly the energy !Hamiltonian HL" of the mode
!z) ,() ;z)

! ,−()". Evidently, z)
!T

*z) is a purely imaginary
number, and a normalization constant for the eigenvectors
can be chosen in such a way that

z)
!T

*z) = , 2i , !33"

with the sign, an invariant, depending on the specific mode
under consideration. Note that the left-hand side of Eq. !33"
represents the Lagrange bracket !symplectic two-form" of z)

!

and z). If z) is an eigenvector, associated with a positive
eigenvalue (), and

z)
!T

*z) = −2 i , !34"

then !z) ,() ;z)
! ,−()" corresponds to a positive energy mode,

otherwise it is a negative energy mode. This can be easily
seen by observing that, in the case of a PEM, the correspond-
ing energy is given by

h!− ),)" = i()z)
!T

*z) = 2() & 0. !35"

Note that, although here we carried out an analysis with ca-
nonical coordinates, Sylvester’s theorem guarantees that the
signature of a mode !i.e., whether it is a PEM or a NEM",
does not depend on the choice of the coordinate system.

The distinction between positive and negative
energy modes becomes even more transparent when we
are reminded that, for stable modes there exists8,12,47

a canonical transformation T : !Q1 , . . . ,QN , P1 , . . . , PN"
→ !q1 , . . . ,qN , p1 , . . . , pN", that casts the quadratic Hamil-
tonian of Eq. !25" into the following normal form:

HL =
1
2 0

)=1

N

-)()!P)
2 + Q)

2" , !36"

where () represents the positive eigenvalues of the linear-
ized system, whereas -)! (−1,1) is the signature of the
mode.

If the system contains unstable modes, then they have a
different normal form. However, if the Hamiltonian is re-
stricted to the stable modes, then it can be written as the
Hamiltonian for a system of N harmonic oscillators with dif-
ferent frequencies. The modes for which -)=−1, which give
a negative contribution to the total energy, correspond to the
NEMs, while those corresponding to -)=1 are, of course,
PEMs.

Once the eigenvalues and eigenvectors of the system are
known, the procedure for constructing the map T is algorith-
mic. First one needs to select, among the 2N eigenvectors of
the system, the N eigenvectors z) that satisfy

z)
!T

*z) = −2 i, ) = 1, . . . ,N . !37"

Then the 2N'2N matrix that defines the transformation is
given by

T = col!Re z1,Re z2 . . . Re zN,Im z1,Im z2, . . . ,Im zN" ,

!38"

which is the matrix with columns given by Re z1 etc. It can
be shown that the transformation constructed in this way is
canonical and indeed provides the desired diagonalization.

B. Mode signature and stability for the ETG
model

Now consider a special case of the no-flow equilibria of
Sec. III, the homogeneous equilibria:

%eq = L−1%eq = 0, Peq = )Px , !39"

where )P is a constant. The equilibrium solution Eq. !39"
corresponds to the choices

F!P" = 0, H!P" =
1
2
+1 −

&r

)P
-P2, !40"

for the Casimir functions that appear in Eqs. !20" and !21".
Linearizing the model equations around this equilibrium

gives the system

%̇̃ = −
#

#y
L−1%̃ − &r

#

#y
P̃ ,

Ṗ̃ = )P
#

#y
L−1%̃ .

Expanding the perturbations as Fourier series, as follows:

% = %̃ = 0
k=−.

+.

%̃k!t"e−ik·x,

!41"

P = )Px + P̃ = )Px + 0
k=−.

+.

P̃k!t"e−ik·x,

yields the amplitude equations

%̇̃k = i
ky

1 + k"
2 %̃k + i&rkyP̃k, !42"

Pk
˜̇ = − i)P

ky

1 + k"
2 %̃k, !43"

whence, the dispersion relation for modes of the form
ei!(t−k·x" is obtained,
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(2 −
ky

1 + k"
2 ( + )P

&rky
2

1 + k"
2 = 0. !44"

This expression is in agreement with that obtained in Ref.
31. The eigenvalues correspond to a slow and a fast mode,
and are given by

(s
k =

k

2!1 + k"
2 "

!1 − &1 −4 !1 + k"
2 ")P&r" , !45"

( f
k =

k

2!1 + k"
2 "

!1 + &1 −4 !1 + k"
2 ")P&r" , !46"

where we have set ky =k. The corresponding eigenvectors are

%̃s,f
k = − (s,f

k 1 + k"
2

)Pk
P̃s,f

k

= −
1

2)P
!1 , &1 −4 !1 + k"

2 ")P&r"P̃s,f
k , !47"

for k&0. The system also possesses the eigenvalues (−s,−f
k

=−(s,f
k , whose eigenvectors are the complex conjugates of

those of Eq. !47".
From Eqs. !45" and !46" we obtain a necessary and suf-

ficient condition for spectral stability, viz.

