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1. Introduction

The Eulerian description of media has a Hamiltonian formula-
tion in terms of noncanonical Poisson brackets (see [1–6] and refer-
ences therein), brackets that are not of the standard form because
Eulerian variables are not canonical variables. Incorporating dissi-
pation into some kind of general formalism dates to Rayleigh, but
the use of symmetric brackets in conjunction with noncanonical
Poisson brackets for this purposewas proposed in [7–9]. Unlike the
widely studied but more simplistic Cahn–Hilliard gradient flows
(see e.g. [10]), the formulation of these authorswas concernedwith
brackets that generate a dynamics compatible with the laws of
thermodynamics, a formulation that was termed metriplectic dy-
namics in [11]. These systems are complete in the sense that en-
ergy is conserved while entropy is produced. Dissipative brackets
have also been suggested for incomplete systems that have no no-
tion of entropy but dissipate energy while preserving Casimir in-
variants [12–15]. See [16] for a general discussion. The latter were
proposed as a means for computation, particularly [13–15] in the
context of fluidmechanics,where the formalismwas used and pro-
posed for calculating stationary vortex states by a kind of simulated
annealing dynamics.

We offer a new twist that overcomes difficulties obtained
in [13–15]—we extremize energy at fixed Casimir invariants by
using Dirac brackets to enforce constraints. In this way one can
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generate dynamics that is an energy extremizing rearrangement,
while preserving additional properties such as linear or angular
momentum. Here, this is done for a variety of numerical examples
in the context of vortex dynamics. A preliminary version of our
method was reported in [17] where some results for contour
dynamics calculations were presented.

The paper is organized as follows: in Section 2 we develop
the needed theory, which includes a description of the various
bracket formulations. The specific case of two-dimensional vortex
dynamics is used to illustrate the general ideas. This is followed
in Section 3 by numerical examples that illustrate various kinds
of dynamics, including vortex states with two-fold and three-fold
symmetry and dipole states. In Section 4 two-layer quasigeostropic
dynamics is considered with monopolar vorticity in each layer.
Finally, in Section 5 we conclude.

2. Theory

As mentioned in Section 1, the theory behind our formulation
has several basic parts: a noncanonical Poisson bracket defined
on functionals or observables (see e.g. [2,6,18]), a Dirac bracket
based on such a noncanonical Poisson bracket (see e.g. [19,20] for
traditional Dirac brackets and see e.g. [17,21] for the noncanonical
version), and a symmetric bracket that gives rise to relaxation
akin to collision operators in kinetic theory (see e.g. [15,16]). We
describe these objects here.

2.1. Functionals

Functionals map a set of dynamical variables into numbers. In
general one may have M dynamical variables denoted by χ i(z),
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where i = 1, 2, . . . ,M , that are functions of z = (z1, z2, . . . , zN),
coordinates for an N-dimensional domain, D , and functionals of
these variables will be denoted by F [χ ].

For example, when the dynamical variable is a single vorticity-
like variable, the case for the calculations of Section 3, the
functional F [q] maps the function q(x) into R. Here x = (x, y) is
a point in D , a planar region, taken for the numerical calculations
here to be a 2-torus. Examples of such observables include the
angular momentum,

L = −1
2

∫

D

dx |x|2q(x), (1)

and the Hamiltonian functional,

H = −1
2

∫

D

dx
∫

D

dx′ q(x)G(x, x′)q(x′), (2)

where G is the relevant Green’s function; for two-dimensional
vorticity dynamics it satisfies ∇2G(x) = δ(x).

Note, the kinetic energy of the fluid on an infinite domain can
have an infinite part associated with the 1/r far-field when the net
vorticity is non-zero; since the latter is conserved, this component
of the energy is fixed. Subtracting it from the total gives the
Hamiltonian, which thus is not quite the physical energy. A similar
situation arises for the angularmomentumwhere a boundary term
is removed from the quantity L. In the following we will refer to H
as the energy and L as the angular momentum.

In addition to the functionals (1) and (2), there is q(x0), the
functional that is the evaluation of q at a particular point of its
domain,

q(x0) =
∫

D

dx δ(x0 − x)q(x). (3)

This latter functional is needed when casting the equations of
motion into Hamiltonian form, as is done in Section 2.5 below.

The time rate of change of functionalswill be generated bymak-
ing use of various brackets, and these involve a notion of functional
or variational derivative. This kind of derivative describes how the
value of the functional changes as we make small changes to its
argument. Thus we consider the first variation,

δF [χ; η] = d
dε

F [χ + εη]
∣∣∣∣
ε=0

=
∫

D

dNz
δF [χ ]
δχ i ηi, (4)

where repeated indices are to be summed here (andwill be hence-
forth unless otherwise stated). Using the integral over z as an inner
product, the quantity δF/δχ can be interpreted as a gradient and
δF [χ; η] as the Fréchet derivative acting on η(z).

From this definition, the functional derivatives of the examples
(1)–(3), are readily obtained,

δL[q]
δq

= −|x|2
2

, (5)

δH[q]
δq

= −
∫

D

dx′ G(x, x′)q(x′), (6)

δq(x0)
δq

= δ(x0 − x), (7)

where in (6) the symmetric nature of G has been used. With the
streamfunction ψ that satisfies, ∇2ψ = q, we can write

ψ(x) =
∫

D

dx′ G(x, x′)q(x′), (8)

and therefore the functional derivative of the Hamiltonian is
δH[q]
δq(x)

= −ψ(x). (9)

Clearly the functional derivative depends in general upon spa-
tial location—at times we will need to be explicit about this to dis-
tinguish x from x′ etc.; therefore, we will use the notation
δF [q]
δq(x)

,

explicitly showing that the independent variable isx. Thus (7) takes
the perspicuous form
δq(x0)
δq(x)

= δ(x0 − x),

a quantity that will be needed in the evaluation of Poisson brackets
below.

2.2. Noncanonical Poisson brackets

A general noncanonical Poisson bracket is a binary operator on
functionals of the form

{F ,G} =
∫

D

dNz ′
∫

D

dNz ′′ δF [χ ]
δχ i(z ′)

Jij(z ′, z ′′)
δG[χ ]
δχ j(z ′′)

, (10)

where χ denotes a set of dynamical variables with M elements,
i, j = 1, . . . ,M , that depends on a coordinate z of a space of
dimension N . In (10), J is the cosymplectic operator that must
ensure that the bracket satisfies: antisymmetry, {F ,G} = −{G, F},
and the Jacobi identity, {{F ,G},H}+ {{G,H}, F}+ {{H, F},G} = 0,
for all functionals F ,G,H . Note that, because of the form of (10),
bilinearity and the Leibnitz derivation properties are manifest. It is
not required that J be nondegenerate. When it is degenerate, i.e.
has a nontrivial null space, there exist Casimir invariants, C , that
satisfy {C,G} = 0 for all functionals G. (See e.g. [6,17] for review.)

