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Vortex structures and related heat transport properties in slab electron temperature gradient !ETG"
driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov
simulations, with the aim of elucidating the underlying physical mechanisms of the transition from
turbulent to coherent states. Numerical results show three different types of vortex structures, i.e.,
coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady
transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel
compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is
correlated with the strong generation of zonal flows for the cases with weak parallel compression,
even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow
generation in the ETG turbulence is investigated by the modulational instability analysis with a
truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is
incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of
the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth
of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex
structures is observed. © 2011 American Institute of Physics. #doi:10.1063/1.3535584$

I. INTRODUCTION

Microscale turbulence driven by drift wave instabilities
has extensively been studied in order to elucidate mecha-
nisms of anomalous transport of particle, momentum, and
heat in magnetically confined plasmas.1 A number of works
have been dedicated so far to gyrokinetic and gyrofluid simu-
lations of ion temperature gradient !ITG" driven turbulence,
where a spontaneous generation of zonal flows regulating the
ion heat transport has been revealed.2–9 Zonal flows with the
radial scale length of the ion gyroradius have also been ob-
served experimentally by a direct measurement of electro-
static potential fluctuations.10

Electron temperature gradient !ETG" modes and/or
trapped electron modes are more recently investigated theo-
retically and numerically as a main cause of the anomalous
electron heat transport.11–20 Since the perpendicular gyromo-
tion of ambient ions with large gyroradii shields the zonal
component of potential fluctuations, the zonal flow genera-
tion and the resultant turbulence suppression are weaker than
those in the ITG case.21,22 Thus, the ETG turbulence inher-
ently involves various vortex structures, such as turbulent
vortices, zonal flows, and radially elongated streamers,
which strongly depend on geometrical and plasma param-
eters. Especially, the nonlinear dynamics of streamers, which
may lead to substantial enhancement of the heat transport in
toroidal systems, has been actively pursued.11,13–15,18 From
the aspect of turbulence control with regulating the heat
transport in the future fusion plasmas, it is worthwhile to
understand fundamental physics behind the formation of

vortex structures including zonal flows and its stability, as
well as the related transport properties.

In our earlier work,23 we have investigated vortex struc-
tures in the slab ETG turbulence as well as velocity-space
structures of the distribution function by means of the gyro-
kinetic Vlasov simulations with high phase-space resolution
and have found the formation of coherent vortex streets ac-
companied with the significant transport reduction in the
nonlinear phase. Detailed analysis of the distribution func-
tion clarified that the transport reduction is associated with
the phase matching between the potential and temperature
fluctuations rather than the reduction of the fluctuation am-
plitude. Furthermore, we have revealed that a traveling wave
solution of a Hasegawa–Mima type equation derived from
the gyrokinetic equation for electrons describes well the co-
herent vortex streets found in the turbulence simulation.

In the present paper, a comprehensive parameter study of
the slab ETG turbulence is carried out by means of the non-
linear gyrokinetic Vlasov simulations, with the aim of eluci-
dating underlying physical mechanisms of the transition of
vortex structures from turbulent to coherent ones and the
related transport reduction. Especially, the dependence on the
magnitude of the parallel compression, which causes cou-
plings with the higher-order fluid moments, and the electron
temperature gradient is intensively examined. The detailed
analyses reveal a critical condition of the transition of vortex
structures associated with the parallel dynamics and may
provide one a useful insight into the turbulence control.

Although the present study is limited to the two-
dimensional slab system, it also contributes to a deeper un-
derstanding of the toroidal ETG turbulence. Actually, in thea"Electronic mail: nakata.motoki@nifs.ac.jp.
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toroidal system with a reversed magnetic shear profile, the
effect of the parallel compression becomes more important in
a weak magnetic shear region where the magnetic drift fre-
quency decreases and the slab ETG modes may be destabi-
lized as well as the toroidal ones.17–20

In the latter part of this paper, we discuss the dependence
of zonal flow generation on the magnitude of the parallel
compression based on the modulational instability analysis
with a truncated fluid model, where the parallel dynamics
such as acoustic modes due to the electron inertia is taken
into account. This is an extension of the conventional modu-
lational instability analysis by means of the Hasegawa–Mima
type model.19,24–27

The remainder of this paper is organized as follows. A
simulation model used in the present study is described in
Sec. II. Nonlinear simulation results of the slab ETG turbu-
lence are presented in Sec. III. Then, we discuss in detail the
transition of vortex structures, which is closely associated
with the zonal flow generation, as well as the related trans-
port properties. In order to find qualitative understanding of
the transition of vortex structures, the modulational instabil-
ity analysis is carried out in Sec. IV, where the dependence
of the zonal flow growth rate on the magnitude of the parallel
compression is compared with the turbulence simulation re-
sults. Finally, concluding remarks on the present study are
given in Sec. V.

II. SIMULATION MODEL AND LINEAR ANALYSIS

A gyrokinetic model considered here is the same as that
used in a previous work on slab ETG/ITG turbulence
simulations.23 Time evolution of the perturbed gyrocenter
distribution function !fk!

!g" is numerically solved, where the
equilibrium part is assumed to be the local Maxwellian. Also,
we assume that "!-dependence of !fk!

!g" is given by the local
Maxwellian, i.e., !fk!