1 −4 !1 + k"
2 ")P&r & 0 ⇒ )P /

1

4!1 + k"
2 "&r

. !48"

Therefore, if the electron pressure or magnetic field gradients
are such that )P/0, such equilibria are always spectrally
stable ∀k. If )P&0, on the other hand, the equilibrium will
be stable only for k such that 0/)P/1 /4!1+k"

2 "&r is sat-
isfied. In other words, there will always be instability for
sufficiently large k".

The linearized system of Eqs. !42" and !43" inherits a
Hamiltonian formulation from the nonlinear system, one that
can be written in the framework described in Sec. IV A. We
can then take advantage of this fact in order to see whether
NEMs are present in the system and to cast the Hamiltonian
into its normal form.

By using the relation !see, e.g., Refs. 8, 34, and 41"

!F

!%̃
= 0

k=−.

k=+. + !F

!%̃
-

k

e−iky =
1

20
0

k=−.

+.
#F̄

#%̃−k

e−iky , !49"

where F!%̃"= F̄!%̃k", it can be shown that the Hamiltonian
structure of Eqs. !42" and !43", is given by the bracket

(F,G) = 0
k=1

+.
ik

20%+ #F

#%̃k

#G

#%̃−k

−
#F

#%̃−k

#G

#%̃k
-

− )P
2+ #F

#%̃k

#G

#P̃−k

+
#F

#P̃k

#G

#%̃−k

−
#F

#P̃−k

#G

#%̃k

−
#F

#%̃−k

#G

#P̃k
-' . !50"

and the linear Hamiltonian, which is proportional to !2F,

HL = 0
k=1

+.

HL
k = 200

k=1

+. + ,%̃k,2

1 + k"
2 −

&r

)P
,P̃k,2- , !51"

where we have suppressed the sum on kx !note that kx only
appears in the combination k"

2 =kx
2+k2". Although not ca-

nonical, this formulation, in principle is sufficient in order to
detect the presence of NEMs for the equilibrium under con-
sideration. Indeed, as already done for the four-field model
of Ref. 20, we can make use of the property that NEMs can
change their signature only if they become unstable through
a “Kre!n bifurcation,”10 or if the corresponding eigenvalues
go through zero frequency. It is then sufficient to identify a
NEM in a particular limit, and we are then guaranteed that its
signature does not change as long as one of the two above
mentioned phenomena does not occur. Sylvester’s theorem
also guarantees that the signature is independent on the
choice of the coordinates we make. If we fix a wave vector k,
then we can first evaluate the energy associated with the
corresponding mode in the !%̃k , %̃−k , P̃k , P̃−k" coordinates by
inserting eigenvalues and eigenvectors associated to k in the
expression for HL

k . This results in

HLs,f

k = 20+1 −4 &r)P − 2k"
2 )P&r , &1 −4 !1 + k"

2 ")P&r

2)P
2 -

',P̃s,f
k ,2, !52"

which is the energy of the slow and the fast modes of wave
number k !summed over kx". In order to identify PEMs and
NEMs, it is sufficient to consider the limit k"→0, which
yields

HLs,f

k,k"=0 = 20+1 −4 &r)P , &1 −4 )P&r

2)P
2 -,P̃s,f

k ,2. !53"

We can then see that, for the fast mode #corresponding to the
+ sign in Eq. !53"$, HLf

k,k"=0 is positive, and therefore a PEM.
Also, it will remain a PEM as parameters are varied in a
continuous way, until the instability threshold is reached. For
the slow mode, two cases exist for finite )P. If )P/0, then
HLs

k,k"=0 &0 and, again, we have a PEM. If 0/)P/1 / !4&r",
on the other hand, the slow mode is a NEM.

The above mentioned instability, occurring at large k",
for )P&0, indicates a Kre!n bifurcation, which is one of the
possible types of bifurcations occurring in Hamiltonian sys-
tems. These situations are illustrated in Fig. 1. When (s

k is
real and negative, that is for )P/0, both the slow and the
fast modes are PEMs and the two branches correspond to
two dispersive waves with opposite sign. These waves cor-
respond to inviscid drift waves modified by the presence of
the ETG and magnetic field curvature. In the limit r→0,
corresponding to vanishing ETG, the two modes degenerate
into a Hasegawa-Mima drift wave. When (s

k is real and posi-
tive, i.e., for 0/)P/1 /4!1+k"

2 "&r, both modes are still
stable but the slow mode is now a NEM. Comparing the two
plots of Fig. 1, one observes that (s

k went from negative to
positive, i.e., it crossed through zero frequency, while chang-
ing from a PEM to a NEM. For the parameters chosen for the
figure, the instability threshold, due to the presence of ETG,
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occurs at k"11.22. For perpendicular wave numbers above
this value, the equilibrium is indeed unstable. The transition
of the two real eigenvalues into a complex conjugate pair,
occurring at k"11.22, is an example of a Kre!n bifurcation.
Note that, as predicted by Kre!n’s theorem !see, e.g., Ref.
10", if a Kre!n bifurcation between two eigenvalues occurs,
one of them must be a NEM. This is indeed our case.