The Poisson bracket for vortex dynamics [22,2,23] is the follow-
ing:

{F ,G} =
∫

D

dx′ q(x′)

[
δF [q]
δq(x′)

,
δG[q]
δq(x′)

]
, (11)

where [A, B] = ẑ · ∇A×∇Bwith ẑ a unit vector normal to the pla-
nar region; thus, [A, B] is an ordinary bracket that can be written
in Cartesian components, or it can be written in terms of whatever
the independent variables might be. For this example the cosym-
plectic operator J = −[q, ·] and the Jacobi identity can be proved
directly by the techniques described in [2]. The well-known quan-
tities C[q] =

∫
D dxC(q)with C arbitrary, a family of integrals that

includes the net vorticity and enstrophy, are Casimir invariants. It
is easy to show {C,G} = 0 for all G.

Dynamics is generated from the noncanonical Poisson bracket
according to

∂q
∂t

= {q,H}, (12)

the usual Poisson bracket Hamiltonian form. We will refer to this
dynamics as H-dynamics. With (7) and (11), we can show that

{q(x),G} =
∫

D

dx′ q(x′)

[
δq(x)
δq(x′)

,
δG[q]
δq(x′)

]

=
∫

D

dx′ q(x′)

[
δ(x − x′),

δG[q]
δq(x′)

]

= −
[
q(x),

δG[q]
δq(x)

]
, (13)

using the identity
∫

D dx f [g, h] = −
∫

D dx g[f , h], obtained by
integration by parts and neglect of surface terms. We now have

∂

∂t
q(x) = {q(x),H} = −

[
q(x),

δH[q]
δq(x)

]
= [q, ψ], (14)
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which is the usual form for the two-dimensional Euler equations.
Functionals evolve according to

∂F
∂t

= {F ,H}; (15)

since {C,H} = 0 for the Casimir invariants, they are indeed con-
stant in time for any choice of the Hamiltonian.

2.3. Noncanonical Dirac brackets

From any bracket of the form of (10) and any choice of con-
straint functionals Ci such that the antisymmetric matrix {Ci, Cj} is
nonsingular, one can construct a generalized Dirac bracket as fol-
lows:

{F ,G}D = {F ,G} −{ F , Ci}Cij{Cj,G}, (16)

where Cij := {Ci, Cj}−1. Eq. (16) defines a bracket that is obviously
antisymmetric and can be proven to satisfy the Jacobi identity (cf.
Appendix C of [21]). Under this form, the constraints Ci, are Casimir
invariants,

{Ci,G}D = 0 for all G. (17)

For thematrix {Ci, Cj} to be invertible, wemust have an even num-
ber of constraints, and none of the Ci’s can be Casimir invariants
of the original noncanonical bracket; to distinguish those from the
ones used in the Dirac construction, we will refer to the latter as
Dirac constraints.

Dirac constructed such brackets out of canonical Poisson brack-
ets with the goal of quantizing classical field theories, but here we
use noncanonical Poisson brackets, and the aim is the purely clas-
sical imposition of constraints on the dynamics. Although one can
construct Dirac brackets out of any even number of constraints, we
will generally use only two or four global constraints, i.e. ones that
involve integration and do not depend explicitly on z. For point-
wise constraints, Ci(z), the general bracket has the following form:

{F ,G}D = {F ,G} −
∫

D

dNz ′
∫

D

dNz ′′

× {F , Ci(z ′)}Cij(z ′, z ′′){Cj(z ′′),G}.
We will refer to dynamics generated by Dirac brackets as HD-
dynamics.

For the numerical examples treated in Sections 3 and 4 we will
use global Dirac constraints of linear form,

Ci =
∫

D

dx ci(x)q(x), (18)

where the ci and the initial condition will be chosen by intuition
and by considering the desired symmetries of the final state. With
this form for the Dirac constraints, the Dirac bracket is readily
evaluated using δCi/δq(x) = ci(x) which gives e.g.

{Ci, Cj} =
∫

D

dx q[ci, cj] and {F , Ci} =
∫

D

dx q
[

δF
δq

, ci
]

.

In the case of two constraints, the required matrix is simple:

C =
(

0 −1/{C1, C2}
1/{C1, C2} 0

)
. (19)

To generate dynamics, we note that for a global functional G,
the term

Ai = Cij{Cj,G} (20)

is, at most, a function of time but not x. Therefore from

{F ,G}D = {F ,G} − Ai{F , Ci}, (21)

we see that the evolution of F under (11) is given by

{F ,G}D =
∫

D

dx q
[

δF
δq

,
δG
δq

]
− Ai

∫

D

dx q
[

δF
δq

,
δCi

δq

]

=
∫

D

dx q
[

δF
δq

,
δG
δq

− Ai δCi

δq

]
. (22)

Thus, the flow develops according to

∂

∂t
q = −[Ψ , q], (23)

where

Ψ = ψ + Aici and

Ai = −
(∫

D

dx q[ci, cj]
)−1 ∫

D

dx cj[ψ, q].
(24)

This form follows from {Cj,H} using (11) or directly from

{Cj,H} = ∂

∂t
Cj =

∫

D

dx cj
∂

∂t
q.

Thus, Dirac bracket dynamics is the ‘‘advection’’ of q byΨ , which is
the usual streamfunction with the addition of the constraint fields
multiplied by the time dependent coefficients Ai.

In Section 3 we will use the invariants C1 = −L and C2 equal to
the strain moment, defined by

S =
∫

D

dx xy q. (25)

With these choices we see that Ψ obtains a rotational piece mul-
tiplied by A1, a global quantity, and a piece that is a straining field
multiplied by A2, also a global quantity, viz.

A1 =
∫

D dx xy[ψ, q]∫
D dx (x2 − y2)q

and

A2 = −
1
2

∫
D dx (x2 + y2)[ψ, q]∫

D dx (x2 − y2)q
.

(26)

The time dependence in the Ai applies the two fields in just the
right combination to keep the Ci constant. Although the angular
momentum is already conserved by vortex dynamics, this is not
necessarily the case when quantities evolve according to Dirac
brackets (cf. Section 3.1 and Appendix D of [21]). Choosing −L as
one of our Dirac constraints guarantees that it remains conserved.

Although (21) resembles the procedure suggested in [15] of
adding terms to H with Lagrange multipliers, it is different in that
the coefficients change in time to ensure that the Dirac constraints
remain constant. Furthermore, at least one of the constraints must
not be a constant of motion under the original dynamics to ensure
that the vector {Cj,H} is non-zero.

2.4. Symmetric brackets

A general symmetric bracket analogous to (10) is given by

((F ,G))G =
∫

D

dNz ′
∫

D

dNz ′′ δF [χ ]
δχ i(z ′)

Gij(z ′, z ′′)
δG[χ ]
δχ j(z ′′)

, (27)

where the metric operator G is chosen to ensure ((F ,G))G =
((G, F))G and to be semidefinite. We may also want to build de-
generacies into G so that there exist distinguished functionals D
that satisfy ((D,G))G = 0 for all G.
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Herewewill be interested in a specific formof (27) that is a gen-
eralization of the symmetric brackets given in previous work [11,
13,15,16], viz.

((F ,G)) =
∫

D

dNz ′
∫

D

dNz ′′ {F , χ i(z ′)}Kij(z ′, z ′′){χ j(z ′′),G}, (28)

with K a definite symmetric kernel that can be chosen at will, e.g.,
to effect smoothing.With this form, the Casimir invariants of {F ,G}
will automatically be distinguished functionals D. We will refer to
dynamics involving this kind of bracket as SA-dynamics, where SA
stands for simulated annealing.