!g"!"! ,"% , t"=FM!!"!"!fk!
!"% , t", where

FM!&!me /2#Te"exp!−me"!
2 /2Te". This treatment enables

us to keep high resolution in the wave number and the
"%-space and then the fine-scale structures of the distribution
function are accurately resolved as well as the turbulent vor-
tices. A periodic two-dimensional slab configuration with a
uniform magnetic field is considered in the present study,
where the plasma is assumed to be homogeneous in the
z-direction. The magnetic field B is set in the y-z plane such
that B=B!ez cos $+ey sin $"'B!ez+$ey" for $%1, where
(ex ,ey ,ez) and $ denote the unit basis vectors in a local
Cartesian coordinate system and the tilt angle of field lines,
respectively. The x-, y-, and z-directions considered here cor-
respond to the radial, poloidal, and toroidal directions in a
toroidal system, respectively. Neglecting the parallel nonlin-
earity on the gyrokinetic equation28 and integrating over the
"!-space, one obtains the following equation for the per-
turbed distribution function !fk!

!"% , t" written in the wave
number space:
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Here, the perpendicular wave number vector is given by
k!=kxex+kyey. Since kz vanishes due to the translational
symmetry in the z-direction, the parallel wave number is re-
duced to k% =$ky. The electron thermal gyroradius is defined
by *te&"te /+e, where "te&!Te /me"1/2 and +e&eB /mec
are the electron thermal speed and the electron gyro-
frequency, respectively. The gyrophase-averaged potential
fluctuation integrated over the "!-space is denoted by
!'k!

&!,k!
exp!−k!

2 *te
2 /2", where !,k!

represents the po-
tential fluctuation evaluated at the particle position. The sym-
bol ,! appearing in the nonlinear term of Eq. !1" stands for
the summation over Fourier modes which satisfy the
triad-interaction condition, i.e., k!=k!! +k!" . The background
Maxwellian distribution with respect to "% is denoted
by FM% &n0!me /2#Te"1/2exp!−me"%

2 /2Te". Since, in general,
the gradient scale lengths of the equilibrium density
Ln&−!d ln n0 /dx"−1 and the equilibrium temperature
LT&−!d ln Te /dx"−1 are much longer than scale lengths of
the turbulent fluctuations in the direction perpendicular to the
magnetic field, we set Ln and LT to be constant here. The
inhomogeneities of n0 and Te appear in the electron drift
frequency ("e&!cTe /eBLn"ky = !"te /Ln"ky*te and the electron
temperature gradient parameter )e&Ln /LT. Also, we intro-
duce a dimensionless parameter - associated with the tilt
angle of magnetic field lines !-&k%LT /ky*te=$LT /*te". The
tilt angle parameter - reflects the magnitude of the parallel
advection !or the parallel compression" term in proportion to
k% and turns out to be an important parameter for the transi-
tion of the vortex structures in the slab ETG turbulence as
discussed in Sec. III.

A weak collisional effect is introduced in terms of a
model collision operator given by C%!!fk!

"&.e#"%
!"te

2 #"%

+"%"!fk!
, where .e is the electron collision frequency. The

collision operator acting on !fk!
smoothes out the fine-scale

fluctuations generated in the "%-space.
The electrostatic potential fluctuation is determined by

the Poisson equation written in the wave number space as
follows:

k!
2 /De

2 n0

e!,k!

Te
= .1 d"J0

i !f ik!

!g" − n0

e!,k!

Ti
!1 − 00

i "/
− .1 d"J0

e!fek!

!g" + n0

e!,k!

Te
!1 − 00

e"/ ,

!2"

where /De&!Te /4#n0e2"1/2 is the electron Debye length. The
first and the second terms on the right hand side of Eq. !2"
denote the ion-particle-density and the electron-particle-
density fluctuations represented with the gyrocenter distribu-
tion functions, respectively. The factors J0

s and 00
s are defined

by J0
s &J0!k!"! /+s" and 00

s & I0!k!
2 *ts

2 "exp!−k!
2 *ts

2 " with the
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zeroth-order Bessel and modified-Bessel functions, respec-
tively, where the superscripts and subscripts “s” indicate the
particle species for ions and electrons. Characteristic scale
lengths of the ETG turbulence are, in general, comparable to
the electron thermal gyroradius, which is much shorter than
the ion one, i.e., /=2# /k!2*te%*ti. Since J0

i and 00
i be-

come negligibly small in the limit of k!*ti11, the ion den-
sity response to the potential fluctuation is thus reduced to
the adiabatic one. Additionally, we assume that the scale
lengths of turbulent fluctuations are longer than the electron
Debye length and ignore the term proportional to k!

2 /De
2 in

Eq. !2". These arguments and the integration for "! reduce
the Poisson equation described above to the quasineutrality
condition with the adiabatic ion response as follows:

1 d"%!fek!
= − n02k!

e!'k!

Te
, !3"

where 2k!
&exp!k!

2 *te
2 "!1+3−00

e" with 3&Te /Ti.
Using the closed set of equations described above, one

can derive a balance equation with respect to the entropy
variable !S defined by a functional of the distribution func-
tion !fk!

,

d

dt
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D & ,k!
1 d"%C%!!fk!

"
!fk!

"

FM%

denote the entropy variable, the potential energy, the entropy
production due to the turbulent heat flux driven by the elec-
tron temperature gradient !thermodynamic force", and the
collisional dissipation, respectively. In a statistically steady
state of the ETG turbulence, the entropy balance relation
indicates that the mean entropy production due to turbulent
transport balances with the mean collisional dissipation, i.e.,
LT

−1Q̄e=−D̄40 !the overline represents the time average in a
saturated phase", and provides us a good measure for the
accuracy of the turbulence simulation. It is confirmed that for
all the turbulence simulation results discussed below, the en-
tropy balance relation is accurately satisfied within an error
less than 0.5% of the mean collisional dissipation level.

