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Abstract
A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined
particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists.
The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy
drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode.
This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without
inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the
stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining
than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint.
Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic
stabilizer to the central region.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The tandem mirror magnetic-fusion confinement system is a
nearly cylindrical solenoid terminated by a set of plug cells.
These plugs consist of simple axisymmetric mirror fields. The
earliest stability theories [1] predicted that symmetric mirror
machines, including tandem mirrors, would be MHD unstable;
experiments in the 1980s on both TARA [2] and PHAEDRUS
[3, 4] tandem mirror facilities confirmed that MHD instability
occurs. Recently, a new stability innovation, the kinetic
stabilizer, has been proposed to stabilize an axisymmetric
tandem mirror. However, the mechanism by which MHD
stabilization is achieved in the kinetic stabilizer may make
the system susceptible to a rapidly growing trapped particle
instability [5]. Here we investigate this possibility.

The kinetic stabilizer is a design proposed by Post [6],
inspired by the work of Ryutov and experimental evidence
from the gas dynamic trap (GDT), a single mirror experiment
at Novosibirsk [7, 8]. Ryutov established theoretically that an
otherwise MHD-unstable plasma confined between symmetric
mirrors can be stabilized if there is sufficient momentum
flux from the effluent plasma on the expanding positive-
curvature field-lines outside the mirrors. The momentum
flux generalizes the role of the pressure tensor that appears
in standard MHD theory. This technique of stabilization was
experimentally confirmed using the axisymmetric GDT [9, 10].

1 Present address: Max-Planck-Institut für Plasmaphysik, 85748 Garching,
Germany

The GDT operates in a high-collisionality regime in order to
keep the loss-cone full. Ryutov noted that the effect of plasma
momentum flux flowing out of the ends of the machine in the
positive-curvature expanding-field region outside the mirrors
is sufficiently strong to overcome the destabilizing curvature
contribution from the central part of the plasma. It has been
shown that MHD stability arising from the use of exiting
momentum flux can persist up to a moderately high-beta value
of β ∼ 0.6.

In the GDT the loss-cone is filled by relatively strong
collisions in the central plasma region; with sufficient effluent
flow, MHD stability is established. However, in the typical
tandem mirror the ends of the machine are designed to confine
a long mean-free-path plasma which only produces a weak
effluent. Thus there is a negligible momentum flux in the
expander region. As a result, the stabilization mechanism
designed for the GDT, i.e. stabilization from the momentum
flux arising from the effluent plasma, does not simply arise in
a tandem mirror of conventional design. The kinetic-stabilizer
concept proposes to solve the problem of low effluence using
external ion-beams injected axially into the machine. These
kinetic-stabilizer ion-beams are injected at small pitch-angles
to the magnetic field so that the beam can propagate towards
the higher magnetic field and then reflect before reaching the
principal confinement region of the mirror plasma. The ion
beam then transits out of the machine. While entering and
exiting the ends of the machine, the beam forms an unconfined
plasma with an enhanced momentum flux in a localized region
of favourable curvature.
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Figure 1. Axisymmetric magnetic flux surfaces in the KSTM.
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Figure 2. Axial magnetic field B, in the right half of the proposed
KSTM reactor. The field-line curvature is negligible to the left of
the dashed line. The favourable curvature of the expander region
lies to the right of the dashed line. A solid black line marks the
centre of the mirror plug.

The proposed kinetically stabilized tandem mirror
(KSTM) reactor is a simple axisymmetric tandem mirror. The
plasma in the plug regions possesses higher density and energy
than the central-cell plasma, producing ambipolar traps in
the plugs. The three-dimensional structure of the magnetic
flux tube can be viewed in figure 1. Figure 2 provides a
schematic diagram of the axial magnetic field of a KSTM;
figure 3 provides a conceptual sketch of the density profile
associated with the kinetic stabilizer. At the outer wall, on
the left-side of figure 3, the magnetic field is at its lowest
value B = BW. The density of the beam initially rises in the
expander region as we consider regions inward from the wall.
The beam can either be focused on a target in the region around
B = Bks or unfocused. In the focused case, the density will
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Figure 3. A conceptual sketch of the density in the expander region
of the KSTM. The shape of the density at the wall BW, the entrance
to the region of favourable curvature Bks, plateau, stand-off point
Bst , and the maximum of the plug Bm are shown.