The symmetric bracket of (28) can be even further generalized
as follows:

((F ,G))D =
∫

D

dNz ′
∫

D

dNz ′′{F , χ i(z ′)}DKij(z ′, z ′′){χ j(z ′′),G}D,
(29)

which is of the form of (28) but with a Dirac bracket replacing {, }.
When this is the case, the set of distinguished functionals will be
the union of the Casimir invariants of the bracket {F ,G} with the
Dirac constraints used in the construction of {F ,G}D. We will refer
to dynamics generated by this kind of bracket as DSA-dynamics for
Dirac simulated annealing dynamics.

If a Hamiltonian-like functionalF is used to generate dynamics,
then all three of the brackets (27)–(29) have the property dF /dt ≥
0. For example, under SA dynamics,

dF

dt
= α((F , F )) ≥ 0, (30)

when Kij is negative and α, a parameter that measures the ‘dissi-
pative’ time scale, is positive. This inequality follows from the sym-
metry built into the bracket. In fact, the sign of α can be chosen to
make the dynamics minimize or maximize F . Thus we have a for-
mal ‘H-theorem’, akin to that of the Boltzmann equation, and the
rudiments for possibly building rigorous theorems about asymp-
totic stability.

For our vortex example with the H of (2),

((q(x),H)) =
∫

D

dx′
∫

D

dx′′ {q(x), q(x′)}K(x′, x′′){q(x′′),H}

= −
∫

D

dx′ [δ(x − x′), q(x′)]

×
∫

D

dx′′ K(x′, x′′)[q(x′′), ψ(x′′)]

= [Φ(x), q(x)],
where we have used (13) and (14) and defined an effective
streamfunction by

Φ(x) =
∫

D

dx′ K(x, x′)[q(x′), ψ(x′)]. (31)

As pointed out in [13,14] for the special case where K(x, x′) =
δ(x − x′), the resulting dynamical equation is still an advective
equation, but with an altered non-divergent flow field, so that q is
conserved pointwise and all the moments of q are conserved. The
specific form of inequality (30), which relies on the symmetry of
K , can be shown directly. We do so for the case when K is the
Green’s function G that satisfies ∇2G(x) = δ(x). We obtain

((H,H)) = −
∫

D

dx′ Φ(x′){q(x′),H}

= −
∫

D

dx′ Φ(x′)[q(x′), ψ(x′)]

= −
∫

D

dx′ Φ(x′)∇2Φ(x′) =
∫

D

dx′ |∇Φ(x′)|2, (32)

using ∇2Φ = [q, ψ]. Therefore, because ((H,H)) ≥ 0, when
α > 0,H tends to maximize, while if α < 0, H tends to minimize.

Finally, the DSA form is given by

((q(x),H))D =
∫

D

dx′ {q(x), q(x′)}DΦD(x′) (33)

with

ΦD(x) =
∫

D

dx′ K(x, x′){q(x′),H}D

=
∫

D

dx′ K(x, x′)[q(x′), ψ(x′) + Aici(x′)]. (34)

Using the definition of the Dirac bracket (16) and (13) gives

{q(x), q(x′)}D = {q(x), q(x′)} −{ q(x), Ci}Cij{Cj, q(x′)}
= [q(x′), δ(x − x′)] −[ ci(x), q(x)]Cij[q(x′), cj(x′)].

Therefore the DSA bracket becomes

((q(x),H))D = [ΦD(x), q(x)] + [Bici(x), q(x)]
= [ΦD + Bici, q] (35)

with

Bi = Cij
∫

D

dx′ cj(x′)[q(x′), ΦD(x′)]. (36)

Again, the q field evolves by advection, with the ‘flow’ including
corrections to maintain the Dirac constraints.

2.5. Various dynamics

Various kinds of dynamical systems that can be generated by
the brackets described above are listed below:

Hamiltonian: ∂

∂t
F = {F , F }, (37)

Hamiltonian Dirac: ∂

∂t
F = {F , F }D, (38)

Simulated Annealing: ∂

∂t
F = σ {F , F } + α((F , F )), (39)

Dirac Simulated Annealing: ∂

∂t
F = σ {F , F }D + α((F , F ))D. (40)

In these equations F represents an arbitrary observable and F is a
single functional that is used to generate the time advancement.
Eqs. (37) and (38) are ideal and conserve energy in principle,
although this will not be precisely the case when numerically
solved. In (39) and (40) the parameters σ and α can be used to
weight the contributions of the ideal and dissipative dynamics,
respectively. For our runs we will choose σ ∈ {0, 1} and α ∈
{−1, 1}. For the functional F , we shall use the Hamiltonian, H , but
remark that it can more generally be assumed to have the form

F = H +
∑

i

Ci + λiPi, (41)

where the Cs are Casimir invariants and the Ps are dynamical
invariants that commute with the particular Hamiltonians H of
interest—we also require that the Ps commute with any Dirac
constraints employed. The presence of the Ps in F generates dy-
namics in moving frames. For example, if one adds the linear or
angular momentum to H , then (39) generates dynamics in a uni-
formly translating or rotating frame, respectively. Consequently,
extremal points of (41) are stationary states in moving frames. Un-
like the Ps of (41), theH and the Dirac constraints in DSA-dynamics
are used to hold the vortices in place.

With the above assumptions on F , the dynamics generated by
(37) clearly conserves all Casimir invariants for any H , and the
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Fig. 1. H–L diagram showing the relationship between energy and angular
momentum for various vortex states, including the Kirchhoff elliptical vortex
parameterized by aspect ratio, a ‘‘coarse-grained’’ circular vortex parameterized by
size, and a few vortices with a central core surrounded by an annular band also
parameterized by size The point ◦ marks the aspect ratio three stability threshold
for the Kirchhoff ellipses.

H chosen is itself an invariant. Similarly, the dynamics generated
by (38) conserves the Casimir invariants of {, } and the Dirac
constraints for any choice of H , and the chosen H (cf. [21]). It is
well-known that finite degree-of-freedom Hamiltonian systems
cannot have asymptotically stable fixed points, for this would
violate Liouville’s theorem. Thus, we do not expect (37) and (38) to
possess asymptotically stable equilibria in any frame of reference.
However, these systems are infinite-dimensional systems inwhich
filamentation is known to occur (see e.g. Fig. 4). Filamentation gives
rise to steep gradients and thus a small amount of dissipation can
cause relaxation. Similarly, averaging over filamentation gives rise
to relaxation by themechanism of phasemixing, the essence of the
Riemann–Lebesgue lemma and Landau damping. Thus, it will not
be a surprise to see relaxation in our numerical experiments.

As noted in Section 2.4, by construction the dynamics of (39)
and (40) conserve the Casimir invariants, and the latter conserves
the imposed Dirac constraints, both for any Hamiltonian, H .
However, the chosenH

(
or H + ∑

λiPi
)
is no longer conserved but

satisfies Ḣ ≥ 0 or Ḣ ≤ 0 depending on the sign of α. Therefore,
H can serve as a Liapunov functional for asymptotic stability (see
e.g. [24]). Thus as indicated in Section 1, these brackets give rise to
dynamics that is an energy extremizing rearrangement subject to
the Dirac constraints, and it is this dynamics that we find useful for
numerically obtaining equilibrium states.