If we consider now the stability condition Eq. !23" for
no-flow equilibria, together with Eq. !40", we find that the
homogeneous equilibrium Eq. !39" is energy stable if
H"!Peq"&1, which is equivalent to )P/0. Indeed, if this
condition is satisfied, the equilibrium is stable, with no
NEMs. If we now use the actual pressure p, as a variable,
and consider the corresponding homogeneous equilibrium
peq=apx=&r!)P−&r"x, we can reformulate our results in the
following way. If the equilibrium pressure gradient is such
that ap/−r !i.e., )P/0", then the system is energy stable for
every k. If, on the other hand, −r/ap/−r+1 /4!1+k"

2 " !i.e.,
0/)P/1 / !4!1+k"

2 "&r" then the system becomes unstable
through a Kre!n bifurcation at a critical k", for fixed r. For
k" below this critical value, the equilibrium is spectrally
stable but not energy stable. Indeed, the slow mode in this
case is a NEM, which makes the equilibrium fragile with
respect to the addition of dissipation or nonlinearities.

C. Normal form for the Hamiltonian of the ETG model

The explicit knowledge of the eigenvalues of the linear-
ized system, makes it possible to cast the Hamiltonian into

its normal form, as discussed in Sec. IV A. First of all we
point out that the transformation !%̃k , %̃−k , P̃k , P̃−k"
→ !qk

1 ,qk
2 , pk

1 , pk
2", corresponding to

qk
1 =& 0

k)P
2 !P̃k + )P%̃k + P̃−k + )P%̃−k" ,

pk
1 = − i& 0

k)P
2 !P̃k + )P%̃k − P̃−k − )P%̃−k" , !54"

qk
2 =&0

k
!%̃k + %̃−k", pk

2 = i&0

k
!%̃k − %̃−k" ,

puts the system into canonical Hamiltonian form. Indeed, in
terms of the variables !qk

1 ,qk
2 , pk

1 , pk
2", the bracket of Eq. !50"

takes the canonical form

(F,G) = 0
k=1

.
#F

#q1
k

#G

#p1
k −

#F

#p1
k

#G

#q1
k +

#F

#q2
k

#G

#p2
k −

#F

#p2
k

#G

#q2
k .

!55"

The Hamiltonian Eq. !51" in terms of the new variables, on
the other hand, reads

HL =
1
20

k=1

.

0
i,j=1

4

Aij
k zi

kzj
k, !56"

where

Ak =2a c 0 0

c b 0 0

0 0 a − c

0 0 − c b
3, zk = !q1

k,q2
k,p1

k,p2
k" !57"

with a=−&r)Pk, b=k!1 / !1+k"
2 "−&r)P", and c=&r,)P,k.

We emphasize that the transformation Eq. !54" is constructed
in such a way that the canonical variables qi

k and pi
k are real.

We are thus in the framework depicted in Sec. IV A. For
each k, the equations of motion are given by

zk̇ = JcA
kzk. !58"

Upon writing the variables as

q1,2
k = z̃1,2

k ei(kt + z̃1,2
k!

e−i(kt, p1,2
k = z̃3,4

k ei(kt + z̃3,4
k!

e−i(kt,

!59"

and dropping the tilde in the following, we obtain that the
eigenvectors of the linearized system are

zs
k = q1s

k 2
1

− B−

− i

− iB−

3, z−s
k = q1s

k!2
1

− B−

i

iB−

3 ,

!60"

FIG. 1. Depiction of two possible mode signature situations for ETG modes,
depending on the sign of )P. The plot on the left refers to the case of
negative )P !)P=−0.3, &r=0.2". In this case both modes are PEMs and the
system is energy stable. In the plot on the right, )P is positive !)P
=0.5, &r=0.2". For 0/k"/1.22, the equilibrium is stable, but the slow
mode is a NEM. A Kre!n bifurcation occurs at k"=1.22.
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zf
k = q1f

k 2
1

− B+

− i

− iB+

3, z−f
k = q1f

k!2
1

− B+

i

iB+

3 .