The linear growth rate and the real frequency of the ETG
modes depend on the collision frequency .e, the temperature
ratio 3, the electron temperature gradient parameter )e, and
the tilt angle parameter -. Using Eqs. !1" and !3", the dis-
persion relation of the linear ETG mode is given by

1 + 2k!
−

5

52-
− . 52

52-
− 5 +

1
52-

&-1 −
)e

2
!1 + k!

2 *te
2 "0/Z!5" = 0, !5"

where 5 is defined as 5&( /52k%"te with a complex fre-
quency (. The plasma dispersion function is denoted by
Z!5"& i5# exp!−52"!1+Erf!i5"" in terms of the error func-
tion Erf!z". Since the collision frequency is set to be suffi-
ciently small here !.eLT /"te=2.0&10−4", the effect of the
collisionality is neglected in the above dispersion relation.
Also, the temperature ratio 3 is fixed to unity so that the
independent physical parameters are )e and - in the present
study discussed in detail below.

Figure 1 shows the contour of the maximum growth rate
of the linear ETG modes 6L!max" on the two-dimensional
!)e ,-"-space. Here, the parameter sets used in the turbu-
lence simulations are also plotted with solid circular sym-
bols. One finds that in the normalization with LT, the maxi-
mum growth rate 6L!max" has weak dependence on )e,
whereas it has stronger dependence on -. From this point of
view, we have carried out the parameter scan of the
ETG turbulence for )e46 with focusing on the dependence
on -. In the present parameter study, 45 nonlinear gyroki-
netic simulations have been carried out in total #12 runs for
)e=6 and 11 runs for )e= (7, 8 , 9)$.

The ky-spectra of the linear growth rate 6L for )e=6 are
shown in Fig. 2, where -7(0.033, 0.050, 0.133, 0.150,
0.200) are chosen as five representative cases. Here, we set
kx=0 because the finite kx has a stabilizing effect. From this
figure, one can see that the parameter - is related to not only
the magnitude of the growth rate, but also the width of un-
stable region in the ky-space.
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FIG. 1. Contour of the maximum linear growth rate 6L!max" of linear ETG
modes with respect to )e and -. Circular symbols represent the parameter
sets used in turbulence simulations shown in Sec. III.
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In the nonlinear gyrokinetic simulations, physical quan-
tities are normalized as x=x! /*te , y=y! /*te , "% ="%! /"te , t
= t!"te /LT , .e=.e!LT /"te , FM% =FM%! "te /n0 , !fk!

=!fk!
! LT"te /

*ten0 and !,k!
=e!,k!

! LT /Te*te, where the prime means a
dimensional quantity. The number of Fourier modes in the
two-dimensional wave number space and the grids on the
"%-space are set to be !Nkx

,Nky
,N"%

"= !129, 257, 2049". The
range of the wave numbers kx, ky, and the "%-coordinate are
08kx8kmax, −kmax8ky8kmax, and −"max8"%8"max with
kmax=12.8 and "max=10, respectively. The size of the simu-
lation domain is set to be a square with Lx=Ly =20#*te and
then the nonzero minimum absolute value of the wave num-
ber is kmin=0.1. The initial condition for the distribution
function is given by the Maxwellian distribution with a small
amplitude of 10−6 and random phases.

III. RESULTS OF NONLINEAR GYROKINETIC
SIMULATIONS

A. Vortex structures and transport properties

Results of the parameter study with respect to )e and -
on the nonlinear gyrokinetic simulations are shown and dis-
cussed here. The results for -7(0.033, 0.050, 0.133, 0.150,
0.200) with )e=6 are selected as representative cases, where
the growth rates of linear ETG modes are shown in Fig. 2.
The other cases including the results for )e= (7,8 ,9) are also
summarized in Sec. III B.

Figures 3!a" and 3!b" show time evolution of the heat
diffusivity 9e!=Qe" for the representative cases. #Note that
9e!&Qe! / !n0LT

−1" is reduced to 9e=Qe in terms of the normal-
ization with LT, where the prime means dimensional quanti-
ties.$ The initial perturbation linearly grows due to the ETG
instability until the nonlinear saturation takes place. Then,
one clearly finds the different behavior of 9e depending on
the value of - in nonlinear phases. Transition of the turbu-
lence accompanied with the transport reduction for t:1000
is observed in the cases of -= (0.033, 0.050) #Fig. 3!a"$,
while the steady transport is sustained in the cases of
-= (0.0133, 0.150) #Fig. 3!b"$. For the case of -=0.200
#Fig. 3!b"$, we find that the turbulent transport is almost

completely suppressed in the nonlinear phase. The significant
suppression of the transport for -=0.200 is similar to that
observed in the ITG turbulence simulations with LT

−1 below
the nonlinearly upshifted critical gradient !Dimits shift".2,3

The heat diffusivity for the above cases are summarized in
Table I, where 9e

; and 9e
< denote the time-averaged values

taken for early !immediately after the saturation of linear
ETG modes, e.g., 5008 t81300 for -=0.033" and late !e.g.,
t82500" nonlinear phases, respectively. Here, the fixed time
interval =tave=750 is used for the time averages.