peak steeply around B = Bks and then plummet to a low value
just beyond B = Bks. The focused kinetic-stabilizer ion beam
is designed to reflect around the region of Bks which bounds
the region of good curvature that exists between the target and
the wall. In the unfocused case the density will continue to
rise until most of the kinetic-stabilizer beam has been reflected
by the rising magnetic field. The remnant beam that reaches
this region possesses a nearly spatially isotropic distribution,
which produces a plateau in density. In the plateau region, the
density of the unfocused beam is appreciably higher than for a
focused beam. The electron temperature between the wall and
the plateau region will probably be lower than the ion energy
in the injected kinetic stabilizer. However, the temperature of
the electrons escaping from the central cell will be from 10 to
100 keV, and thus the ambipolar potential associated with the
effluent flux will be extremely high. We expect a transition
region around a stand-off position, B = Bst, where electron
temperature transitions from a characteristic temperature of the
KS region, to the electron temperature of the core plasma. In
this region the plasma density will rise.

The density profile and the relation between density and
the electric potential will be discussed further in section 2,
where we present the details of the model used for the KSTM.
In section 3 we derive MHD stability relations for the KSTM.
In section 4 the trapped particle instability is examined in the
context of a KSTM and in section 5 we summarize the salient
conclusions of this work.

2. KSTM model

2.1. Distribution of ions in the kinetic-stabilizer beam

The kinetic-stabilizer design consists of an ion beam that is
injected from outside the machine into the expander region of
the tandem mirror where the curvature is positive. The beam
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of ions is aligned nearly parallel to the magnetic field. The
small pitch-angle of the particles in the beam corresponds to
injection of ions with small magnetic-moment-per-unit-mass
µ compared with E0/B (where E0 is the mean injected-beam-
energy-per-unit-mass). We choose a distribution function for
the ions in the kinetic-stabilizer beam such that they possess
a fixed energy equal to E0. The magnetic moment is centred
around a value µ0 with a narrow range of magnetic moments
"µ. The distribution function, F , is chosen to be

F(E, µ) =
#′

ks

π
δ(E − E0)

"µ

(µ − µT)2 + "µ2
. (1)

Here the quantity #′
ks is related to the particle flux per unit

magnetic flux #ks from a single end of the tandem mirror
as indicated in (4). The spread in magnetic moments of
the kinetic-stabilizer beam is determined by "µ; we use
µT = E0/BT where the subscript T refers to the target position;
the values of "µ and µT affect the maximum density at the
target. We neglect the ion electrostatic potential energy under
the assumption that the potential energy is proportional to Teks,
the electron temperature in the kinetic-stabilizer region. The
electron temperature is assumed to be significantly less than
the ion beam energy.

We will treat two types of kinetic-stabilizer ion beams. In
the case of a focused beam, the beam is focused on a target
outside of the plug µT. For the second type of beam, µT = 0;
this will be referred to as the unfocused case, equivalent to the
condition µT $ "µ.

The density and pressure in the outer regions of the KSTM
are established by an incoming particle flux at the wall. The
subscript W refers to the wall position, i.e. z = zW and
r = rW. In terms of the distribution, the particle flux at the
wall πr2

WBW#ks is

πr2
WBW#ks = πr2

W

∫ ∞

0
dE

∫ E/BW

0
dµBWF(E, µ), (2)

= r2
WBW#′

ks

∫ E0/BW

0

dµ "µ

(µ − µT)2 + "µ2
. (3)

We find

#ks

#′
ks

≈ 1
π

∫ ∞

0

dµ"µ

(µ − µT)2 + "µ2
= 1

2
+

1
π

tan−1
(

µT

"µ

)

≡ χ

(
µT

"µ

)
. (4)

For the unfocused case, µT/"µ $ 1, χ ≈ 1/2, while for the
focused case, µT/"µ ( 1, χ ≈ 1.