2.6. Kelvin’s sponge

It is well-known in the calculus of variations that constraints
are sometimes ineffective [25]. For vortex dynamics this situation
may arise when one attempts to minimize energy at fixed Casimir
invariants. As anticipated by Kelvin [26], vorticity invariants do
not preclude the minimum zero energy state, but may produce
a sponge-like structure with interpenetrating regions of vorticity
(see [13] for another discussion and examples). Here we give a
simple example that contains a central idea of when this effect
occurs, an example we find useful for interpreting our numerical
results.

Consider a real-valued function u(x) defined on [0, 2π ]. First,
suppose we wish to maximize the ‘energy’ functional H[u] =∫ 2π
0 dx u2 subject to the constraint C[u] =

∫ 2π
0 dx u2

x = C0,with the
boundary conditions u(0) = u(2π) = 0. The variational problem
δ(H − kC) = 0 gives the Euler–Lagrange equation kuxx = −u,

and for C0 *= 0 it is easy to show that k > 0. The eigenvalues
for this problem are λn = 1/kn = n2, where n ∈ N, and the
corresponding set of orthonormal eigenfunctions is composed of
un = sin(nx)/

√
π . Choosing u = aum, for some m ∈ N, gives

C0 = a2/km, which determines a, and H = C0/λm. Thus, the
maximum value of H occurs for the smallest eigenvalue, λ1 =
1. Had we chosen u to be a linear combination of two or more
eigenfunctions, then it is not difficult to show the resulting value of
H would be smaller. Thus, this example constitutes a well-defined
extremization problem.

However, when we seek to minimize H[u] subject to C[u] =
C0, we see that C plays no role. In this case we have the same
Euler–Lagrange equation, eigenvalues, and eigenfunctions, but we
wish to minimize H = C0/λm. Because λm = m2, with m ∈ N,
can be made arbitrarily large, infH[u] = 0, which is of course the
minimum of H[u] without the constraint C . A rule of thumb for
minimum problems is that the constraint will only contribute if it
contains fewer derivatives than the functional that is desired to be
minimized and vice versa for maximum problems.

The simple maximum example above was chosen to represent
the situation for vortex dynamicswhen the energy ismaximized at
fixed Casimir invariants. Thus it is not a surprise that SA-dynamics
should produce nice circular vortex states, and this is evidenced
by the successful numerical examples of [13,14]. However, if
additional constraints are imposed one may obtain other states.
For example, as stated in Section 2.5, it is known that equilibria in
rotating frames are extremaofH+λL and thus, as suggested in [15],
one might be able to use SA-dynamics to obtain nonaxisymmetric
vortex states. In our tests this approach tended to be susceptible
to either forming very thin ellipses, maximizing λL at the expense
of H , or to creating a sponge-like structure, minimizing H at the
expense of λL. Wewill see in Section 3 thatwe obtain better results
by using DSA-dynamics with additional constraints.

As noted above, our simple minimization problem represents
the situation of vortex energy minimization at constant Casimir
invariants. The Casimir invariants are a consequence of the fact that
vortex dynamics is a rearrangement, i.e. that the formal solution is
given by

q(x, y, t) = q0(x0(x, y, t), y0(x, y, t)),

where x0(x, y, t) and y0(x, y, t) represent the inverted solutions
to the characteristic equations. Thus if one has an isolated single-
signed patch of vorticity surrounded by zero vorticity, and one
wants to minimize the energy of this patch subject to continuous
rearrangement, then this can be accomplished by the spreading
out of the patch concomitantly with the stretching of the patch
boundary, in such a way as to interpenetrate regions of zero and
patch vorticity (cf. Fig. 15). Thus although the constraint does not
preclude the march to zero energy, it does enforce a manner in
which it can take place. This is the mechanism of Kelvin’s sponge.
In Section 3wewill see howDSA-dynamics accomplishes this with
the inclusion of additional constraints.

3. Vortex examples

In this section we consider a variety of examples. In Section 3.1
we explore the various dynamics of Section 2.5 for two-fold
symmetric initial conditions with the vorticity being of single sign
and, where applicable, the two-fold symmetric Dirac constraints
of (1) and (25). In Section 3.2, three-fold symmetric evolution with
single-signed vorticity is considered under DSA-dynamics. Finally,
in Section 3.3we consider evolutionunder dipole initial conditions.

For all the single-signed, i.e. monopolar, runs the unit of time is
determined by the value of the integrated vorticity. For example,
this tends to be around π for the monopolar runs, giving a particle
circulation time of about 4π . A Kirchhoff ellipse with an aspect
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Fig. 2. The initial condition of (42). This vorticity (shading) and corresponding
streamfunction (contours) is used for the runs of Figs. 3–18.

ratio 2 to 1 rotates at Ω = 2/(2 + 1)2 = 2/9, giving a period
of about 28.3. The runs lasting until t = 200, then, represent about
16 revolutions of the particles and 7 of the ellipses.

All runs were done at a resolution of 256 × 256 points with
a total domain size of 8 or 16 units with the scale of the initial

condition being on the order of one unit. A pseudospectral code
was used with integrals evaluated as sums and time advancement
accomplished by second order Adams–Bashforth.

To give some insight into the ways energy and angular momen-
tum change as a vortex shapes change, we have plotted H–L dia-
grams for several vortex structures: the Kirchhoff elliptical vortex,
a ‘‘coarse-grained’’ circular vortex with a larger radius but smaller
value of q (q = a−2 for r < a), and cases in which some of the vor-
ticity has been spread into an annular band around a smaller core
(q = 1 for r < b and (1−b2)/(a2−b2) for b < r < a). Fig. 1 shows
the energy-angular momentum relationships as parametric curves
with aspect ratio or a varying along the curves. The maximum H
and L occur for all cases when the vortex is circular with unit ra-
dius and q = 1, corresponding to the aspect ratio or a being unity.
For reference, we havemarkedwith a circle thewell-known stabil-
ity threshold on the ellipse curve, where the aspect ratio is equal to
three. Ellipses below thismark are linearly unstable.Wewill find it
convenient to interpret some of our results in terms of this figure.

3.1. Single-signed vorticity with two-fold symmetry

For most of the runs of this subsection we use an initial condi-
tion of the following form:

q = e−(r/r0)10 with r0 = 1 + ε cos(2θ), (42)

(a) t = 40. (b) t = 80.

(c) t = 120. (d) t = 200.

Fig. 3. Vorticity (shading) and streamfunction (contours) under the H-dynamics of (37) with the two-fold symmetric initial condition of (42) at the times shown.
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(a) q. (b)
√
q.

Fig. 4. Depiction of filaments forming under the H-dynamics of (37) with the same parameters and initial condition as those of Fig. 3. The snapshot is at t = 20. Panel (a) is
the vorticity q, while (b) is

√
q in order to accentuate the filaments.

(a) H and C1,2. (b) H − H(0) and C1,2 − C1,2(0).

Fig. 5. Evolution (a) and relative evolution (b) of the Hamiltonian and the quantities C1 = −L of (1) and C2 = S of (25), under the pure H-dynamics of (37) for the initial
condition of Fig. 2. Note, for clarity in panel (b) H − H(0) has been amplified by 105 and C1 − C1(0) by 103.

(a) t = 20. (b) t = 100.

