
Free-boundary toroidal Alfvén eigenmodes

Eugene Y. Chen,a) H. L. Berk, B. Breizman, and L. J. Zheng
Institute for Fusion Studies, University of Texas at Austin, 1 University Station, C1500, Austin, Texas 78714,
USA

(Received 14 January 2011; accepted 16 March 2011; published online 11 May 2011)

A numerical study is presented for the n¼ 1 free-boundary toroidal Alfvén eigenmodes (TAE) in
tokamaks, which shows that there is considerable sensitivity of n¼ 1 modes to the position of the
conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum
as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma
equilibria with both circular and shaped cross sections, where the shaped profile studied here is
similar to that found in Alcator C-Mod.VC 2011 American Institute of Physics.
[doi:10.1063/1.3575157]

I. INTRODUCTION

Toroidal Alfvén eigenmodes (TAE) are discrete eigenm-
odes which exist in the toroidicity induced frequency gaps.
These modes may be readily destabilized by high energy
alpha particles in ignited tokamak plasmas, resulting in
degraded confinement. Therefore, the study of the TAE and
their stability characteristics has attracted considerable
attention.1

Calculations of TAE are frequently performed with
fixed-boundary conditions that assume that the radial pertur-
bation vanishes at the plasma edge.2–13 Such calculations
ignore the presence of a vacuum gap between the plasma and
the ideal conducting wall, which is appropriate to localized
modes that are insensitive to the outer boundary conditions.
However, for modes of low toroidal mode number, it is
unclear that the mentioned boundary conditions remain ap-
plicable. A more realistic set of boundary conditions are the
free-boundary conditions which allow the radial component
of the magnetic displacement vector (~n) to be nonzero at the
plasma–vacuum interface.14 While this set of boundary con-
ditions has been implemented in some magnetohydrodynam-
ics (MHD) eigenmode codes that deal with cylindrical
plasma15–17 and toroidal plasma,18,19 a systematic investiga-
tion which explores the relation between TAE and various
equilibrium/configuration parameters in the presence of
them has not yet been conducted.

The present paper is intended to partially fulfill such pur-
poses. Here, we study the sensitivity of eigenfrequency and
eigenmode structure to the ratio of the conducting wall radius
to plasma radius. Additional mode sensitivity scans will be
presented for variable edge q (safety factor) conditions and to
plasma b (the ratio of average plasma pressure to magnetic
pressure, l0hpi=hB2i) variations. In this paper we refer to the
modes that we study as “Free-boundary TAE.”

This paper is organized as follows: In Sec. II, we intro-
duce our numerical scheme. In Sec. III, we investigate the
response of eigenfrequency and mode structure of TAE to
various system parameters. In Sec. IV, we study free-

boundary TAE for a plasma profile similar to that found in
Alcator C-Mod. Discussions and concluding remarks are pre-
sented in Sec. V.

II. NUMERICAL SCHEME

The numerical investigations in this paper employ the
ideal MHD eigenmode code AEGIS (Adaptive EiGenfunction
Independent Solution).20 The AEGIS code uses the energy
principle to search for the MHD eigenvalues and eigenfunc-
tions of an axisymmetric toroidal plasma surrounded by a vac-
uum gap and enclosed by a perfectly conducting wall whose
shape conforms to the plasma boundary (viz., the vacuum gap
is of constant width). A schematic diagram is shown in Fig. 1,
where the long vertical dashed line to the left depicts the
major axis of the tokamak and the long horizontal line depicts
the mid-plane. We define the plasma radius (a) as the distance
from the magnetic axis (indicated by the round dot inside the
plasma region) to the outer mid-plane plasma edge and the
wall radius (b) as the distance from the magnetic axis to the
outer mid-plane conducting wall. The vacuum gap is indicated
by the white area between the plasma and the wall.

In a toroidally symmetric configuration, the magnetic
field ~B in the Princeton equilibrium and stability (PEST)
coordinates21 can be represented by the form,

~B ¼ v0r/"rwþ gðvÞr/; (1)

where / is the axisymmetric toroidal angle, w labels the
magnetic surface, vðwÞ denotes the poloidal magnetic flux,
and gðvÞ denotes the poloidal current flux. The poloidal flux
is governed by the Grad–Shafranov equation. In this work,
the equation is solved by the TOQ code (https://fusion.gat.
com/THEORY/toq/). The TOQ code takes the pressure pro-
file PðvÞ and poloidal current flux gðvÞ as input and solves
for v as a function of position. This allows the code to solve
the problem of relating the flux coordinates to the Euclidean
coordinates (viz., Xðw; hÞ and Zðw; hÞ where h is the general-
ized poloidal angle, X is the distance to the major axis and Z
is the distance to the mid-plane).