2.2. Density and pressure in the expander due to the
kinetic-stabilizer beam

When the effect of the ambipolar potential on the ions is
neglected, the density n(B) is

n(B) =
√

2
∫ ∞

0
dE

∫ E/B

0

dµB√
E − µB

F(E, µ). (5)

We define the quantity x = µB/E0 and use the distribution
function in (1) to express the density integral as

n(B) =
√

2#′
ksB

π
√

E0

(
"µB

E0

)

×
∫ 1

0

dx√
1 − x

1
(x − B/BT)2 + ("µB/E0)2

,

[
1 ( B

BT
− 1,

"µBT
E0

$ 1
]

−−−−−−−−−−−−−→ #′
ksB

√
1
E0

×

[√(
1 − B

BT

)2
+

(
"µB
E0

)2
+

(
1 − B

BT

)]1/2

√(
1 − B

BT

)2
+

(
"µB
E0

)2
,

[
1 − B

BT
( "µB

E0

]

−−−−−−−−−→ #′
ks

√
2
E0

B
√

1 − B
BT

. (6)

The inequality 1 ( B/BT − 1 is satisfied for all B/BT < 1
when "µBT /E0 $ 1. The last approximation is also accurate
when |B/BT − 1| ( "µBT/E0, but still small.

The inequality "µB/E0 ( 1 determines a region where
the density asymptotes to a constant value. We call this region
the plateau region, where the density npla is

npla =
2
√

2 #′
ksBT

π
√

E0

"µBT

E0

.= 2
π

"µB2
T

E0BW
nW

(
1 − BW

BT

)1/2

.

(7)

Here nW ≡ n(BW) is the density at the wall.
For the focused case the density peaks near the target

position B = BT. At the target the density is given by

n(BT) =
#′

ksBT√
2E0

(
E0

"µBT

)1/2

= nWBT

2BW

(
E0

"µBT

)1/2 (
1 − BW

BT

)1/2

. (8)

For the unfocused case the density increases monotonically
from the wall position to the plateau region. We can relate the
density at the wall to the density at the entrance to the region
of positive curvature, which we will call the kinetic-stabilizer
position, denoted by the subscript ks. Assuming that the axial
speed of the beam is small compared with the local thermal
spread of its speed, i.e. "µBks/E0 $ 1, then

n (Bks)

nW
≈ Bks

BW

npla

nW
≈ 4E0

πBW"µ

(
1 − BW

BT

)1/2

. (9)

The plateau region arises when "µB ( E0. By focusing the
ion beam to a position B = BT, the peak density in the kinetic-
stabilizer region is enhanced compared with the unfocused case
by an approximate factor of (E0/"µBT)1/2. In the plateau
region, the density of the unfocused case is larger than the
focused case by a factor of (E0/"µBT)2.

In magnetized mirror-confined plasmas the pressure is
typically anisotropic with different values for the pressures p⊥,
and p‖ respectively. The mass of ions in the kinetic-stabilizer
beam is taken as mi. For our choice of distribution function,
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the pressures are

p(B) = p‖(B) + p⊥(B) = n(B)miE0 + p‖(B)/2, (10)

p‖(B) = 2
√

2 mi

∫ ∞

0
dE

∫ E/B

0
dµB

√
E − µB F(E, µ),

(11)

p⊥(B) = 2 mi

∫ ∞

0
dE

∫ E/B

0

dµµB2

√
2(E − µB)

F(E, µ)

= n(B)miE0 − p‖(B)

2
. (12)

The integral for p‖(B) is

p‖(B) = 2
√

2
π

mi#
′
ks B

√
E0

∫ 1

0

dx "µB
E0

√
1 − x

(
x − B

BT

)2
+

(
"µB
E0

)2 ,

(13)

["µ=0]−→ 2mi#
′
ks

√
2E0

(
1 − B

BT

)1/2

θ

(
1 − B

BT

)
, (14)

where θ(x) is the Heaviside step function. For the focused
case where "µBT/E0 $ 1, the perpendicular pressure peaks
near the target, B ≈ BT, and is approximately

p⊥(B) ∼= miE0n(B), (15)

while the parallel pressure remains small. Thus the ratio of
pressure at the target to that at the wall is proportional to the
ratio of magnetic fields at these positions

p⊥(BT)

p⊥(BW)
∼ BT

BW

(
E0

"µBT

)1/2

. (16)

In the plateau region the pressure is isotropic and constant with

p⊥(B) = p‖(B) = 4
3

√
2 π

#′
ks√
E0

"µB2
T[

1 +
(

"µBT
E0

)2
] . (17)

When "µBT ( E0, which is the definition of the unfocused
case, the pressure in the plateau region is p⊥(B) = p‖(B) =√

2π(4/3)(#′
ks/

√
E0)(E

2
0/"µ). This pressure is larger than

the focused case by a factor of (E0/"µBT)2.