It is expected that the different behavior of the heat dif-
fusivity discussed above is closely related to the zonal flow
generation. The time evolution of the zonal flow potential
energy normalized by the total one W, i.e., Wzf /W, is shown
in Figs. 4!a" and 4!b", where Wzf represents the zonal flow
component of W. It should be emphasized that after the ini-
tial saturation of the zonal flow growth !t:1000", the sub-
sequent generation of the zonal flow to a higher level is
found in the cases of -= (0.033, 0.050) #Fig. 4!a"$, while
the zonal flow amplitude remains almost constant for the
other cases #Fig. 4!b"$. The secondary growth of the zonal
flow shows the clear correlation with the transport reduction

TABLE I. Time-averaged heat diffusivity in the early and late nonlinear
phases.

- 9e
;#*te

2 "te /LT$ 9e
<#*te

2 "te /LT$ Types of evolution

0.033 1.99&10−1 1.01&10−2 Transitional

0.050 1.38&10−1 3.55&10−3 Transitional

0.133 6.37&10−2 1.23&10−2 Steady

0.150 6.84&10−2 2.47&10−2 Steady

0.200 1.17&10−2 2.29&10−3 Suppressed
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FIG. 3. !Color online" Time evolution of the heat diffusivity 9e for !a"
-= (0.033, 0.050) and !b" -= (0.133, 0.150, 0.200), where )e=6.
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FIG. 2. Growth rates 6L of linear ETG modes for -7(0.033, 0.050, 0.133,
0.150, 0.200), where )e=6 and kx=0.
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found in the late nonlinear phase, as shown in Fig. 3!a". The
other cases plotted in Fig. 4!b" are also correlated with the
steady behavior of 9e shown in Fig. 3!b". In addition, in the
case of -=0.2000, we see the strong generation of the zonal
flow which is responsible for the significant transport reduc-
tion at the saturation of the instability growth. The secondary
growth of the zonal flow depending on - will be discussed
in detail in Sec. IV by means of the modulational instability
analysis with a truncated fluid model.

The power spectra of potential and temperature fluctua-
tions in the cases of -= (0.050, 0.150, 0.200) are shown in
Figs. 5!a"–5!c", respectively, where the quantities are
summed over kx-components and are time-averaged in the
early and the late nonlinear phases. Here, the temperature
fluctuation is defined by !Tk!

&6d"%!"%
2−1"!fk!

. The case of
-=0.050 #Fig. 5!a"$ shows the significant reduction of
higher wave number components of 3!'ky

3 and 3!Tky
3 in the

late nonlinear phase in comparison with those in the early
phase. Thus, the transitional behavior is expected to appear
not only for the heat diffusivity, but also for potential and
temperature fluctuation profiles in the real space.23 On the
other hand, no significant change in the spectrum is observed
for the two phases in the case of -=0.150 #Fig. 5!b"$. This is
consistent with the steady behavior of the heat diffusivity as
shown in Fig. 3!b". The case of -=0.200 #Fig. 5!c"$ also
shows similar spectrum, while the amplitudes of 3!Tky

3 and
3!'ky

3 are smaller than those in the case of -=0.150. This
implies that the strong zonal flow generation in the case of
-=0.200 #see Fig. 4!b"$ suppresses the development of tur-
bulent fluctuations.

Color contours of potential and temperature fluctuations
in the real space at t=3480 are shown in Figs. 6!a"–6!e" and

Figs. 6!f"–6!j", respectively. Depending on -, three different
types of vortex structures are clearly observed in the late
nonlinear phase, i.e., coherent vortex streets #Figs. 6!a", 6!b",
6!f", and 6!g"$, turbulent vortices #Figs. 6!c", 6!d", 6!h", and
6!i"$, and zonal-flow-dominated states #Figs. 6!e" and 6!j"$. It
should be noted here that the coherent vortex streets, which
appear in the cases of smaller value of ->0.1, are formed
by the transition from turbulent vortices found in the early
nonlinear phase, while no transition is observed for the other
cases. The formation of the coherent vortex streets is associ-
ated with the phase matching of !, and !T, where the heat
transport is significantly reduced. On the other hand, for the
cases of the turbulent vortices with -= (0.133, 0.150), the
temperature fluctuations involve much finer scale structures
than those in the potential fluctuations. We have verified that
the transition of vortex structures, which depends on -, is
commonly observed for the other cases with )e= (7, 8 , 9).
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FIG. 4. !Color online" Time evolution of normalized energy of zonal flows
Wzf /W for !a" -= (0.033, 0.050) and !b" -= (0.133, 0.150, 0.200), where
)e=6.
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Let us consider a quantity that represents the effect of
the parallel compression on the formation of coherent vortex
structures. From the Eqs. !1" and !3", one can derive the fluid
equation for !'k!

as follows:

#

#t
2k!

!'k!
− i-ky!uk!

− iky* 1
)e

−
k!

2

2
+!'k!

− ,
!

b · !k!! & k!" "!'k
!!
2k

!"
!'k

!"
= 0, !6"

where the normalized quantities are used. The parallel flow is
defined by !uk!

&6d"%"%!fk!
. Equation !6" is reduced to the

Hasegawa–Mima-like equation !designated as HM-)e equa-
tion in Ref. 23" in the limit of -→0 and the long-
wavelength approximation, where the terms up to O!k!

2 " are
kept. Here, we define a quantity representing a relative mag-
nitude of the parallel compression term !the second term" to
the diamagnetic drift term !the third term" in Eq. !6", i.e.,
R&)e-,k!