The numerically evaluated equilibrium is used to
express the perturbed plasma potential energy and kinetic
energy,
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in which l0 is the permeability of free space, x is the wave
frequency, ~n is the magnetic field line displacement vector,
~Q ¼ r" ð~n" ~BÞ, ~J is the equilibrium current density, and I
is the norm of the mode. The quantity 2U only depends on
the MHD equilibrium and do not affect the analysis below.
Its definition is given in Appendix A.

In this work we set the adiabatic index to zero, which is
tantamount to ignoring acoustic compression effects. With
this choice the parallel component of ~n decouples from the
MHD equations while the magnetic compressibility is still
included.

We decompose ~n in the following way:

~n ¼ nwv0
~B"~s

B2
þ insv0

~B"rw
B2

; (4)

where~s ¼ r/' qrh. We further represent ns as

ns ¼ 1
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þ d ( 1

n
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0
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in which n is the toroidal mode number. dWp and x2I can
then be put into a quadratic form for the triad of the functions
ðnw; nw

0
; dÞ. By exploiting the toroidal symmetry of the sys-

tem, the radial linear perturbation nw can be decomposed in
the following form:

nwðwÞ ¼
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where the tilde indicates a vector in Fourier space, e.g.,

~nw ¼

nw1
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..

.
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In this representation, nw1 is the Fourier component corre-
sponds to mmin and nwM corresponds to mmax. Note that
M ¼ mmax ' mmin þ 1. The calligraphic letters used here
denotes M "M matrices determined by the MHD equilib-
rium [c.f. Eqs. (2) and (3)]. We refer the readers to Appendix
A for their detailed expressions. Defining
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It follows that,
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We then apply Euler–Lagrange equation with respect to d†,
obtaining

R†~nw þQ†~nw
0
þ C~d ¼ 0; (11)

~d ¼ ð'C'1R†;'C'1Q†Þ
~n
w

~n
w0

 !

: (12)

Equation (10) can thus be reduced to

2l0ðdWp ' x2IÞ ¼
ð
dwð~nw
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~n
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in which

FIG. 1. Schematic diagram of the tokamak poloidal cross section.
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F ¼ B 'QC'1Q†

K† ¼ P 'RC'1Q†

G ¼ A'RC'1R†

:

Applying Euler–Lagrange equation with respect to ~nw† then
yields

ðF ~nw
0
þ K~nwÞ0 ' K† ~nw

0
' G~nw ¼ 0: (14)

The above set of equations can be transformed into the fol-
lowing set of first order differential equations:
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Then by integrating Eq. (13) by parts, it follows that for the
solutions of Eq. (15) (u),

2l0ðdWp ' x2IÞ ¼ u†1u2jw¼wa
: (16)

The solution space of Eq. (15) is 2M-dimensional. However,
the physical relevant solutions require regularity at the mag-
netic axis. Thus, M boundary conditions (i.e., nwm / rm at the
magnetic axis) are imposed and we are left with a M-dimen-
sional solution subspace. Any set of M independent solutions
can be taken as a set of basis function and we find it conven-
ient to make the following choice:

lu1mjw¼wa
¼ dlm: (17)

The M independent functions flujl ¼ 1; :::;Mg constitutes a
complete basis and the general solution ug has the following
representation:
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We define the column vector composed of cp1; cp2; & & & ; cpM
to be cp. Equation (16) thus becomes
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The last line follows because Up1 is the identity matrix due
to the basis choice given by Eq. (17). Similar notation (viz.,
using U to denote the M "M solution matrix evaluated at
the plasma—vacuum interface) will be used again for the
analysis in the vacuum region, but with the subscript
changed from p to v.

The analysis in the vacuum region is very similar to what
we have presented for the plasma region, and we shall only
focus on where differences occur in the treatment: A new grid
(wv; hv;/) is set in the vacuum region between the plasma
boundary and the wall. As there are no currents in the vacuum
region, r" dB ¼ 0. It follows that the perturbed magnetic
field can be described by a scalar field u, where dB ¼ 'ru.

It can be shown that the vacuum energy integral can be
expressed as a quadratic form of ð @ ~u@wv

; ~uÞ,

2l0dWv ¼
ð
dsjruj2
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(c.f. Appendix A for definitions of F v;Kv;K†
v , and Gv.)