3. KSTM MHD stability relations

During steady-state operation, the power P required to sustain
the power drain of a single-pass kinetic-stabilizer beam is

P = 4(1 − ν)πmiE0#ksψ0, (18)

where ν is the efficiency of recovery the beam power energy
by direct conversion [11]. The expression for power in (18)
also uses the magnetic flux ψ0 = 1

2B0r
2
0 at the centre of the

central cell of the tandem mirror. The limiting condition for
achieving break-even for reactor engineering is that the power
drain from the kinetic-stabilizer beams should not exceed the
alpha particle energy production rate of the central-cell by more

than some factor η′. We take η′ = 1 in our calculations. Hence
we have

ηπr2
0 miE0B0#ks <

3πr2
0 LcTcn

2
c

2 〈nτ 〉fus
, (19)

where we define η = η′/(1 − ν). If ν = 0.8, a value perhaps
possible with direct conversion [11], the largest value possible
for η would be 5. The temperature in (19) is a sum of electron
and ion temperatures Tc = Tec +Tic and the subscript c refers to
the central cell. The Lawson criterion 〈nτ 〉fus = 2 × 1020 m−3

should hold for our model KSTM. For MHD stability, we
require
∫

ks
dz

(
p‖ + p⊥

)
r3 d2r

dz2
>

∫

plug + central cell
dz

(
p‖ + p⊥

)
r3 d2r

dz2
.

(20)

To evaluate the MHD stability criterion in (20) we constrain
the field-line radius r(z) to have as large as possible variation
within the kinetic-stabilizer region that is compatible with
the paraxial approximation. Thus, field-line radius r(z) must
satisfy

r
d2r(z)

dz2
= r(z)

d
dr

(
dr(z)

dz

)2

=
σp

2
. (21)

We will refer to (21) as the marginal paraxial constraint. For
optimal stability, the constant σp in the the marginal paraxial
constraint should be chosen to maximize the integrand on the
left-hand side of (20), subject to the validity of the paraxial
approximation for the field-line curvature; in this work we use
σp = 1 while acknowledging that additional study is needed
to determine an optimal value.

Solving (21) for r(z) yields

z − zks =
∫ r

rks

dr
[
σp ln

(
r
rks

)
+

(
dr(zks)

dz

)2
]1/2 (22)

! rW√
σp

∫ r/rW

rks/rW

dy
[
ln

(
rW
rks

y
)]1/2 .

When dr(zks)/dz = 0, the inequality in (22) is an equality.
Since the choice of dr(zks)/dz = 0 maximizes the favourable
MHD response, this field-line slope is used in our model for
KSTM field-lines.

3.1. Stability integral in the plug

We model the field-line radius in the plug region with the form

r(z) = rmxp

(
1 + xpl

2
+

1 − xpl

2
cos

(
2π(z − Lc)

Lpl

) )

, (23)

where xpl = rmnp/rmxp. The radii rmxp and rmnp are the
maximum and minimum radii of the plug region, and 0 < |z−
Lc| < Lpl. We define the composite pressure p = (p⊥+p‖)/2.
We also define

ppl = 1
2Lpl

∫ Lc+Lpl

Lc

dz
(
p⊥ + p‖

)
= 1

2Lpl

∫

pl
dz p. (24)

The dimensionless plasma parameter in this region is defined
βpl = 2µ0ppl/B

2
mnp, where Bmnp is the magnetic field at the

minimum field-line radius in the plug region. We define Ipl to
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be the stability integral over the plug region for the particular
magnetic field assumed in (23). Thus we need to evaluate

Ipl = −2
∫

pl
dzpplr

3 d2r

dz2
. (25)

We indicate an approximation of Ipl with a prime. We evaluate
I ′

pl, as the approximate stability integral Ipl when the pressure
is taken as isotropic in the plug with a pressure ppl. We obtain