Fig. 6. Vorticity (shading) and streamfunction (contours) under the pure (σ = 0) SA-dynamics of (39) with the two-fold symmetric initial condition of (42) for the times
shown. The parameter α = 1. The code maximizes energy while preserving the Casimir invariants (rearrangement of vorticity) arriving at the circular state.
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Fig. 7. Plots of theHamiltonian,H , the angularmomentum, L = −C1, and the strain
moment, C2 = S, (relative to their initial values) vs. time, corresponding to Fig. 6,
for the pure SA-dynamics of (39). The energy H approaches a maximum, while the
angular momentum increases.

where r =
√
x2 + y2 and θ = tan−1(y/x). We choose ε = 0.4 for

all such runs. This initial condition is depicted in Fig. 2. Also, when
Dirac constraints are used, we will take C1 = −L, where the angu-
lar momentum L is defined in (1) and C2 = S, the strain moment

defined by (25). With these choices for the constraints and initial
condition, we expect the system to evolve toward a statewith two-
fold symmetry.

Fig. 3 shows the vorticity and contours of the streamfunction for
the H-dynamics of (37). Observe that the system sheds filaments,
evolves toward an elliptical vortex state close to the Kirchhoff
vortex in a time t ! 20, and then rotates uniformly for a long period
of time. Fig. 4 shows an example of filament shedding at an early
time. However, Fig. 5 shows that the invariants H and C1 = −L are
well-conserved, as seen in Fig. 5(b), butH decreasesmonotonically
at a small rate and C1 has an oscillatory behavior that is likely due
to the fact that the 2-torus is nonaxisymmetric. The strainmoment
C2 = S is not an invariant of H-dynamics, and this is evident from
the figure. The vortex may continue to axisymmetrize slowly as
vorticity is lost into filaments and spread around the core; in terms
of the H–L diagram of Fig. 1, this would correspond to numerical
dissipation decreasing H while preserving L, going from the ellipse
towards an annular state.

Fig. 6 shows evolution with the same initial condition but
now under the pure SA-dynamics of (39), i.e. with σ = 0 and
α = 1. In a fairly short time, t ≈ 20, the system forms a long-
lived axisymmetric vortex state. For SA-dynamics the Hamiltonian
should be maximized at fixed Casimir invariants, as described
in Section 2.5, but there is no reason the angular momentum
should be conserved. Indeed, in Fig. 7 it is seen that the system
reaches the axisymmetric vortex state as the energy grows to a

(a) t = 40. (b) t = 80.

(c) t = 120. (d) t = 200.

Fig. 8. Vorticity (shading) and streamfunction (contours) under the HD-dynamics of (38) with the two-fold symmetric initial condition of (42) for the times shown. The
Dirac constraints C1 and C2, minus the angular momentum and the strain moment, of (1) and (25), respectively, were used.
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(a) H and C1,2. (b) H − H(0) and C1,2 − C1,2(0).

Fig. 9. Evolution (a) and relative evolution (b) of the Hamiltonian and the Dirac constraints C1,2 vs. time, corresponding to the pure HD-dynamics of Fig. 8.

(a) t = 80. (b) t = 120.

(c) t = 160. (d) t = 200.

Fig. 10. Vorticity (shading) and streamfunction (contours) under the pure (σ = 0) DSA-dynamics of (40) with the two-fold symmetric initial condition of (42) for the times
shown. The parameters σ = 0 and α = 1; thus the bracket seeks to maximize the energy while striving to keep the C1 and C2 of (1) and (25) fixed. Observe for intermediate
times q approaches a function ofψ , but for late times horizontal tines develop, and at later times yet the system begins to axisymmetrize. The lighter color of the background
at t = 200 is due to the production of negative vorticity via numerical error.
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(a) t = 0. (b) t = 10.

(c) t = 90. (d) t = 90.

Fig. 11. Scatter plots of q vs. ψ for the DSA-dynamics of Fig. 10 are shown in panels (a)–(c) at the times indicated. For comparison, panel (d) shows a scatter plot for the
HD-dynamics of Fig. 8 with the same initial condition.

(a) H and C1,2. (b) H − H(0) and C1,2 − C1,2(0).

Fig. 12. Evolution (a) and relative evolution (b) of the Hamiltonian and the Dirac constraints C1,2 vs. time, corresponding to the pure DSA-dynamics of Fig. 10. The late time
rise in H signals the formation of tines and an approach to axisymmetry.

maximum value, and during this period the angular momentum
(−C1) steadily increases. The quantity C2 nearly vanishes initially
and remains small because of symmetry. Note that choosing σ = 0
means that the system cannot homogenize the Casimir invariants
with the H-dynamics, which could speed up the process, but must
rely entirely on the symmetric bracket. If the numerics were exact
this state would correspond to the energy maximum consistent

with vorticity rearrangement. Similar axisymmetric vortex states
were obtained by this method in [13,14]. Given the freedom to
move in the H–L diagram, the system can maximize both H and
L by moving towards the upper right on Fig. 1.

Fig. 8 shows the result for the pure HD-dynamics of (38)
with C1 again chosen to be minus the angular momentum and
C2 the straining moment, as given in (25). Observe that the
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(a) t = 40. (b) t = 80.

(c) t = 120. (d) t = 200.

Fig. 13. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the two-fold symmetric initial condition of (42) for the times shown. The
parameters α = 1 and σ = 1. The code strives to maximize the energy while keeping C1 and C2 of (1) and (25) fixed. Setting σ = 1 gives more freedom to rearrange, and
the tines of Fig. 10 no longer appear.

(a) H/H(0) − 1. (b) C1/C1(0) − 1.

Fig. 14. Evolution of (a) the relative Hamiltonian and (b) the Dirac constraint C1 = −L under DSA-dynamics with σ = 1, corresponding to the run of Fig. 13 without tines.

system relaxes to a state reminiscent of the Kirchhoff vortex, but
unlike the case for H-dynamics it does not rotate. Also, unlike the
results for SA-dynamics of Fig. 6 the system is constrained away
from achieving the axisymmetric state, the absolute maximum
consistent with constancy of the Casimir invariants. One does not

expect asymptotic stability in this dynamics, but the formation of
small scale structures by the shedding of filaments foments this
process. In Fig. 9 the three invariants are seen to bewell-conserved.

In Fig. 10 the initial condition of Fig. 2 is evolved under the
DSA-dynamics of (40) with C1 = −L and C2 = S defined by (1)
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(a) t = 20. (b) t = 40.

(c) t = 60. (d) t = 100.

Fig. 15. Vorticity (shading) and streamfunction (contours) under the SA-dynamics of (39) with the two-fold symmetric initial condition of (42) for the times shown. Here
α = −1 and σ = 0. The code seeks to minimize energy subject to the constancy of the Casimir invariants, and produces an expanding sponge-like state of interpenetrated
regions of vorticity.

and (25), respectively. The parameters α = 1 and σ = 0. As
was the case for the runs of Fig. 6, σ = 0 means that the system
cannot homogenize the Casimir invariants with the H-dynamics,
which could speed up the process, but must rely entirely in this
case on the dynamics of the symmetric bracket built from the
Dirac bracket. Nevertheless, comparison of the contours with the
shading in Fig. 10 indicates that q is approaching a function of
ψ . This is further evidenced in Fig. 11 where it is shown more
explicitly how q approaches a function of ψ . In this figure we also
show a scatter plot for the HD-dynamics of Fig. 8 at the same time
t = 90. However, at later times it is evident that the system
is not constrained enough, because horizontal tines develop and
eventually the method breaks down, as evidenced by the incipient
breakdown of the near exact conservation of C1 = −L and H as
seen in Fig. 12. At around t = 100 the energy makes a precipitous
rise that signals a transition to a more axisymmetric state. This
dynamics should be a rearrangement which preserves maximum
and minimum values of q. However, note that some numerical
error is present since min(q) = −0.0969, which in light of (42)
should be zero, but max(q) = 1.0001 is preserved very well.