Euler–Lagrange equation then yields

v0 ¼ Dvv; (21)

in which

Dv ¼
'F'1v Kv F'1v
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We note that the dimension of vacuum solution space is also
M, because the ideal conducting wall imposes M boundary
conditions that correspond to ~B & rwv ¼ 0. Namely,

v2ðwvÞjwv¼wb
¼ 0; (22)

as v2 is proportional to the Fourier vector of d~B & rwv. By
performing an integration by parts and using the vanishing
of its Euler–Lagrange equation as well as the aforementioned
boundary conditions, we arrive at the relation,

2l0dWv ¼ 'c†vU
†
v1Uv2cv; (23)

where the subscript v denotes vacuum. At the plasma–vacuum
interface, the normal component of d~B is continuous. This
free-boundary condition gives a relation between cp and cv,

Uv2cv ¼ 'i½v0T Kk*w¼wa
cp; (24)

where Kk ¼ ðm' nqÞI and T is the transformation matrix
between the plasma poloidal coordinate (hp) and vacuum
poloidal coordinate (hv),

T mvmp ¼
1

2p

ðp

'p
dhpe'imvhveimphp : (25)

Thus we have
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2l0ðdWp þ dWv ' x2IÞ
¼ c†p Up2 ' v02KkT †U'1†v2 U†

v1T Kk
' (
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cp ( c†pL̂cp:

(26)

We note that with a specific MHD equilibrium, L̂ is both a
function of frequency (through Up) and wall position
(through Uv). The energy principle requires an arbitrary vari-
ation of LHS to vanish, leading to the following set of M
equations:

L̂cp ¼ 0: (27)

Nontrivial cp only exists when DetðL̂Þ ¼ 0. In a given sys-
tem, the problem of finding global eigenmodes is, thereby,
reduced to finding the root x0 of DetðL̂Þ ¼ 0. The nontrivial
eigenvector can then be constructed for the value of x0.

III. EIGENVALUE AND EIGENMODE SENSITIVITY TO
PARAMETER VARIATION

To start our investigation with minimal complications,
we begin our study with a circular poloidal cross-section
equilibrium with q0 ¼ 1:10 (q0 denotes the q value at mag-
netic axis) and qa ¼ 2:25 (qa denotes the q value at w ¼ wa).
b is taken to have a negligible value (5:4" 10'4) and the
tokamak has an aspect ratio of 4. The q-profile, density pro-
file, and Alfvén continuum profile for this equilibrium are
shown in Fig. 2. In the following three subsections, we will
study the changing of free-boundary TAE as the wall posi-

tion, the relative plasma pressure (b) and the safety factor at
plasma boundary (qa) vary.

A. Wall position study

We first explore the sensitivity of the eigenvalues and
eigenmodes to the conducting wall position. We introduce
the normalized wall position b, defined as the ratio of the
wall radius to plasma radius, b=a. Thus, the value of b ranges
from 1 to the tokamak aspect ratio (i.e., when the wall
reaches the major axis). We will refer to the later limit as the
“no-wall limit” because the results become very insensitive
to wall position much before b approaches the aspect ratio,
as we will see shortly. Note that because we are performing
free-boundary calculation, there is a technicality that pre-
vents b from being taken arbitrarily close to unity (i.e., the
plasma energy becomes numerically divergent except for the
eigenfunction itself). However, we have confirmed that in
calculations with b ¼ 1:001 the mode structure expected for
a fixed-boundary mode is being replicated (nearly zero radial
displacement at plasma boundary). We scan for solutions, by
searching in b rather than in x. This enables us to precalcu-
late the plasma contribution to the L̂ matrix at fixed fre-
quency inside the frequency gap, at intervals of
0:001vA0=Rq0 (in which vA0 is the Alfvén speed at the mag-
netic axis and R the major radius). At each frequency, we
seek, using Newton’s method, the wall position (b) by solv-
ing Det½L̂ðx; bÞ* ¼ 0 which then enables the construction of
an eigenmode at the specified frequency. The result is sum-
marized in Fig. 3, which plots the locus of

fðb;xÞjDet½L̂ðx; bÞ*g ¼ 0: (28)

We see that the general trend is for the mode frequency to
decrease with increasing b. Further, there are two different
branches of the TAE as is observed in Fig. 3. The lower
branch which drops into the continuum at b ¼ 1:64 (L2)
becomes the fixed-boundary TAE at the limit of b ! 1 (L1)
(hereafter, we will refer the b ! 1 limit as the “fixed-bound-
ary limit”). The upper branch which is absent in the fixed-
boundary limit, emerges from the upper continuum at

FIG. 2. Initial MHD model equilibrium parameters. Upper panel: q-profile
(solid line) and density profile (dashed line). The density profile is chosen to be
q ¼ ð1' DwÞ2, where D¼ 0.25. Lower panel: Alfvén continuum for n¼ 1.

FIG. 3. The relation between wall position and eigenmode frequency for the
MHD equilibrium specified by Fig. 2. The horizontal dotted lines depict the
boundaries of TAE gap. U1 and L2 mark points where real frequency modes
first appear.
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b > 1:14 (U1). Its frequency decreases with the increase of b
and approaches an asymptotic value of 0:47vA0=R (U2)
which nearly reached in this figure even for b + 2:0.