I ′
pl =

3π2ppl

4Lpl
r4

mxp

(
1 − x2

pl

)2
(

1 +
1
4

(
1 − xpl

1 + xpl

)2
)

. (26)

In this expression we have used the paraxial approximation
for the magnetic flux r2

mxpBmnp ≈ B0r
2
0 . For simplicity we

have neglected the small factor (1 − xpl)
2/(2(1 + xpl))

2 in the
estimate I ′

pl. We define αpl as a dimensionless, order-unity
parameter that is the ratio of the exact to the estimated value
of the stability integral

αpl = Ipl/I
′
pl. (27)

The factor αpl may be less than unity (e.g. due to the inclusion
of compressibility effects in the plug cell and improved design
of the plug, etc) and such improvement gives some flexibility
in estimating a window of operation for the KSTM.

The contribution to MHD stability from the central cell
must also be considered and is treated in the same way as the
plug. We use a shape of the same form as the plug region
described in (23), and central-cell parameters rmxp → r0,
Lpl → 2Lc, z − Lc → z, xpl → xc = r0/rmn. Thus

r(z) = r0

(
1 + xc

2
+

1 − xc

2
cos

(
2πz

Lc

) )

. (28)

The central-cell stability contribution will be used below.

3.2. Stability integral in the expander region

For our KSTM model there is no contribution to the stability
integral from the intermediate region between the outlet of the
plug (defined by the maximum of the magnetic field) and the
beginning of the positive-curvature kinetic-stabilizer region
at z = zks. The stability contribution of this intermediate
expander region would vanish if either d2r/dz2 or the kinetic
pressure were negligible.

The MHD contribution of the stability drive integral from
the expander region is

Iks =
∫ zW

zks

dz
(
p‖ + p⊥

)
r3κ. (29)

In this expression κ is the field-line curvature,

κ =
d2r
dz2

[
1 +

( dr
dz

)2
]3/2 ≈ d2r

dz2
. (30)

The paraxial approximation of the curvature is given in the
right-most term of (30).

To establish a base-case for scaling our results, we
consider the unfocused kinetic-stabilizer beam ("µ = 0), and

use the paraxial approximation for the curvature. Using the fact
that magnetic flux is conserved, Br2 = B0r

2
0 , the expressions

for the pressures from (11) and (12), and the solution r(z) from
(22), we find

Iks =
∫ zW

zks

dz
(
p‖ + p⊥

) ∣∣∣∣
"µ=0

r3 d2r

dz2
(31)

= 2mi
√

2σpE0 B0r
2
0#

′
ksrW

∫ 1

rks/rW

dy
√

ln
(

rW
rks

y
) ,

where we have used the slope drks/dz = 0. We approximate
the stability integral in the expander region as

I ′
ks = 2mi

√
σp2E0 B0r

2
0#

′
ksrW. (32)

We define the ratio of the exact to the approximate stability
integrals

αks = Iks

I ′
ks

. (33)

In (31) the use of the paraxial approximation for the curvature
allows Iks to be made arbitrarily large by increasing σp.
However, as σp increases, the paraxial approximation is
eventually violated. To verify consistency between Iks and
the approximate paraxial approximation, we choose σp = 1
and compare the results for the non-paraxial expression
for the field-line curvature with the results of the paraxial
approximation. We use the paraxial solution for z from (22)
and the more accurate form of the curvature κ to calculate the
integral

σp

rW

∫ zW

zks

dzrκ
(

1 +
( dr

dz

)2
)3/2

=
∫ 1

rks/rW

dy
√

ln
(

rW
rks

y
)

1
(

1 + σp ln
(

rW
rks

y
) )3/2 . (34)

For the unfocused case (31) becomes

Iks 0 ≡
∫ zW

zks

dzr2κ
(
p‖ + p⊥

) ∣∣∣∣
"µ=0

= I ′
ks

∫ 1

rks/rW

dy
√

ln
(

rW
rks

y
)(

1 + σp ln
(

rW
rks

y
) )3/2 . (35)

Figure 4 shows the comparative accuracy of the paraxial
approximation and the more accurate non-paraxial curvature
for αks = Iks/I

′
ks as a function of x = rks/rW. The maxima

are αks = 1.08 for xks = 0.43 for the paraxial form and
αks = 0.815 for xks = 0.63 for the non-paraxial form. There
is some quantitative discrepancy, which indicates that σp = 1
may be the largest value that can be used in the expression for
Iks to give reliable results.