Re#!uk!
!'k!

" $ /,k!
3!'k!

32. From the turbulence

simulation results, it is found that R̄'0.33 for -=0.050,
R̄'0.87 for -=0.150, and R̄'1.41 for -=0.200, where
the time average is taken for 25008 t83500. The small
value of R̄ for -=0.050 suggests that the coherent vortex
streets are approximately described by a traveling wave so-
lution of the HM-)e equation derived from Eq. !6" in the
limit of -→0 !see Ref. 23". In contrast, for the cases with
relatively larger - or R̄, the Hasegawa–Mima model is no
longer valid. Thus, the effect of the finite parallel compres-
sion, which causes couplings with the higher-order fluid mo-
ments through electrostatic acoustic modes for electrons, be-
comes more important.

B. Summary of parameter studies

Let us briefly summarize the vortex structures associated
with zonal flows and the related transport properties found in
the present parameter study of the slab ETG turbulence. The
results of the --dependence of time-averaged values of the

normalized zonal flow energy Wzf /W are shown in Fig. 7,
where all cases of )e are plotted. For reference, we also
plotted the corresponding maximum growth rates of the lin-
ear ETG modes 6L!max" in the figure. One clearly finds that
the strong zonal flow is generated in the regions of ->0.1
and -:1.8, corresponding to the formation of coherent vor-
tex streets and the zonal-flow-dominated structure, respec-
tively. The zonal flow generation is weaker in the region of
0.1>->1.8, where the turbulent vortices are observed. It is
also remarkable that the similar --dependence of Wzf /W is
found in all cases of )e= (6, 7 , 8 , 9). This implies that the
transition of the vortex structures in the slab ETG turbulence
is mainly controlled by - rather than )e if the value of )e is
large enough. Actually, in all cases of )e, the completely
different vortex structures have been realized depending on
-, even for the cases with the same maximum growth rate
6L!max". It is confirmed by the fact that for )e=6, the cases of
-= (0.033, 0.133) with the same 6L!max" show quite differ-
ent levels of Wzf /W.

FIG. 6. !Color online" Contours of #!a"–!e"$ potential and #!f"–!j"$ temperature fluctuations for -= (0.033, 0.050, 0.133, 0.150, 0.200) at t=3480, where
the box size is 20#*te&20#*te.
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In order to discuss the relation between the transition of
vortex structures and the transport reduction, we plotted in
Figs. 8!a" and 8!b" the --dependence of 9e averaged over
the early and late nonlinear phases for )e= (6, 7) and )e
= (8, 9), respectively. One finds that the distinct difference
between 9e

; and 9e
< indicating the transport reduction is

commonly found in the region of ->0.1 for all values of )e.
Also, we see the qualitatively similar dependence of 9e on -
such that the reduction of 9e becomes smaller for the larger
-. It is remarkable that for small -, the transport reduction
associated with the formation of coherent vortex streets is
realized in the nonlinear phase, even if the maximum growth
rate of linear ETG modes is relatively large.

IV. MODULATIONAL INSTABILITY ANALYSIS
FOR ZONAL FLOW GENERATION

In Sec. III, it is found that the formation of coherent
vortex structures is closely related to the secondary growth
of zonal flows in the nonlinear phase as shown in Fig. 4.
Here, we discuss the dependence of zonal flow generation on
-!=k%LT /ky*te" based on the modulational instability analysis
with a truncated fluid model, where the parallel dynamics
such as electron acoustic modes due to the parallel compres-
sion is taken into account. These analyses give us qualitative
understanding for mechanisms of the secondary growth of
zonal flows found in the ETG turbulence simulations.

Here, we consider truncated fluid equations for the
modulational instability analysis. In the derivation of the
fluid model below, we employ the description with dimen-
sional quantities again. By taking the fluid moments of the
gyrokinetic equation #see Eq. !1"$ up to the second order, one
obtains the following equations:

#

#t
!nk!

+ ik%n0!uk!
+ i("en0*1 −

)e

2
k!

2 *te
2 + e!'k!

Te

−
c

B,
!

b · !k!! & k!" "!'k
!!
!nk

!"
= 0, !7"

n0me
#

#t
!uk!

+ ik%!Te!nk!
+ n0!Tk!

− n0e!'k!
"

−
n0mec

B ,
!

b · !k!! & k!" "!'k
!!
!uk

!"
= 0, !8"

n0
#

#t
!Tk!

+ ik%!2n0Te!uk!
+ !qk!

" + i("e)en0e!'k!

−
n0c

B ,
!

b · !k!! & k!" "!'k
!!
!Tk

!"
= 0, !9"

where the fluid quantities are defined by !nk!
&6d"%!fk!

,
n0!uk!

&6d"%"%!fk!
, n0!Tk!

&6d"%!me"%
2−Te"!fk!

, and
!qk!

&6d"%!me"%
3−3Te"%"!fk!

, which denote the fluctuations
of the density, the parallel flow, the temperature, and the
parallel heat flux, respectively. Here, the collisional dissipa-
tion is neglected because of .eLT /"te%1.

In order to derive a reduced model describing the evolu-
tion of zonal flows, we postulate here that !i" the fluid equa-
tions are truncated by ignoring the parallel heat flux !qk!

in
Eq. !9" and that !ii" the third term i("e)en0e!'k!