Using PEST coordinates, we plot the structure of the
lower branch free-boundary TAE in Fig. 4. The upper panel
shows the mode structure at L1, whereas the lower panel
shows the mode structure at L2. In the upper panel, we see
that the mode has strong m¼ 1 and m¼ 2 components and a
relatively small m¼ 3 component, which is consistent with
previous TAE investigations with fixed-boundary conditions
(e.g., Ref. 12. Note that the radial coordinate we use in our
plots are different from that used in Ref. 12; we use the nor-
malized magnetic surface w=wa, whereas Ref. 12 used the ra-
dial coordinate s ¼

ffiffiffiffiffiffiffiffiffiffiffi
w=wa

p
). In the lower panel (where the

frequency of the mode is extremely close to the frequency
tip of the lower continuum) we observe a strong m¼ 3 com-
ponent which is comparable to m¼ 2 component at plasma
edge. The mode involves three poloidal harmonics even
though only one TAE gap is present in the equilibrium. It
has a rather broad extent and its m ¼ 1; 2 poloidal harmonics
exhibits a pronounced in-phase jump around q ¼ 1:5, as is
theoretically expected.13 We shall refer this synchronism in
phase as a “‘couplet’” in the rest of this paper.

The mode structure of the upper-branch free-boundary
TAE is shown in Fig. 5. Plotted in the upper panel is the
mode structure at U1. Again, there is a strong m¼ 3 compo-
nent which is absent in the conventional fixed-boundary

TAE. The mode frequency is very close to the tip of the
upper frequency continuum, leading to the out-of-phase
jumps of the m ¼ 1; 2 couplet around q ¼ 1:5 as is also
expected theoretically. In the lower panel, we plot the mode
structure at U2 (no wall limit: b ¼ 4). The structure of the
m¼ 1 and m¼ 2 harmonics is not very different from the
fixed-boundary TAE, consistent with the fact that the fre-
quencies of the two modes are not very apart. However,
m¼ 3 is dominant at the plasma edge, and a non-negligible
m¼ 4 harmonic is also present.

To conclude, the structure of free-boundary TAE has
features of fixed-boundary TAE, but a strong surface m¼ 3
component is ubiquitous unless b ! 1. b, which we infer to
be a major factor in shifting the mode frequency, in turn
determines the mode structure of m¼ 1 and m¼ 2 harmon-
ics. Furthermore, the frequency shift can cause the mode to
be immersed into the continuum and disappear.

In a tokamak, the wall position is more of a fixed quantity.
In this study we have found that the number and frequency of
the eigenmodes in a specific equilibrium is sensitive to wall
position. From Fig. 3, it can be concluded that

(1) Only one eigenmode is found for 1 < b < 1:14.
(2) Two eigenmodes are found for 1:14 < b < 1:64.
(3) Only one eigenmode is found for b > 1:64, and this

mode is not the one that evolves into the fixed-boundary
TAE.

FIG. 4. Mode structure of the lower-branch free-boundary TAE in PEST
coordinates. Upper panel: Structure of the lower-branch modes at the fixed-
boundary limit (L1). Lower panel: Structure of the lower-branch modes at
b , 1:64 (L2).

FIG. 5. Mode structure of the upper-branch free-boundary TAE in PEST coor-
dinates. Upper panel: Structure of the upper-branch modes at b , 1:14 (U1).
Lower panel: Structure of the upper-branch modes at the no-wall limit (U2).
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Hence, on the basis of calculation for this particular
equilibrium, we see that a fixed-boundary calculation can
easily make misleading predictions of the expected number
of TAE which thread a gap as well as the frequency of these
modes, at least as far as the n¼ 1 mode is concerned. For the
purpose of illustration, we have explicitly made the eigen-
mode calculation for three different wall positions, viz.,
b ¼ 1:001; 1:2; 2:0. The results [DetðL̂Þ as a function of x,
fixing b] are shown in Fig. 6. The first case, b ¼ 1:001
(upper panel of Fig. 6), represents the fixed-boundary limit.
It features a singularity (xs) located at xs ¼ 0:4056vA0=R
[The value of xs is found by applying Newton’s method on

the function 1=DetðL̂ðxÞÞ], which can be shown to be the
frequency of the fixed-boundary TAE (the singularity arises
as a consequence of the use of basis functions that have finite
values at the plasma–vacuum interface, which causes a fre-
quency that would produce a zero displacement at this inter-
face to produce a divergence of Det½L̂ðxÞ* [c.f. Eq. (17)]).
Thus, in the case of b ¼ 1:001, the eigenvalue root is adja-
cent to the singular root, as expected. We concluded that,
with quite small ðb' 1Þ values, the effects due to free-
boundary conditions in this particular equilibrium are indeed
negligible and the AEGIS code is indeed suitable for obtain-
ing results which are essentially equivalent to that from a
fixed plasma boundary calculation. The calculation of
Det½L̂ðxÞ* with b ¼ 1:2 is shown in the middle panel of Fig.
6. While the singularity remains at the same frequency (as it
should be), the total number of roots has increased from one
to two. The root near the lower continuum tip (which is the
lowest value of frequency on the x-axis) is related to the root
found in the previous case of b ¼ 1:001, as they both belong
to the lower-branch TAE. However, the higher frequency
root (which belongs to the upper-branch free-boundary TAE)
has no counterpart in the fixed-boundary case as previously
concluded.