These are the eigenvectors corresponding to the eigenvalues
(s

k, (−s
k , ( f

k, and (−f
k , respectively. In Eq. !60" we introduced

the quantities

B, =
b + a , &!b + a"2 − 4c2

2c
, !61"

whereas q1s,f

k are complex coefficients. Following Sec. IV A,
the Lagrange bracket for the slow mode reads

z−s
kT

*zs
k = 2i!1 − B−

2"q1s
k!

q1s
k . !62"

Direct calculation shows that

1 − B−
2 = −

&!b + a"2 − 4c2!&!b + a"2 − 4c2 − !b + a""
2c2

& 0. !63"

To obtain the inequality in Eq. !63", we made use of the fact
that, for stable modes, &!b+a"2−4c2/b+a.

The inequality Eq. !63" tells us that, for slow modes, we
must pick up the plus sign in the general expression Eq. !33".
Moreover, if we choose the normalization constants so that

q1s
k = q1s

k!
=

1
D−

.
1

&1 − B−
2

, !64"

we obtain that the Lagrange bracket for slow modes becomes

z−s
kT

*zs
k = 2i . !65"

Of course,

zs
kT

*z−s
k = −2 i , !66"

and consequently, according to the definition, given in Sec.
IV A, we have a PEM, when (−s

k =−(s
k&0, and a NEM when

(−s
k =−(s

k/0. This confirms the results we obtained in Sec.
IV B with noncanonical variables.

Following the same procedure for the fast mode, we find

z−f
kT

*zf
k = 2i!1 − B+

2"q1f
k!

q1f
k . !67"

Given that 1−B+
2 /0, the Lagrange bracket for the fast mode

becomes

z−f
kT

*zf
k = −2 i , !68"

after having chosen the following normalization for the
eigenvectors:

q1f
k = q1f

k*
=

1
D+

.
1

&B+
2 − 1

. !69"

Because ( f
k is always positive, according to the definition,

Eq. !68" tells us that the fast mode, as expected, is always a
PEM.

The transformation that casts the Hamiltonian Eq. !56"
into normal form, following Sec. IV A, will be a real canoni-

cal transformation Tk that, for each k, maps a new set of
coordinates z̄k= !Q1

k ,Q2
k , P1

k , P2
k", in terms of which the

Hamiltonian is diagonal, into zk.
After noticing that

z−s
k!T

*z−s
k = −2 i , !70"

zf
k!T

*zf
k = −2 i , !71"

the matrix associated with the application Tk is constructed in
the following way:

Tk =2
1

D−

1
D+

0 0

−
B−

D−
−

B+

D+
0 0

0 0
1

D−
−

1
D+

0 0
B−

D−
−

B+

D+

3 . !72"

Direct calculation shows that

TkT
AkTk =2− (s

k 0 0 0

0 ( f
k 0 0

0 0 − (s
k 0

0 0 0 ( f
k
3 . !73"

Consequently, the Hamiltonian Eq. !56", restricted to the
stable modes, can be finally written as

HL! =
1
20

k
! 0

i,j=1

4

!Tkz̄k"i
TAij

k !Tkz̄k" j

=
1
20

k
!( f

k!Q2
k2

+ P2
k2

" − (s
k!Q1

k2
+ P1

k2
" , !74"

where the prime on the sum indicates that the latter includes
only the stable modes. The expression Eq. !74" corresponds
to the normal form for the Hamiltonian of the linearized
ETG model for stable modes. It clearly shows how the cor-
responding energy can be decomposed into the sum of ener-
gies of harmonic oscillators which possess, as characteristic
frequencies, those of the fast and slow modes. The harmonic
oscillators associated with the fast modes always provide a
positive contribution to the total energy. Those associated to
the slow modes, on the other hand, give a negative contribu-
tion if (s

k&0, which translates into the condition on the equi-
librium pressure gradient discussed in Sec. IV B.

V. A CASE WITH EQUILIBRIUM SHEAR FLOW

The analysis of Sec. IV, restricted to homogeneous equi-
libria, serves as a first step for understanding the modes
present in a model and their stability. More realistic equilib-
ria possess spatial dependence and the possibility of flows
with shear. The analysis of systems linearized around such
equilibria, however, is considerably more complicated than
in the case of homogeneous equilibria, and the presence of a
continuous spectrum is to be expected. Here we treat the
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problems of the identification of negative energy modes and
the reduction to normal form for such an equilibrium with a
shear flow.