, which
drives the linear ETG instability, is also neglected in Eq. !9".
The first assumption !i" is necessary for the truncation of the
couplings of fluid equations. The second one !ii" is useful for
the analysis of modulational instabilities driven by the
“stable” pump wave because we focus on the secondary
growth of zonal flows after the initial saturation, where the
ETG mode no longer grows linearly. Furthermore, !iii" we
neglect the nonlinear terms in Eqs. !8" and !9" for simplicity
because they cause higher-order interactions which are not of
interest here. Under these assumptions, the reduced fluid
equations used here are derived by means of the quasineu-
trality condition Eq. !3"

* #

#t
− iLk!

+'k!
− ik%"te2k!

−1 uk!
− ,

!

0k!

k!! ,k!" 'k
!!
'k

!"
= 0,

!10"

#

#t
uk!

+ ik%"te#Tk!
− !1 + 2k!

"'k!
$ = 0, !11"

#

#t
Tk!

+ 2ik%"teuk!
= 0, !12"

where

Lk!
& ("e*1 −

)e

2
k!

2 *te
2 +2k!

−1 , !13"
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0k!

k!! ,k!" &
1
2

cTe

eB
b · !k!! & k!" "!2k

!"
− 2k

!!
"2k!

−1 . !14"

Here, abbreviations for 'k!
&e!'k!

/Te, uk!
&!uk!

/"te, and
Tk!

&!Tk!
/Te are used. The symbol ,! means the summa-

tion over the Fourier modes which consist of the triad inter-
action, i.e., k!=k!! +k!" . The above reduced fluid equations
involve the effect of electron acoustic modes due to the par-
allel compression which has rarely been incorporated into
the conventional modulational instability analysis for the
zonal flow generation.19,24–27

In order to derive the dispersion equation for zonal flows
driven by the modulational instability, we consider the low-
dimensional model !sometimes called the four-wave model"
based on Eqs. !10"–!14". The field quantities ?= (' ,u ,T) are
then assumed to be composed of a monochromatic pump
mode, a zonal mode, and two sideband modes, such that

?!x,t" = ?kp
exp!ikp · x − i(kp

t" + ?kzf
exp!ikzf · x − i+kzf

t"

+ ?k+ exp!ik+ · x − i(k+t"

+ ?k− exp!ik− · x − i(k−t"

+ !complex conjugate" , !15"

where the complex frequency and the wave number vector of
these four modes satisfy the frequency matching and the
triad-interaction conditions, respectively, as follows:

(k@ = (kp
@+kzf

, k@ = kp @ kzf. !16"

Also, k%p=k%
@!&k%" and ?k=?−k

" . The reduction to four reso-
nant modes from Eqs. !10"–!14" leads to a nonlinear dynami-
cal system of four ordinary differential equations. Here, we
suppose that the complex amplitude of the zonal and the
sideband modes are much smaller than that of the pump
mode, i.e.,

3?kzf
3 2 3?k@3 2 A3?kp

3 , !17"

where A%1. This subsidiary ordering enables us to linearize
the nonlinear system so that one obtains the dispersion rela-
tion which determines the linear growth rate of zonal flows.

For the pump mode, one obtains the following equa-
tions:

i!(kp
+ Lkp

"'kp
+ ik%"te2kp

−1ukp
+ 0kp

k−,kzf'k−'kzf

+ 0kp

k+,−kzf'k+'kzf

" = 0, !18"

i(kp
ukp

− ik%"te#Tkp
− !1 + 2kp

"'kp
$ = 0, !19"

i(kp
Tkp

− 2ik%"teukp
= 0. !20"

Considering the ordering of Eq. !17", one can neglect the last
two terms on the left hand side of Eq. !18", which are of
order A23'kp

32, so that Eqs. !18"–!20" are reduced to the dis-
persion equation for the pump mode as follows:

1 +
Lkp

(kp

− *1 + 2kp

2kp

+* k%"te

(kp

+2.1 −2 * k%"te

(kp

+2/−1

= 0.

!21"

This can be rewritten as a cubic equation of (kp
and then the

root determines the frequency of the pump mode for given kp
and k%. By evaluating the sign of the discriminant of Eq. !21",
it is easily shown that any root must be real-valued. Thus,
there is neither instability nor damping. The dispersion rela-
tion of (kp

for -= (0, 0.050, 0.083, 0.150, 0.167) are
shown in Fig. 9, where )e=6 and kxp=0.1. For the case of
-$0, we plotted two of the three branches !the branches
with positive and negative (kp

", which approach the solution
of HM-)e equation in the limit of -→0!k%→0". Another
branch, which is not plotted here, approaches to the trivial
solution of (kp

=0. As expected, we see that the deviation of
the frequency from that for -=0 becomes larger as - in-
creases.

From Eqs. !10"–!17", one obtains the equations for zonal
and sideband modes as follows:

i+kzf
'kzf

+ 0kzf

k+,−kp'k+'kp

" + 0kzf

−k−,kp'k−
" 'kp

= 0, !22"

iP@'k@ + 0k@
kp,@kzf'kp

'@kzf
= 0, !23"

where

P@ & (k@#1 + Kk@!(k@,k%"$ + Lk@. !24"

Here, the effect of the coupling among 'k@ , uk@ and Tk@ for
sideband modes due to the parallel compression appears in
Kk@!(k@ ,k%" defined as

Kk@!(k@,k%" & − *1 + 2k@

2k@
+* k%"te

(k@
+2.1 −2 * k%"te

(k@
+2/−1

.