The results of the calculation with b ¼ 2:0 is shown in
the lower panel of Fig. 6. It shows only one root located
above xs, which is an upper-branch free-boundary TAE.
The root that is related to the fixed-boundary TAE (i.e., the
lower-branch free-boundary TAE) has submerged into the
Alfvén continuum and is absent from the frequency gap.

It is illustrative to calculate dWp, dWv, and I of the
eigenmodes individually using Eqs. (7) and (23) [rather than
evaluating dWp ' x2I as a whole, using Eq. (19)] because in
view of the variational principle, one may attribute the eigen-
frequency into a plasma contribution and a vacuum
contribution,

dWp þ dWv ' x2I ¼ 0

) x2 ¼ dWp

I
þ dWv

I
:

Evaluating dWp=I and dWv=I as a function of b (Fig. 7), we
found that dWp=I decreases and dWv=I increases with
increasing b. For all cases, dWv is at most 5% of dWp. There-
fore, it is the plasma potential energy, rather than the mag-
netic field energy in vacuum that appears to dominate.
However, one cannot rule out the possibility that an effective
wall mode is serving as a catalyst for the frequency shift.

B. Plasma pressure (b) study

It was shown in Refs. 12 and 22 that an increase of b
decreases the fixed-boundary TAE frequency. In this subsec-
tion, we study the relation between b and mode frequency
for the free-boundary case. A recessed wall is likely the
more relevant boundary condition for fusion reactors which
are designed to work in high-b regimes without conducting
walls nearby.

We choose b to be 1.2 and investigate how the incre-
ment of b affects the free-boundary TAE. In Fig. 8, we have

FIG. 6. Normalized DetðL̂Þ as a function of x (solid line) and the horizontal
line of DetðL̂Þ ¼ 0 (dotted line). The intersection of the two defines a root
and indicates the existence of a global eigenmode. Upper panel: b ¼ 1:001.
Middle panel: b ¼ 1:2. Lower panel: b ¼ 2:0.
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plotted the relation between b and the frequencies (normal-
ized to continuum gap width) for the upper-branch free-
boundary TAE (upper panel) and the lower-branch free-
boundary TAE (lower panel) with b ¼ 1:2.

At low b, both the upper-branch and lower-branch
modes are present. We found that the frequencies of both
modes move downwards as b increases. However, the lower-
branch mode (lower panel) enters the lower continuum at a
fairly low b (,1:7%). On the other hand, the upper-branch
mode (upper panel) does not leave the Alfvén continuum
gap even at the highest b we have investigated.

Hence, with sufficient plasma pressure, the upper-branch
free-boundary TAE (i.e., the one that does not appear in the
fixed-boundary calculation of this equilibrium) is the only
observable Alfvén eigenmode in the frequency gap at
b ¼ 1:2. This indicates the importance to use the free-bound-
ary conditions for the sake of obtaining qualitative insight
into the nature of the excited TAE structure.

C. Edge safety factor (qa) study

In this subsection, we examine the response of free-bound-
ary TAE to a systematic change of qa, with other plasma pa-
rameters (e.g., density profile, b profile and q0) kept constant.

We consider a total of ten equilibria, in which current
profile is changed successively to produce a series of qa
ranging from 2.10 to 2.55. In other words, the q-profile of

the equilibrium (upper panel of Fig. 9) goes from the solid
line to the dotted line continuously, so is their Alfvén contin-
uum (lower panel of Fig. 9). We then investigate the x–b
relation in the fashion of Sec. III A.

We found the basic characteristics of x–b relation at
fixed qa, i.e., the two-branch picture similar to Fig. 3,
remains unchanged. The shape of the lines are changed due
to the changes made on the equilibrium (upper panel of Fig.
10); however, one can still see a similar pattern formed by
the four marked frequencies (U1, U2, L1, L2) of Fig. 3.
Looking at the mode structures, we found

(1) The mode structure corresponding to L1 remains similar
for different qa values (c.f. upper panel of Fig. 4).