To simplify matters we consider a reduced stable situa-
tion. The combined action of forcing and dissipation can
maintain both density and pressure gradients. For example,
in the context of rotating fluids Ekman drag and the input of
vorticity by appropriate pumping can be used to select a
particular " !see e.g. Ref. 48". In a similar vein, here we
follow49 and envision a situation where the pressure profile is
maintained relative to the density profile. With such a frozen
pressure profile, where v ·$p is maintained by the combined
action of drive and dissipative processes, Eq. !2" is solved by
the linear relation p=1"−rx, with constant parameter 1.
Then, the dynamics is determined by Eq. !1" alone, which
becomes

#

#t
!1 − $2"" = #",$2"$ − !1 + 1"

#"

#y
, !75"

and it is clear that our system still supports drift waves;
since, with the above assumptions, we have a version of the
Hasegawa–Mima equation. Note, no explicit assumption has
been made on the size of r. By effecting the transformation
"→ "̄+ !1+1"x and ȳ=y+ !1+1"t, the above equation be-
comes

#

#t
!1 − $2""̄ = #"̄,$2"̄$ . !76"

Lastly, since unstable modes at very large wavenumbers are
unphysical and, particularly, because we are interested in
demonstrating how to handle the continuous spectrum we
consider the part of the spectrum with k21, and obtain

#

#t
3 + #",3$ = 0, !77"

where 3=$2", and we dropped the overbars for simplicity.
Thus we obtain a system homologous to Euler’s equation for
two-dimensional fluids.

With the above reduction the Hamiltonian of Eq. !5"
reduces to

H#3$ =
1
2* d2x,$",2, !78"

where the integration here !and in all integrals below" is over
#−1,1$' #0,20$, the noncanonical Poisson bracket of Eq.
!6" reduces to

(F,G) =* d2x3#F3,G3$ , !79"

and the equation of motion of Eq. !77" is generated as fol-
lows:

#3

#t
= (3,H) = #3,"$ . !80"

We note that this kind of Hamiltonian reduction can be done
in a systematic way by using Dirac constraint theory,36 but
we will not pursue this here.

The bracket of Eq. !79" is the standard bracket for fluid
and plasma theories with two ‘spatial’ variables. It first ap-
peared in the Vlasov–Poisson context in Ref. 50, for two-
dimensional Euler equation in Refs. 33, 51, and 52, and a
generalization with arbitrary interaction in Refs. 53. All of
these systems are amenable to the kind of analysis presented
below.

This system Eq. !80" conserves the quantities

C#3$ ª* d2xC!3" ,

!81"

Px#3$ ª* d2xy3, Py#3$ ª −* d2xx3 ,

where the first satisfies (F ,C)=0 for all functionals F and is
thus a family of Casimir invariants, while the second two,
the relative momenta, are dynamical invariants and satisfy
(Px ,H)= (Py ,H)=0.

For the shear flow equilibrium of interest here, the po-
tential "eq and charge 3eq must satisfy

#3eq,"eq$ = 0, $2"eq = 3eq, !82"

the case of interest here being 3eq!x"=veq! !x"="eq" !x", where
prime denotes d /dx. We take veq to be monotonic for x
! #−1,1$ and assume stability, which can be guaranteed by
the techniques of Ref. 54 for establishing necessary and suf-
ficient conditions for stability of shear flow.

Setting "="eq+!" and 3=3eq+!3 and expanding Eq.
!77" to first order, gives

#!3

#t
+ veq

#!3

#y
− veq"

#!"

#y
= 0, !83"

with $2!"=!3. This linear dynamics conserves the func-
tional

HL#!3$ =
1
2* d2x%veq

veq"
!!3"2 − !3!"' , !84"

which physically corresponds to the total energy contained in
a perturbation away from the equilibrium state and is the
Hamiltonian for the linear dynamics. Thus with the linear
bracket

(F,G)L =* d2x3eq#F!3,G!3$ , !85"

Eq. !83" has the form #!3 /#t= (!3 ,HL)L.
As in Sec. IV, we consider a Fourier expansion !"

=0k"k!x , t"exp!iky" and !3=0k3k!x , t"exp!iky", but unlike in
Sec. IV we only expand in y, where k is the poloidal wave-
number, and obtain

#3k

#t
+ ikveq3k − ikveq" "k = 0, !86"

with

"k!x,t" = *
−1

1

dx!Kk!x,x!"3k!x!,t" , !87"

where
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Kk!x,x!"