In Fig. 13 the initial condition of Fig. 2 is again evolved under
(40) with the same Dirac constraints of (1) and (25), but with
the parameters α = 1 and σ = 1. Choosing σ = 1 means
that the HD-dynamics contributes and it can homogenize while
maintaining the Casimir invariant constraints and possibly cause

Fig. 16. Plots of the relative Hamiltonian H and C1,2 vs. time for the run of Fig. 15,
which is SA-dynamics with α = −1 and σ = 0. Observe that H is decreasing
in a manner expected by the production of the sponge-like state, but angular
momentum decreases as the pattern spreads out. The quantity C2 = S, the strain
moment of (25), remains relatively flat.
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(a) t = 20. (b) t = 40.

(c) t = 60. (d) t = 100.

Fig. 17. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the two-fold symmetric initial condition of (42) for the times shown. Here
α = −1 and σ = 0. As in Fig. 15 the code seeks to minimize energy at fixed Casimir invariants, and thereby produce a sponge-like structure. However, in this case because
the angular momentum is conserved the spreading of the structure is inhibited.

a more stable relaxation. This is akin to the rapid homogenization
along streamlines (cf. e.g. [27]). Observe in Fig. 13 that the tines no
longer develop. Examination of Fig. 14 reveals that theHamiltonian
relaxes well, and, although C1 = −L jitters about, it is still well-
conserved. The solutions appear to be similar to those obtained
in [28]. In terms of the H–L diagram of Fig. 1, these solutions
correspond to motion vertically upward at fixed L until the
elliptical state is reached, followed by a further vertical transition
by throwing off filaments and arriving at something more like the
annular states.

In the next two runs σ = 0, but the sign of α is flipped, i.e.
α = −1. This causes both the SA-dynamics and the DSA-dynamics
to attempt to minimize the energy, and we expect something like
the Kelvin sponge discussed in Section 2.6 to develop. In Fig. 15 we
plot the case of pure SA-dynamics. Observe that regions of high and
low vorticity interpenetrate and the entire structure spreads out in
time. In Fig. 16 we see that energy is decreasing and that angular
momentum decreases as the pattern spreads. This is consistent
with the sponge results of [13,14].

In Fig. 17 we depict the situation under DSA-dynamics. Again
a sponge-like pattern is produced, but because of the Dirac con-
straint C1 the pattern cannot spread. Conservation of angular mo-
mentum inhibits the spreading, while conservation of the Casimir
invariants induces the production of interpenetrating regions of

Fig. 18. Plots of the relative Hamiltonian and invariants C1,2 vs. time for DSA-
dynamics of Fig. 17, which has α = −1 and σ = 0. Observe that energy is
decreasing, first rapidly then steadily, at nearly constant angular momentum L =
−C1 and nearly constant strainmoment S = C2, consistent with a bounded sponge-
like pattern.
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Fig. 19. The less sharp initial condition of (43) with ε = 0.6 used for Fig. 20.

vorticity. The behavior of the energy and C1,2 for this run are de-
picted in Fig. 18. Essentially a larger circular vortex with a lower
coarse-grained vorticity is produced—one with a smaller energy
but a small enough L.

The minimizations of both Figs. 15 and 17 can be interpreted in
terms of the H–L diagram of Fig. 1. Both correspond to downward

motion in the diagram to a ‘‘coarse-grained’’ state: for DSA-
dynamics, the descent would be fairly vertical at constant L, while
for the SA-dynamics of Fig. 15 the descent would include motion
towards the left as well.

To conclude the set of runs with two-fold symmetry, we con-
sider a less sharp initial condition:

q =





1 −

(
r
r0

)2

r < r0

0 r > r0

and r0 =
√
1 + ε cos(2θ) (43)

with ε = 0.6 and the square root in r0 ensuring that the areawithin
r < r0 is π . This initial condition is depicted in Fig. 19. We again
consider DSA-dynamics with the same constraints as above. Ex-
amination of Fig. 20 shows that the system finds a more gradual
elliptical vortex state, and again the solutions appear to be similar
to those in [28].

3.2. Single-signed vorticity with three-fold symmetry

Nextwe consider a three-fold symmetric initial condition of the
form

q = e−(r/r0)10 with r0 =
√
1 + ε cos(3θ), (44)

with ε = 0.4. In addition, the center (r = 0) of the vorticity above
is shifted one grid point to the left (x = −1/32 in the units plotted)

(a) t = 20. (b) t = 40.

(c) t = 60. (d) t = 100.

Fig. 20. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the two-fold symmetric initial condition of (43) with ε = 0.6, depicted in
Fig. 19, for the times shown. Here α = 1 and σ = 0.
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Fig. 21. The three-fold symmetric initial condition of (44) with ε = 0.4, which is
used for the runs of Figs. 22–25.

in order to put energy into an off-center perturbation. This initial
condition is depicted in Fig. 21.

In this subsection, the Dirac constraint C1 is still minus the
angular momentum L of (1); however, C2 will be taken to be the

following cubic moment:

T =
∫

D

dx (x2y − y3/3)q = 1
3

∫

D

dx r3 sin(3θ)q, (45)

which is chosen with the hope of enforcing three-fold symmetry.
Fig. 22 shows the evolution of (44) under DSA-dynamics with

these two Dirac constraints, C1 = −L and C2 = T , σ = 0,
and α = 1. As in other runs, the code seeks to maximize the
energy at fixed Casimir invariants and Dirac constraints. Observe
that a clear three-fold vortex state appears and remains until about
t = 40 as the energy gradually increases, as depicted in Fig. 23. This
state is reminiscent of the three-fold symmetric V-state of contour
dynamics [29]. However, as time progresses three tines develop
and eventually the code seeks a more axisymmetric state at higher
energy. This latter stage is accompanied by a shift of the vortex that
can be measured by the x-component of the ‘center-of-q’ defined
by

x̄ :=
∫

D dx x q∫
D dx q

. (46)

Observe in Fig. 23 that the axisymmetrization occurs in concert
with a shift of x̄ to the left. Although a centered axisymmetric
vortex has a lower C1 value, it can partially compensate by the
excess associatedwith the displacement away from the origin. The

(a) t = 20. (b) t = 40.

(c) t = 60. (d) t = 80.