!25"

These terms, which are ignored in the conventional analysis
with the Hasegawa–Mima equation, play a crucial role in
considering the effect of the finite parallel compression on
the zonal flow generation. Indeed, one can obtain the con-
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FIG. 9. Real frequency of the pump mode (kp
for -7(0, 0.050, 0.083,

0.150, 0.167), where )e=6 and kxp=0.1.
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ventional dispersion relation in the limit of k%→0 which an-
nihilates Kk@ in Eq. !24", as well as in the long-wavelength
limit !k!*te%1". Finally, combining Eqs. !21"–!25", one ob-
tains the dispersion relation of zonal flows as follows:

+kzf
+ .0kzf

k+,−kp0k+
kzf,kp

P+
−
0kzf

k−,−kp0k−
−kzf,kp

P−
/3'kp

32 = 0. !26"

The linear growth rate of zonal flows 6zf is then given by the
positive imaginary part of a complex solution +kzf

of the
above equation. Straightforward but somewhat tedious alge-
braic calculation shows that the left hand side of Eq. !26" is
rearranged into a seventh-order polynomial of +kzf

with real-
valued coefficients, which has to be solved numerically. In
the numerical calculations, we have found only two cases,
namely, solutions with a pair of complex conjugate and five
real-valued roots or with seven real-valued roots.

Figure 10 shows the spectrum of the zonal flow growth
rate 6zf for -= (0, 0.050, 0.083, 0.150, 0.167), where
the wave number and the amplitude of the pump mode are
chosen as kxp=0.1, kyp=0.35, and !LT /*te"23'kp32=2, respec-
tively. Here, the branch of the negative (kp

!see Fig. 9" are
chosen because, for kyp=0.35, it converges to the nontrivial
dispersion relation !(kp

$0" in the limit of -→0. One
clearly finds that growth rate of the modulational instability
for zonal flows is decreased by increasing - and no unstable
solution exists for -:0.167.

In order to discuss --dependence of the critical pump
amplitude for the instability onset, we plotted in Fig. 11 the
maximum growth rate of the zonal flow 6zf!max" as a function
of the squared amplitude of the pump mode !LT /*te"23'kp

32.
From this figure, we find that the critical amplitude for the
instability becomes larger as - increases. In the region
where the pump amplitude is sufficiently large #e.g.,
!LT /*te"23'kp

32:3$, the instabilities are observed for all cases
of -. However, in the region of !LT /*te"23'kp

32>2, one can
see the existence of a critical value of -, beyond which the

instability no longer occurs. In the present ETG turbulence
simulations, we find !LT /*te"23'kp

3221. Hence, the critical -
is estimated as -20.1, which qualitatively agrees with that
for the secondary growth of zonal flows found in the cases of
small - #see Figs. 4!a" and 4!b"$.

We also plot in Fig. 12 the maximum growth rate 6zf!max"
and the real frequency (zf for )e= (6,7 ,8 ,9) as a function of
-, where (zf is evaluated at the wave number giving the
maximum growth rate. One finds that the maximum growth
rate 6zf!max" shows the similar dependence on - for all values
of )e considered, except that the profiles are shifted down-
ward. The stable region of - with 6zf!max"=0 then becomes
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wider for larger )e. Also, we see that the value of (zf is
larger than that of 6zf!max" in the region of -:0.1, which
means the oscillatory zonal flow. Since the steady zonal flow
suppresses the turbulent transport more effectively compared
to the oscillatory one, these results suggest that the relatively
steady zonal flow with larger growth rate can be driven for
smaller )e if the pump amplitude is fixed. However, the
pump amplitude is, in practice, associated with the turbu-
lence intensity which should depend on )e. Nevertheless, it
is important that the critical value of -, which define the
instability onset, commonly appears for all cases of )e and
then these results well explain the turbulence simulation
results.

Here, we have derived the dispersion relation of zonal
flows based on the modulational instability analysis, where
the coupling of fluid moments !density, parallel flow, and
temperature" through the parallel compression term is incor-
porated. The results then show the stabilizing effect due to
the parallel compression which is proportional to -.

The present theoretical analysis with a stable pump
mode provides us with the qualitative explanations of the
turbulence simulation results for 0>->0.15. However, the
analysis is limited to the case where the nonzonal fluctua-
tions are dominant in the saturated ETG turbulence because
the subsidiary ordering Eq. !17" for the modulational insta-
bility analysis assumes the quite low amplitude of the zonal
mode in comparison with the pump amplitude. It is, thus, not
directly applicable to the case with the generation of the
strong zonal flow accompanied with the transport suppres-
sion observed in the turbulence simulation for -40.200 #see
Figs. 4!b" and 7$, where the strong zonal flow is predomi-
nantly generated by the nonlinear coupling of linear ETG
modes in the initial saturation phase of the instability growth
#e.g., t'1200 for -=0.200 in Fig. 4!b"$. In order to reveal
the detailed mechanisms of the initial generation of strong
zonal flows with the effect of parallel compression, one
needs more refinement of the present model to incorporate
the unstable evolution of the pump mode precisely, which
remains as a future work.