= 4 sinh#k!x − 1"$sinh#k!x + 1"$/k sinh#2k$ for x & x!,

sinh#k!x! − 1"$sinh#k!x + 1"$/k sinh#2k$ for x 4 x!.
5

!88"

The boundary conditions are "k!x= ,1, t"=0.
Canonization of the bracket of Eq. !85" proceeds as in

Sec. IV. With the Fourier expansion it becomes

(F,G)L = 0
k=1

. * dxik3eq! + !F

!3k

!G

!3−k
−

!G

!3k

!F

!3−k
- , !89"

and by introducing the new variables qk!x , t"ª3k!x , t" and
pk!x , t"ª−3−k!x , t" / !ik3e!", we obtain the canonical form

(F,G)L = 0
k=1

. * dx+ !F

!qk

!G

!pk
−

!G

!qk

!F

!pk
- , !90"

where qk and pk are canonically conjugate variables.
The Hamiltonian for the linear dynamics is given by

Eq. !84", which with the insertion of the Fourier expansion
becomes

HL = 0
k=1

. * dx+veq

veq"
3k − "k-3−k

= 0
k,k!=1

. * dx* dx!3k!x"Ok,k!!x,x!"3k!!x!" , !91"

where Ok,k!!x ,x!"ª!k,−k!!veq!!x−x!" /veq" −Kk!x ,x!"". From
Eq. !91" it is clear that this Hamiltonian is not diagonal; i.e.,
it does not possess a form that is the infinite-dimensional
generalization of a sum over oscillators. This remains true
even after rewriting it in terms of the canonical variables
!qk , pk". However, we will see that a coordinate change that
uses a particular integral transform produces this diagonal-
ization.

To diagonalize the Hamiltonian while maintaining the
Hamiltonian form we introduce the following mixed variable
generating functional, the essence of which is determined by
an integral transform Ĝ described in Appendix A:

F#q,P$ = 0
k=1

. * dxPk!x"Ĝ#qk$!x" . !92"

The transformation to the new canonical variables !Qk ,Pk" is
given by the following:

pk!x" =
!F#q,P$
!qk!x"

= Ĝ†#Pk$!x" ,

!93"

Qk!x̄" =
!F#q,P$
!Pk!x̄"

= Ĝ#qk$!x̄" ,

where x̄ is the independent variable for the transformed func-
tion.

Now we insert the transformations of Eq. !93" into Eq.
!91" and show that this gives a diagonal form. Rewriting Eq.
!91" as HL=0k=1

. 6dx!−ikveqqkpk+ ikveq" 5kpk" and inserting
pk= Ĝ†#Pk$ and qk=G#Qk$ yields

HL = − i0
k=1

. * dx̄kPk!Ĝ#veqG#Qk$$ − Ĝ#veq"k$" , !94"

which upon making use of Eqs. !A15" and !A16" gives

HL = i0
k=1

. * dx̄-k!x̄"(k!x̄"PkQk

=
1
20

k=1

. * dx̄-k!x̄"(k!x̄"!Pk
2 + Qk

2" , !95"

where the transformation giving the second equality of Eq.
!95" is elementary, (k!x̄"ª ,kveq!x̄",, and the signature is de-
fined by -k!x̄"ªsgn!veq" /veq".

Several comments can be made about the form of Eq.
!95". Because of the integration over x̄, there is a continuum
of eigenvalues (k!x̄", and because of the presence of -k, this
continuum may have positive or negative energy. The exis-
tence of the continuum is expected, since it is well-known
that systems of the form of Eq. !86" possess a continuous
spectrum, which can be shown rigorously !see, e.g., Refs. 53
and 55". Next, if veq" %0, i.e., Rayleigh’s condition56 is satis-
fied, then the system is stable and it is always possible to
transform to the normal form of Eq. !95" with a sign definite
!positive or negative" energy. However, when there is a point
within the domain where veq" =0, then the system may still be
stable, yet the energy not sign definite. When this is the case
there exist negative energy continua. This situation is analo-
gous to that of Sec. IV and one anticipates Kre!n-like possi-
bilities for the transition to instability. Indeed such is the
case, and the continuum generalization of Kre!n’s theorem
has been thoroughly investigated in the context of the Vlasov
equation in Ref. 55. The same general results apply here, but
this is beyond the scope of the present work.