Fig. 22. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the three-fold symmetric initial condition of (44) with ε = 0.4, depicted in
Fig. 21, for the times shown. Here α = 1 and σ = 0 and the Dirac constraints are C1 = −L of (1) and C2 = T of (45). For early times a three-fold symmetric vortex appears
and remains until t ≈ 40, then at later times there is a move to greater axisymmetrization with a shift of the vortex center to the left.
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Fig. 23. Plots of the energy H and x̄ defined by (46) under the DSA-dynamics
corresponding to the run of Fig. 22. As in other runs, the code seeks to maximize
the energy at fixed Casimir invariants and Dirac constraints, C1 = −L of (1) and
C2 = T of (45). A three-fold vortex state appears early and remains for times up to
t ≈ 40, as the energy gradually increases. Subsequently, three tines develop and,
coincident with decreasing x̄ representingmigration of the vortex center to the left,
the code seeks amore axisymmetric state at higher energy—albeit onewith angular
momentum absorbed into the tines.

tines also appear to carry away some C1 leaving this quantity fairly
well conserved overall. The vortex is displaced along the zero line
of the C2 constraint, maintaining the value of this Dirac constraint
as well. Thus, this appears to be a legitimate maximal H solution—
one that has broken the three-fold symmetry.

Fig. 24 shows the evolution of (44) under DSA-dynamics with
the same two Dirac constraints used for Fig. 22, viz. C1 = −L,
with L of (1) and C2 = T , with T of (45), but now with σ = 1.
As was the case for our two-fold symmetric runs, the tines no
longer develop because the HD component homogenizes. Instead
the angular momentum is taken up by an annular region around
the central vortex.

Recall that the Dirac bracket of (16) can be constructed for any
even number of constraints for which C exists. Thus, motivated by
the results of Figs. 22 and 24, we seek to avoid axisymmetrization
by adding additional constraints. To this end we consider the
following two components of the linear momentum (deficit) as
candidates for Dirac constraints:

Py =
∫

D

dx x q and Px = −
∫

D

dx y q. (47)

If Py were conserved, the shift in x̄ would be prevented, since the
denominator of x̄,

∫
D dx q, is a Casimir invariant, and perhaps this

could constrain the system away from axisymmetrization. Fig. 25
shows the results for DSA-dynamics with the four constraints, C1,2
the same as the other runs of this section and C3 = Py and C4 = Px.

(a) t = 10. (b) t = 20.

(c) t = 40. (d) t = 50.

Fig. 24. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the three-fold symmetric initial condition of (44) with ε = 0.4, depicted
in Fig. 21, for the times shown. Here again the Dirac constraints are C1 = −L of (1) and C2 = T of (45) and α = 1. However, now σ = 1. As in Fig. 22, at early times a
three-fold symmetric vortex appears, but then at later times there is a move to greater axisymmetrization and the system rapidly finds the nearly axisymmetric state seen
in (d). Instead of developing tines, the vorticity forms more of an outer annular ring.
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(a) t = 20. (b) t = 40.

(c) t = 60. (d) t = 100.

Fig. 25. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with the three-fold symmetric initial condition of (44) with ε = 0.4, depicted
in Fig. 21, for the times shown. Here α = 1 and σ = 0 and four Dirac constraints are used: C1 = −L of (1), C2 = T of (45), C3 = Py and C4 = Px of (47). For early times
a three-fold symmetric vortex appears and remains for a bit longer than the run of Fig. 22, t ≈ 50, but again at later times there is a move to greater axisymmetrization
accompanied by tines that take up the deficit in C1.

We choose σ = 0 and use the same initial condition of (44).
The code tracks the three-fold symmetric state for a bit longer,
but eventually tends again to an axisymmetrized state with the
presence of three tines. Observe in Fig. 26 that x̄ remains fixed,
indicating that the code respected its invariance, and the energy
begins to rise steeply at around t ≈ 60.

We suspect there are solutionswith a nearly axisymmetric cen-
ter surrounded by three small satellite vortices at the stagnation
points. The latter could account for the deficit in C1. When σ = 1,
we may tend towards more of an annular ring.

3.3. Dipoles

Next we consider the dipole initial condition of the form

q = ye−r2/2 , (48)

which is depicted in Fig. 27. This form is reminiscent of the Lamb
dipole vortex [30], but is clearly not the exact solution that involves
Bessel functions.

The question of which constraints to use remains. Because
dipoles translate, and, in particular, we expect the initial condition
of Fig. 27 to translate to the right, we choose the x-component of
the linear momentum, Px = C1 of (47), as one of our constraints.
For the other we choose the strain moment S = C2 of (25) used in
Section 3.1.

Fig. 26. Temporal evolution of the energy H and x̄ defined by (46) under the DSA-
dynamics corresponding to the runof Fig. 25. The code seeks tomaximize the energy
at fixed Casimir invariants and Dirac constraints, C1 = −L of (1), C2 = T of (45),
C3 = Py , and C4 = Px of (47). During the region of slower increase in H the system
is near a three-fold symmetric state, but near t ≈ 50 the energy increases rapidly
and the code seeks a larger energy state of greater axisymmetry.
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Fig. 27. The initial condition of (48), which is used for the run of Figs. 28 and 30.

Fig. 28 depicts the evolution of (48) under DSA-dynamics with
σ = 0 and α = 1. From Fig. 29 it is clear that the system seeks a
higher energy state, that the Dirac constraints C1,2 remain fixed to
a good degree, and that a dipole structure remains. A closer look
at C2 = S reveals trends because the doubly periodic boundary
conditions assumed have some difficulty agreeing with the strain

moment. If we run the same initial condition of (48) under SA-
dynamics, the evolution behaves differently, as seen in Fig. 30
which depicts a late stage of this dynamics. Observe in this figure
that the halves of the dipole are tending to separate, a behavior
noted in [14] that is an avenue for increasing the energy. This
separation is evident in Fig. 31, where Px = C1 is plotted. However,
under our DSA-dynamics, enforcing Px to be a Dirac constraint
prevents the halves from separating in the y-direction. Thus, unlike
SA-dynamics which strives to increase energy subject only to
Casimir invariant conservation, our method is able to capture such
dipole-like solutions.

4. Two-layer quasigeostrophy

Before presenting our two-layer numerical results in Sec-
tion 4.2, we discuss the essentials of the Hamiltonian structure in
Section 4.1 that are required for the calculations.

4.1. Two-layer Hamiltonian structure

The dynamics of the two layers is coupled through the Greens
function matrix, defined by
(

∇2 − h2γ
2 h2γ

2

h1γ
2 ∇2 − h1γ

2

) (
G11 G12
G21 G22

)
=

(
δ(x) 0
0 δ(x)

)
. (49)

(a) t = 20. (b) t = 40.

(c) t = 80. (d) t = 100.

Fig. 28. Vorticity (shading) and streamfunction (contours) under the DSA-dynamics of (40) with σ = 0 and the dipole initial condition of (48) for the times shown. A stable
dipole structure remains for long time without separation.
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Fig. 29. Relative energy and Dirac constraints C1 = Px and C2 = S vs. time for the
initial condition of (48), which is used for the run of Fig. 28.

Fig. 30. The initial condition of (48), run to a time of t = 200 under SA-dynamics
with α = 1 and σ = 0. Observe, that without the Px Dirac constraint the dipole has
separated in the y-direction.

Here hj is the fractional thickness of the jth layer and γ is the
inverse of the deformation radius. A consequence of the form of
(49) is the identity
hjGj1 = h1G1j (not summed), (50)
which is trivial for j = 1 but not for j = 2.