(2) The mode structure corresponding to L2 always features
a strong in-phase m ¼ 1; 2 couplet structure around
q ¼ 1:5, reflecting the fact that it is near the m ¼ 1; 2
lower continuum tip. However, the overall global struc-
ture (e.g., the structure of m¼ 3 harmonics and the ampli-
tude of m¼ 2 component at the plasma–vacuum
interface) is dependent on qa. For illustration, we have
plotted the mode structure in the case of qa ¼ 2:1 and
qa ¼ 2:55 in the upper panel and middle panel of Fig. 11.

(3) The mode structure of U1 changes significantly as qa
varies. At lower values of qa, it features a strong out-of-
phase m ¼ 1; 2 couplet structure (c.f. upper panel of

FIG. 7. Upper panel: Normalized plasma potential energy (dWp=I) as a
function of b. Lower panel: Normalized vacuum energy (dWv=I) as a func-
tion of b.

FIG. 8. The relation between b and the frequencies (normalized to contin-
uum gap width) of free-boundary TAE for b ¼ 1:2. The y-values are defined
as ðx' xLÞ=ðxU ' xLÞ, with xU and xL the upper and lower frequency
limits of the TAE gap. The upper and lower panels are for the upper and
lower branches, respectively.
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Fig. 5) while at higher values of qa it features a strong
out-of-phase m ¼ 2; 3 couplet structure (the mode struc-
ture in the case of qa ¼ 2:55 is plotted in the lower panel
of Fig. 11). This reflects the upper boundary of the gap
has changed from m ¼ 1; 2 continuum tip to m ¼ 2; 3
continuum tip.

(4) The broad mode structure of U2 remains similar as qa
changes (c.f. lower panel of Fig. 5); however, the relative
amplitudes for the different harmonics are dependent
on qa.

The presence of a pronounced m¼ 3 component at the
plasma–vacuum interface of U2 (c.f. lower panel of Fig. 5)
and the x–b relation of the upper free-boundary TAE (c.f.
upper panel of Fig. 10) motivate us to compare the predicted
frequency of a cylindrical m¼ 3 Alfvén surface wave23 to
the frequency of the upper-branch free-boundary TAE.
Therefore, we plot the x–qa relation of the ðn;mÞ ¼ ð1; 3Þ
Alfvén surface wave (c.f. Appendix B) with that of the
upper-branch free-boundary TAE at three different wall posi-
tions: b ¼ 1:15; 1:3; 1:5 in the lower panel of Fig. 10. We see
that there is a correlation of the TAE frequency as a function
of b and qa with the frequency predicted for the cylindrical
Alfvén surface wave. Thus, there may be a mixing of TAE
and m¼ 3 surface modes in determining the frequency of the
final eigenmode. Nonetheless, this observation is qualitative,
and the correlation might still be arising fortuitously, as other

parameters vary as well, e.g., the coupling with additional
TAE couplets arising from the m¼ 3 interaction emerging
from the edge. If the surface mode is indeed relevant, we
find it surprising that the perturbed vacuum potential ener-
gies found in Fig. 7 are such a small fraction of the total
mode energy.

IV. ALCATOR C-MOD CROSS SECTION

In this section, we would like to show that the sensitivity
of TAE to wall position is not only important for systems with
low edge q and circular cross section. The free-boundary con-
ditions can have significant impacts on systems with more
complex equilibrium as well. For our purposes, we have con-
structed a plasma model profile similar to that found in Alcator
C-Mod. We have adopted the C-Mod geometrical parameters
(c.f. upper panel of Fig. 12) with q0 ¼ 1:11, qa ¼ 6:28, and
b ¼ 5:76" 10'3. The n¼ 1 Alfvén gap is plotted in the lower
panel of Fig. 12, in which a reasonably large fraction of the
gap is shown to be in the “shadow” of the continuum. Thus,
the frequency domain, where undamped modes can arise, lies
between the two horizontal dotted lines in the figure.

We investigate the frequency of the modes in this fre-
quency domain as a function of b. Two branches of the

FIG. 9. q-profile (upper panel) and Alfvén continuum (lower panel) for the
study of frequency sensitivity to qa (2:1 < qa < 2:55) and ratio of wall
radius to plasma radius.

FIG. 10. Study of frequency sensitivity to qa (2:1 < qa < 2:55) and ratio of
wall radius to plasma radius. Upper panel: The x–b relation of free-bound-
ary TAE for three different values of qa. The hollow circles mark where the
modes terminate at upper or lower continuum. Lower panel: x–qa relation
of the upper-branch free-boundary TAE (solid curves) compared with fre-
quency of model Alfvén surface wave [dashed curves, c.f. Eq. (B8)] for
three different wall positions.
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undamped free-boundary TAE are found and plotted in Fig.
13. It is noteworthy that the frequency tracking of the upper-
branch modes disappears when the frequency intersects the
upper continuum at b ¼ 1:02. As the intersecting frequency
still lies within the frequency gap of this particular equilib-
rium, the “lost” mode is expected to be present as a contin-
uum-damped mode, rather than to disappear altogether, as in
the case of Sec. III A. However, further work, beyond the
scope of the present paper, is required to determine the
damping rate and spatial characters.