VI. CONCLUSIONS

By making use of the Hamiltonian formalism, we have
analyzed the mode signature and the stability properties of an
ETG fluid model. The families of Casimir invariants of the
model were obtained, thereby showing that the dynamics of
the model is subject to an infinite number of constraints. A
general energy stability condition has been derived, accord-
ing to which, the absence of equilibrium flow and a restric-
tion on the pressure equilibrium profile imply stability. Sub-
sequently, after reviewing the concept of mode signature in
the Hamiltonian framework, we have explicitly determined
the energies of stable modes about homogeneous equilibria.
From the stability viewpoint, the dispersion relation gives us
a spectral stability condition which, however, does not give
us information about the stronger condition of energy stabil-
ity. Indeed, our analysis shows that spectrally stable homo-
geneous equilibria can be of two types, depending on the

032115-10 E. Tassi and P. J. Morrison Phys. Plasmas 18, 032115 !2011"

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



value of the parameters. If )P/0, equilibria are spectrally
and energy stable !i.e., with no NEMs". If 0/)P/1 / !4!1
+k"

2 "&r", on the other hand, equilibria are still spectrally
stable, but they are not energy stable. Indeed, the sign of the
second variation of the free energy functional, in this case, is
indefinite because of the presence of NEMs. Equilibria of the
second type might then be prone to dissipation-induced or
nonlinearity-induced instabilities. Finally, we analyzed a re-
duced model with shear flow and described an integral trans-
form that allows the transformation to normal form when
there is a continuous spectrum and in this way identified
negative energy continua. As anticipated in Sec. I, one of the
advantages of the Hamiltonian formalism for investigating
stability and mode signature, is that it is very general and can
be applied to any plasma model with a Hamiltonian struc-
ture.
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APPENDIX A: THE INTEGRAL TRANSFORM—
COORDINATE CHANGE

In this appendix we examine a particular example of a
class of integral transforms that generate diagonalizing ca-
nonical transformations for theories with Poisson brackets of
the form of Eq. !79". Specific examples and related back-
ground material for this Hamiltonian approach can be found
in Refs. 14, 53–55, and 57–64. Alternatively, one could ap-
proach diagonalization by considering the eigenvalue prob-
lem, as was done in Sec. IV, but here because of the continu-
ous spectrum this entails a generalization of Van Kampen’s
treatment of plasma oscillations65 or use of an approach
based on hyperfunction theory !microlocal analysis".21,22 We
have found the Hamiltonian integral transform approach,
based on a generalization of the Hilbert transform, to be a
natural tool for handling continuous spectra. It has also
proven useful, in much the same was as the Hilbert transform
for analytic signal processing, for analyzing experimental
data.66,67

1. Transform pair

The transform used here is defined by

Gk#%k$!x,t" ª *
−1

1

dx̄Gk!x, x̄"%k!x̄,t" = 3k!x,t" , !A1"

where %k!x̄ , t" is here being transformed into 3k!x , t", with t
only acting as a parameter, and the kernel defined by

Gk!x, x̄" ª 6k!x"!!x − x̄" + P
veq" !x""k!x, x̄"
veq!x" − veq!x̄"

, !A2"

6k!x" ª 1 − P*
−1

1

dx!
veq" !x!""k!x!,x"
veq!x!" − veq!x"

, !A3"

where P denotes Cauchy principal value and "k!x , x̄" is a
solution to a regular Fredholm equation

"k!x, x̄" = Kk!x, x̄" + *
−1

1

dx!Fk!x,x!; x̄""k!x!, x̄" , !A4"

with the kernel defined by

Fk!x,x!; x̄" = %Kk!x,x!" − Kk!x, x̄"
veq!x!" − veq!x̄" 'veq" !x!" , !A5"

with Kk defined by Eq. !88".
Evidently from the above, the transform of Eq. !A1" is

tailored to the particular veq!x" under consideration. Also,
note that upon insertion of Eq. !A2" into Eq. !A1", the trans-
form is seen to be the sum of a multiplicative piece plus a
piece that is a generalization of the Hilbert transform !see
e.g., Ref. 68". Lastly, note that the functions 6k and "k!x , x̄"
only need to be calculated once for a given veq. Generally
this must be done numerically, but solution techniques are
readily available to calculate the Cauchy integral of Eq.
!A3", and it is a simple matter to rapidly obtain a solution to
the regular Fredholm problem Eq. !A5".

The inverse of Eq. !A1", subject to the conditions of
monotonicity and no discrete spectrum, which we have im-
posed on veq, is given by

Ĝk#3k$!x̄,t" ª *
−1

1

dxĜk!x̄,x"3k!x,t" , !A6"

where

Ĝk!x̄,x" =
1

,6k!x̄",2%6k!x̄"!!x − x̄" + P
veq" !x̄""k!x, x̄"
veq!x" − veq!x̄"' ,

!A7"

and where ,6k!x",2ª6k
2+ 6̂k

2 with 6̂k!x"
ª−0"k!x̄ , x̄"veq" !x" /veq! !x".