The coupling among the fluid moments of (' ,u ,T) con-
sidered here suggests the importance of the parallel dynam-
ics on the stability of zonal flows. It has also been verified
that the similar stabilization of zonal flows due to the parallel
compression is observed in a model with only a coupling of
(' ,u). Anderson et al.29 had previously derived the disper-
sion relation of zonal flows for ITG turbulence by the similar
approach with the fluid equations and then they showed fifth-
order polynomial of +kzf

which differs from our dispersion
equation of seventh-order polynomial as shown in Eq. !26".
Consequently, the different dependence of 6zf on k% !or -"
appears, e.g., the stabilization of zonal flows found in the
present analysis for larger k% is not observed in Ref. 29. This
is because the coupling with the parallel flow, which corre-
sponds to the second term of Eq. !12", had been ignored from
the temperature equation shown in Ref. 29. Neglecting this
term reduces the order of polynomial for the dispersion rela-
tion, but leads to an incomplete description of acoustic
modes at the same time. The similar modulational instability

analysis for zonal flows/fields involving the parallel dynam-
ics of shear-Alfvén waves had also been examined by
Guzdar et al.30 and by Chen et al.31 for the drift-Alfvén
turbulence.

V. CONCLUDING REMARKS

We have investigated the transition of vortex structures
including zonal flows and the related transport properties in
the slab ETG turbulence through the comprehensive param-
eter studies by means of the nonlinear gyrokinetic Vlasov
simulations. Then, the dependence on the magnitude of the
parallel compression, which is characterized by the param-
eter -&k%LT /ky*te=$LT /*te, and the electron temperature
gradient have been intensively examined.

Numerical results show three different types of the time
evolution of the heat diffusivity depending on -, i.e., transi-
tional evolution accompanied with transport reduction,
steady turbulent behavior, and significant suppression of
transport. Then, the zonal flow evolutions with or without
secondary growth in the nonlinear phase are well correlated
with the evolution of the heat diffusivity. Correspondingly,
the detailed analyses of the spectral and the spatial structures
of the potential and temperature fluctuations reveal the dif-
ferent types of vortex structures such as coherent vortex
streets, turbulent vortices, and zonal-flow-dominated state.
The vortex structures depend on the value of - through the
parallel compression.

By examining the dependence of the heat diffusivity and
the intensity of zonal flows on -, we found clear correlation
between the formation of coherent vortex streets associated
with the strong generation of the zonal flow and transport
reduction for the cases with small values of ->0.1. These
results indicate weak dependence on the value of )e, which
implies that the transition of vortex structures in the slab
ETG turbulence is mainly controlled by - rather than )e if
)e is large enough. The transport reduction associated with
the formation of coherent vortex streets is realized for small
- even if the maximum growth rate of linear ETG modes is
relatively large.

We have discussed the dependence of zonal flow genera-
tion on - based on the modulational instability analysis with
a truncated fluid model, where the parallel dynamics associ-
ated with electron acoustic modes is taken into account. The
dispersion relation of zonal flows derived here shows that the
linear growth rate of the modulational instability is reduced
as - increases and that there is a critical value of -, beyond
which the instability does not occur. The modulational insta-
bility analysis shows a qualitative agreement with the turbu-
lence simulation results, where the secondary growth of
zonal flows, the transition of vortex structures, and the re-
lated transport reduction are found in the cases of small -.

In the present study, the quasi-two-dimensional shearless
slab configuration has been employed, where - and )e are
the main control parameters. Although the various values of
- should be treated simultaneously in cylindrical or toroidal
plasmas, the two-dimensional slab configuration with con-
stant - used here is still meaningful as a reduced model for
them. In these practical systems, k% /ky depends on the aspect
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ratio Lz /a !7“the length of plasma column” / “the plasma
radius”" for cylindrical plasmas or depends on the radial po-
sition through the magnetic shear for toroidal ones. Particu-
larly, in the toroidal plasmas, it has been pointed out that the
compression due to the geodesic curvature and the toroidal
mode coupling become more important for the saturation of
the toroidal ETG instability with strong magnetic shear,
where the toroidal modes overlap each other
significantly.14,15 However, in the case with weak magnetic
shear, the unstable-mode rational surfaces become more dis-
tant from each other so that the toroidal mode coupling
weakens. The present study on the slab ETG turbulence may
contribute to fundamental understandings of the effects of
the parallel compression on the long-timescale evolution of
zonal flows and the related transport reduction on the neigh-
borhood of the minimum-q surface !q denotes the safety fac-
tor" in the reversed-shear tokamaks.

In Refs. 14 and 15, it has also been pointed out that the
three-wave resonant interaction is crucial for the saturation
of the toroidal ETG instability, rather than the zonal flow
generation due to the modulational instability. Here, we have
not quantitatively examined which of the three-wave interac-
tion and the zonal flow generation driven by the modula-
tional instability is dominant in the initial saturation of the
slab ETG instability. Nevertheless, it is expected that the
initial saturation is attributed to not only the three-wave in-
teraction, but also to the zonal flow generation because the
zonal flow generation in the slab ETG turbulence is stronger
than that in the toroidal ETG case where the zonal flow is
weakened by the neoclassical polarization effect. It should be
emphasized here that the present study reveals the impor-
tance of the long-timescale evolution of zonal flows, which
is closely related to the transition of vortex structures and
transport level in the nonlinear phase long after the initial
saturation of the slab ETG instability. Then, the long-
timescale evolution of zonal flows generated by the modula-
tional instability may also be important in the nonlinear
phase of the toroidal ETG turbulence.

The detailed analysis of the initial saturation and the
extension to the cylindrical and the toroidal configurations
are currently in progress, where the possibility of the forma-
tion of coherent vortex structures and the related transport
reduction under realistic conditions are investigated as well
as the comparison with the experimental observations.
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