In Fig. 14, we plot the mode structure at b ¼ 1:06 as this
wall position is applicable to some of the C-Mod dis-
charges.19 In this example, we note that a fixed-boundary

calculation would not capture the existence of the undamped
TAE of higher frequency. Besides, we found from the plots
that the mode amplitude at the outer part of the plasma
appears to be a crucial part of the C-Mod TAE structure. The
nonvanishing radial perturbations, found with the wall con-
ductor displaced from the plasma, causes significant changes
of mode frequency (indicated by Fig. 13) as b approach
towards unity. We observe from the shape of the eigenmodes
that a driving source in the center of the plasma (e.g., ener-
getic particles) could produce a relatively strong excitation
at the plasma edge. Therefore, it is important to accurately
take the presence and width of vacuum gap into account
when analyzing TAE in equilibria which are similar to that
found in experiments.

V. CONCLUSION

In this study, we have investigated the global eigenmo-
des in a TAE gap, taking the effects of the free-boundary
conditions into account. We found that in the cases studied,
if we start the configuration at b ¼ 1 and then increase b, an

FIG. 11. Three different examples of mode structures (in PEST coordinates)
found in qa scan. Upper panel: Mode structure of L2 for qa ¼ 2:10. Middle
panel: Mode structure of L2 for qa ¼ 2:55. Lower panel: Mode structure of
U1 for qa ¼ 2:55.

FIG. 12. Model for Alcator C-Mod calculation. Upper panel: Cross section
of Alcator C-Mod plasma: a¼ 21cm, R¼ 67 cm, j95 ¼ 1:39, d95 ¼ 0:364.
Lower panel: Alfvén continuum for MHD equilibrium with
b ¼ 5:76" 10'3, q0 ¼ 1:11, and qa ¼ 6:28.
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additional mode generally emerges from the upper continuum
when the wall position recedes sufficiently far from the
plasma–vacuum boundary. This new mode branch together
with the original mode branch share the common feature of
generally decreasing in frequency with increasing b. What we
unexpectedly found is that frequently the original branch is
lost to the lower continuum at high enough b while the new
branch, emerging from the continuum, asymptotes to a con-
stant value within the continuum gap with increasing b. The

disappearance of modes was also observed in b scans, a result
widely discussed in fixed-boundary cases.12,22 We have dem-
onstrated that, at a moderately close wall position (b ¼ 1:2)
and a moderate value of b (< 2%), the new eigenmode branch
is the only observable branch for the equilibrium under con-
sideration. We have attempted to better understand why there
is such a strong sensitivity of the eigenmode to the wall posi-
tion. We have observed a correlation of the eigenmode fre-
quency with the Alfvén surface mode frequency predicted for
a plasma in cylindrical geometry. This correlation may be re-
sponsible for the free-boundary TAE sensitivity to the wall
position. However, we do not observe a significant ratio of
vacuum energy excitation to plasma potential energy excita-
tion. Hence, the correlation could be fortuitous. At present, we
cannot make a definitive conclusion on this point.

We also noted that the effects of free-boundary condi-
tions can be significant in systems with more complex geom-
etry. In our illustrative equilibrium which is similar to that
found in Alcator C-Mod, the total number of undamped
modes changes from one to two when a suitable free-bound-
ary condition replaces the fixed-boundary condition.

We expect the boundary effects to be less important in
high-n calculations as the mode generally becomes internally
localized. Nevertheless, the free-boundary effects may still be
essential if the mode frequency obtained with fixed-boundary
calculations is very close to the lower boundary of the gap. In
such case, it is worthwhile to check with free-boundary calcu-
lations whether the mode remains inside the frequency gap.

Finally we emphasize the importance of free-boundary
calculation for the quantitative prediction of the TAE frequen-
cies especially in dealing with low-n modes. If the frequency
can be altered readily by changing edge conditions, one has
the possibility of using external means to change the character
and perhaps even the stability of the TAE response in hot plas-
mas with a substantial energetic particle component.
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APPENDIX A: EXPRESSIONS OF THE EQUILIBRIUM
QUANTITIES

For conciseness, we have left the detailed expression of
MHD equilibrium quantities out from section II. We present
it here for the interested readers. 2U in Eq. (2) is defined as

2U ¼ 2l0P
0jw þ

r2B2

jrwj2
þ v0g

X2

@

@h
rrw & rh

jrwj2

 !

þ v0
rq0g
qX2

;

(A1)

where

r ¼ l0~J & ~B
B2

¼ ' l0P
0g

B2v0
' g0

v0

jw ¼
l0P

0

B2
þ 1

2B2

B2

w
þ v02

2B4

rw & rh
X2

@B2

@h

FIG. 13. The x–b relation in the C-Mod like equilibrium.