The Hamiltonian of the system is given by

H = −1
2

∑

i,j=1,2

∫

D

dx
∫

D

dx′ hi qi(x)Gij(x, x′)qj(x′), (51)

which when substituted into the following Poisson bracket:

{F ,G} =
∑

i=1,2

1
hi

∫

D

dx qi(x)
[

δF
δqi(x)

,
δG

δqi(x)

]
(52)

gives the two-layer equations of motion. To see this, note that
δH

δq1(x)
= −1

2

∑

j=1,2

∫

D

dx′ h1G1jqj(x′) − 1
2

∑

j=1,2

∫

D

dx′ hjGj1qj(x′),

using the symmetry of G in x and x′, and therefore with (50)
δH

δq1(x)
= −

∫

D

dx′ h1G1jqj(x′) = −h1ψ1(x).

Consequently,

Fig. 31. Energy and quantities C1 = Px of (47) and C2 = S of (25) vs. time for the
initial condition of (48), under SA-dynamics corresponding to the runof Fig. 30. Note
that the C1,2, not being constrained are not conserved, although C2 varies little. The
steady decrease in C1 corresponds to a steady increase in separation of the dipole
in the y-direction.

Fig. 32. The initial condition of (53), which is used for the run of Figs. 33 and
34. Layer-1 is the left panel with positive vorticity, while layer-2 is the right with
negative vorticity.

{q1(x),G} =
[
1
h1

δG
δq1(x)

, q1(x)
]

gives us the standard evolution equation

∂

∂t
q1(x) = −[ψ1(x), q1(x)],

and likewise for q2.
From the above it is clear how to construct the HD-dynamics,

SA-dynamics, and DSA-dynamics of Section 2.5.

4.2. Two-layer results

We consider the initial condition

q1 = e−(x2+(y−0.25)2)/2 and q2 = −e−(x2+(y+0.25)2)/2, (53)

for the potential vorticity in each layer, which is composed of two
shiftedGaussianmonopolar vorticeswith opposite sign. This initial
condition is depicted in Fig. 32, with the left panel of positive
vorticity corresponding to layer-1 and the right panel of negative
vorticity corresponding to layer-2. For Dirac constraints we chose
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(a) t = 20. (b) t = 50.

(c) t = 120. (d) t = 150.

Fig. 33. Vorticity (shading) and streamfunction (contours) under the two-layer version of DSA-dynamics of (40) with σ = 0, α = 1, and the initial condition of (53) for the
times shown.

Fig. 34. The relative Hamiltonian H and Dirac constraints C1 = Px and C2 = Sp of
(54) vs. time for the initial condition of (53), corresponding to the run of Fig. 33. The
Dirac constraints remain nearly fixed as energy increases.

C1 = Px = ∑
j=1,2 hjP

j
x, the total x-momentum and C2 = Sp given

by

Sp = 1
k20

∑

j=1,2

hj

∫

D

dx sin(k0x) sin(k0y)qj, (54)

a quantity similar to the strain moment S, but superior in that it
respects the periodic boundary conditions. Here k0 = 2π/L and
we choose for our runs h1 = h2 = 0.5 and γ = 1.

Results for DSA-dynamics are depicted in Fig. 33, where it
is seen that opposite signed monopoles persist in each layer as
the dynamics proceeds. The structures maintain their integrity
throughout the run, but the two structures change shape slightly
as energy increases with the Dirac constraints nearly fixed in
time. The numerical conservation property of the invariant C2 is
excellent, since it nowmatches the periodicity of the domain. This
is evident from Fig. 34. These dipoles are smooth analogues of the
states found in [31].

5. Conclusion

It is clear from the many examples considered that the method
wepropose is able to achieve its desired end.However, implement-
ing thismethodnumerically, thoughnot difficult, can be rather del-
icate. In principle, the system should evolve to a local maximum of
H on the constraint surface; however, since this is typically a saddle
point in the infinite-dimensional function space without the con-
straints, slight errors can move the solution off the original surface
and permit evolution toward a differentmaximum. For example, in
the tripole experiments of Section 3.2, we often saw the vortex set-
tle into a tripole state and thenmove off-center and form a circular
vortex sitting on one of the zero lines of C2, with the extra angular
momentum appearing in the displacement of the center. The code
was not able to preserve the symmetry, and the systemended up in
a higher H state. By adding two more constraints, the components
of the linear momentum, we prevented the symmetry breaking,
but the vortex instead threw off vorticity into either spines or a
band, so that the center still axisymmetrized. Thus, although the
method can be made to work well, choosing constraints and ini-
tial conditions appropriately and running with high enough reso-
lution are issues. On the plus side, we note that implementation
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is straightforward because calculation of the effective streamfuc-
tions (e.g. (34)) used for advection requires relatively minor mod-
ification of existing vortex codes.

It is obvious that many generalizations and additional applica-
tions are possible. Issues pertaining to the existence of solutions
in quasigeostrophic dynamics for monopolar and dipolar states
[32–37,28] would be a natural next set of applications. One could
also pursue reduced magnetohydrodynamics, since it possesses a
dynamics and Hamiltonian structure [38] similar to the vortex ex-
amples presented here, but with one additional scalar field that
describes the magnetic field. Another possibility would be to im-
plement the dual formulation of metriplectic dynamics [11]. For
example, we could begin with the bracket [39]

{F ,G}ψ =
∫

D

dxψ

[
δF
δq

,
δG
δq

]
, (55)

which does not satisfy the Jacobi identity but does have the Hamil-
tonian as a null element, i.e. {H,G}ψ = −

∫
D dxψ [ψ, δG/δq] ≡ 0

for all G, and use (55) to construct the following ‘entropy produc-
ing’ symmetric bracket:

((F ,G))ψ =
∫

dx′
∫

dx′′{F , q(x′)}ψK(x′, x′′){G, q(x′′)}ψ.

(56)
With F = H + C as the generator, this gives
q̇ = {q, F } + ((q, F ))ψ = {q,H} + ((q, C))ψ

= [ψ, q] + [Φψ, ψ], (57)

where Φψ(x) =
∫

D dx ′K(x, x′)[ψ(x′), C(q(x′))]x′ . By construc-
tion, Ḟ = ((C, C))ψ = Ċ ≥ 0, and thus this bracket maximizes C
at fixed Hamiltonian or energy. It would be interesting to compare
numerical implementation of this dual formulationwith those pre-
sented.

As another possibility we mention that dissipation or driving
can be included by adding a time dependence to the Hamiltonian
by e.g. adding Hext =

∫
D dx q(x)ψext(x, t) (cf. [40]). When this is

done the noncanonical Poisson bracket will maintain the Casimir
invariants, and perhaps one can use the added degree of freedom
of ψext to drive the system to a desired state.

Lou Howard’s famous optimization paper [41] demonstrated
how informative obtaining constrained bounds on fluid transport
properties could be. In a similar vein, our paper provides a method
for incorporatingmultiple constraints into conservative dynamical
systems and approaches for modifying them to dissipate specific
quantities while preserving others. We have not addressed many
interesting issues, such as the relationship to linear and nonlinear
stability, nor have we examined other kinds of dynamics such
as those alluded to above, although we have every reason to
expect that the approach herein will be applicable just as [13–15]
have shown that SA-dynamics can be posed for a wide variety
of systems. We believe that adding Dirac constraints allows the
exploration of a much wider and richer variety of optimization
problems.
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