If Ĝk is to be the inverse of the transform Gk, then
Ĝk#Gk#%k$$.%k, which follows if

*
−1

1

dxĜk!x̄!,x"Gk!x, x̄" = !!x̄ − x̄!" . !A8"

This inverse relation can also be viewed as a completeness
relation for the continuous spectrum. We verify Eq. !A8"
below. In a similar fashion we have the reciprocal complete-
ness relation,
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*
−1

1

dx̄Ĝk!x̄,x!"Gk!x, x̄" = !!x − x!" . !A9"

2. Transform inverse

Now we show that the transform Eq. !A1" is the inverse
of Eq. !A6". Under mild restriction on the profiles veq, many
rigorous results can be obtained. We will not pursue these
here, but instead direct the reader to Refs. 55 and 59 where
corresponding proofs are given in the context of the Vlasov-
Poisson equation—the situation in the present case is much
the same.

Substituting the explicit forms of Ĝk!x̄ ,x" and Gk!x , x̄!"
into Eq. !A8", gives

*
−1

1

dxĜk!x̄!,x"Gk!x, x̄"

= 6k!x̄"2!!x̄ − x̄!" +
veq" !x̄!"

veq!x̄" − veq!x̄!"
#6k!x̄""k!x̄, x̄!"

− 6k!x̄!""k!x̄!, x̄"$

+
veq" !x̄!"

,6k!x̄!",2
P*

−1

1

dx
veq" !x""k!x, x̄""k!x, x̄!"

#veq!x" − veq!x̄"$#veq!x" − veq!x̄!"$
.

!A10"

To evaluate the integral of the final term of Eq. !A10" we use
the relation,

veq" !x̄!"P*
−1

1

dx
veq" !x""k!x, x̄!""k!x, x̄"

#veq!x" − veq!x̄!"$#veq!x" − veq!x̄"$

= 6̂k!x̄"2!!x̄ − x̄!" +
veq" !x̄!"

veq!x̄" − veq!x̄!"
P

'*
−1

1

dxveq" !x""k!x, x̄!""k!x, x̄"% 1

veq!x" − veq!x̄"

−
1

veq!x" − veq!x̄!"' , !A11"

which is a form of the Poincaré–Bertrand transposition for-
mula !see, e.g., Ref. 69". Using Eq. !A11" and collecting
together terms, Eq. !A10" becomes

*
−1

1

dxĜk!x̄!,x"Gk!x, x̄" = !!x̄ − x̄!" +
veq" !x̄!"

veq!x̄" − veq!x̄!"
Jk!x̄, x̄!"
,6k!x̄!",2

,

!A12"

where

Jk!x̄, x̄!" ª 6k!x̄""k!x̄, x̄!"

+ P*
−1

1

dx
veq" !x""k!x, x̄""k!x, x̄!"

veq!x" − veq!x̄"

− 6k!x̄!""k!x̄!, x̄"

− P*
−1

1

dx
veq" !x""k!x, x̄!""k!x, x̄"

veq!x" − veq!x̄!"
. !A13"

Equation !A4" can be rewritten as

"k!x, x̄" = 6k!x̄"Kk!x, x̄"

+ P*
−1

1

dx!Kk!x,x!"
veq" !x!""k!x!, x̄"
veq!x!" − veq!x̄"

. !A14"

Insertion of Eq. !A14" into the first and third terms of Eq.
!A13" and into the second "k of the integrands of the second
and fourth terms, reveals that Jk!x̄ , x̄!".0. Hence, we have
verified Eq. !A8" and finally that Eq. !A1" is the inverse of
Eq. !A6".

3. Transform identities

Just as Fourier and Laplace transforms possess many
useful identities, there are a variety of identities possessed by
Gk and Ĝk. We state two such transform identities used in
Sec. V:

Ĝk#veq3k$!x̄,t" = veq!x̄"Ĝk#3k$!x̄,t"

+
veq" !x̄"

,6k,2!x̄"
P*

−1

1

dx3k!x,t""k!x, x̄" !A15"

and

Ĝk#veq" "k$!x̄,t" =
veq" !x̄"

,6k,2!x̄"
P*

−1

1

dx3k!x,t""k!x, x̄" , !A16"

where Eq. !A16" is valid if 3k is related to "k according to
Eq. !87". The validity of these identities can be demonstrated
in a manner similar to our demonstration of Eq. !A8".

For the record we state two additional orthogonality-like
identities,

*
−1

1

dxĜk!x̄,x"Ĝk!x̄!,x"veq" !x" =
veq" !x̄"

,6k,2!x̄"
!!x̄ − x̄!"

and

*
−1

1

dx%veq!x"
veq! !x"

Gk!x, x̄" − "k!x, x̄"'Gk!x, x̄!"

=
veq!x̄"
veq" !x̄"

,6k,2!x̄"!!x̄ − x̄!" .

These last two identities are not used in this paper.
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