FIG. 14. The mode structure of the free-boundary TAE of C-Mod like equi-
librium with b ¼ 1:06. The upper panel presents the higher-frequency mode
while the lower panel presents the lower-frequency mode. Poloidal numbers
are marked alongside the curves. The mode structures are plotted in PEST
coordinates.
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TheM "M MHD equilibrium matrices in Eq. (7) are defined
as

Ap ¼
v03q
g

Kkhjrhj2iKk þ
v0v002q

g
hjrwj2i þ gðqv0Þ02

v0q
I

þ l0P
0 qv

00

g
hX2i þ l0P

0 qv
0

g

@X2

@w

* +
þ g0q0v0I

' i
v02v00q

g
ðhrw & rhiM'Mhrw & rhiÞ

Bp ¼
v0g
n2q

KkKk

Cp ¼
v0g
q

MMþ n2v03q
g

hjrwj2i

Pp ¼ 0

Qp ¼
v0g
nq

MKk

Rp ¼ i
nv03q
g

hrw & rhiKk ' l0nP
0 v

0q

g
hX2i

' nv02v00q
g

hjrwj2i ' nv0qg0I

Ai ¼
v03q
g

1
B2

, -
þ q2 X2jrhj2

B2

D E. /

Bi ¼
v03q
n2g

X2jrwj2
B2

D E

Ci ¼ n2Bi

Pi ¼ 'i
v03q2

ng
X2rw&rh

B2

D E

Qi ¼ nBi

Ri ¼ nPi;

where the angle bracket h& & &i denotes the associated Fourier
matrix,

h& & &imm0 ¼ 1

2p

ðp

'p
dhð:::Þeiðm0'mÞh:

Besides, I is the identity matrix, Kk ¼ ðm' nqÞI and
M¼ mI .

The matrices used in the vacuum energy integral [Eq.
(20)] are defined as

J v ¼
1

rwv "rhv & ru

F v ¼ hJ vjrwvj
2i

Kv ¼ ihJ vrwv & rhviM

Gv ¼MhJ vjrhvj2iMþ n2
J v

X2

* +
:

APPENDIX B: ALFVÉN SURFACE WAVE IN
CYLINDRICAL GEOMETRY

Here we investigate the Alfvén surface wave in a cylin-
drical plasma surrounded by vacuum and enclosed by a per-
fectly conducting wall. We confine our study to a model

where the density and safety factor are constant (at values
equal to the plasma edge density and qa of the equilibria
studied in the text), in which the analytic theory is particu-
larly simple. Such modeling appears to provide results that
are sufficiently good for qualitative purposes.

In cylindrical geometry, the poloidal harmonics (m) is a
good quantum number. It can be shown24 that the Alfvén
waves in a cylinder are described by the following equation:

dUðr; h; z; tÞ ¼ eiðnz=R0'mh'xtÞUn;mðrÞ; (B1)

d

dr
r3

x2

v2A
' k2k

# $
d

dr

Un;mðrÞ
r

0 1

þ d

dr

x2

v2A

# $
rUn;mðrÞ ' ðm2 ' 1Þ x2

v2A
' k2k

# $
Un;mðrÞ ¼ 0;

(B2)

kk ¼
1

R
n' m

q

# $
; (B3)

where Un;mðrÞ is the Fourier-decomposed scalar potential.
For plasma of constant density and q value, k0k ¼ v0A ¼ 0.
The independent solutions of the above equation are, there-
fore, Un;mðrÞ ¼ rm and Un;mðrÞ ¼ 1

rm.
We note the solutions can be naturally separated into

two different regions (plasma region and vacuum region). In
the plasma region, the regularity at magnetic axis gives

Un;mðrÞ ¼
r

a

. /m
0 - r < a; (B4)

in which we pick the conventional normalization such that
Un;mðaÞ ¼ 1. Similarly, in the vacuum region, we require
Un;mðrÞ to be continuous at r¼ a and Un;mðrÞ ¼ 0 at r¼ b.
Hence,

Un;mðrÞ ¼
b
r

% &m ' r
b

% &m

b
a

% &m ' a
b

% &m a - r - b: (B5)

Keeping in mind that that vA in vacuum is taken to be infi-
nite, we integrate Eq. (B2) from r ¼ a' to r ¼ aþ and obtain

k2k'
x2

v2A

# $
d

dr

Un;m

r

# $

r¼a'
' x2Un;m

v2Ar
2
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d
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r

# $
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:

(B6)

Using Eqs. (B4)–(B6), we have

x2 ¼ 1

m
ðm' 1Þ þ

ðmþ 1Þ b
a

% &m þ ðm' 1Þ a
b

% &m

b
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