Larger values of Iks can be obtained by focusing the beam
so that the target is at the kinetic-stabilizer point BT = Bks.
When the beam is focused on this location, a logarithmic
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rks /rW

α k
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Figure 4. The quantity αks = Iks/I
′
ks evaluated for an unfocused

kinetic-stabilizer beam from (35) using σp = 1.

divergence arises in Iks, producing arbitrarily strong MHD
stabilization. For a beam with thermal spread (finite "µ), the
magnitude of the stability integral Iks is bounded. To evaluate
the stability integral in this case we use an approximate form
for the pressure:

2p

Bmi
√

E0 #
′
ks

=

[√(
1 − B

BT

)2
+

(
"µB
E0

)2
+ 1 − B

BT

]1/2

√(
1 − B

BT

)2
+

(
"µB
E0

)2

+

√

1 − B

BT
θ

(
1 − B

BT

)
. (36)

This is valid if 1 ( B/BT − 1, a condition that is
always satisfied when the right-hand side is negative and
"µBT /E0 $ 1. Again using the condition that magnetic flux
is conserved, so B/Bks = (rks/r)2, and setting the target
position T at the kinetic-stabilizer position KS, we obtain a
stability integral Ifo ≡ Iks for the focused case

Ifo = I ′
ks g

(
rks

rW
,
"µBks

E0

)
, (37)

g(y, ε) =
∫ 1

y

dx
√

ln
(

x
y

)(

1 + σp ln
(

x
y

) )3/2 (38)

×
[

θ

(
1 −

(y

x

)2
) √

2
(

1 −
(y

x

)2
)

+

(√(
1 −

(
y
x

)2
)2

+
(
ε
(

y
x

)2
)2

+
√

1 −
(

y
x

)2

)1/2

√(
1 −

(
y
x

)2
)2

+
(
ε
(

y
x

)2
)2

]

.

A plot of αks = I ′
fo/I

′
ks as a function of rks/rW is shown

in figure 5 for the focused case, where ("µBks/E0 =
10−2, 10−4). As "µBks/E0 decreases, the optimal MHD
response is found closer to the wall; at small "µBks/E0,
the value of this optimal response is given by 0.2 +
0.7 log10(E0/"µBks). For "µBks/E0 = 10−4 this leads to
αks ≈ 3.

rks/rW

α k
s(

fo
cu

se
d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

∆µBks/E0= 10−4

∆µBks/E0= 10−2

Figure 5. The quantity αks = Iks/I
′
ks in the focused case (31),

evaluated at two different beam widths.

3.3. Operating regime scaling laws

For our machine to be stable we require Mks ≡ (Ipl +Ic)/Iks <
1 or

1 > Mks =
3π2r2

0

[

αplppl

(
1−x2

pl

)2

Lpl

(
r2

mxp

r2
0

)2
+ αcncTc

(1−x2
c )

2

4Lc

]

8αks
√
σp2E0 rWmiB0#

′
ks

=
3π2r2

0 B2
0

16αks rW
√

2E0σp µ0miB0#
′
ks

×
[
αpl βpl

Lpl

(
1 − x2

pl

)2
+ αc

βc

(
1 − x2

c

)2

4Lc

]

, (39)

where xc = r0/rmxp, Tc = Tec+Tic. We shall call Mks the MHD
marginality parameter. The stability condition of (39) uses
the approximations for the stability drive integrals in the plug
given by (26) and in the kinetic-stabilizer region given by (31).
The MHD drive from the central cell uses the same functional
forms for the magnetic field’s axial variation as the plug region,
and employs the appropriate changes in lengths and mirror
ratio. The total length of the central-cell region is 2Lc. In this
stability criterion the central-cell drive is integrated over only
half of the central cell. The quantity αc is the ratio of the actual
MHD drive to the scaled MHD drive in the central cell.

From the power-balance relation (19) we find
η3πr2

0 LcTcn
2
c

2 〈nτ 〉fus χ
(

µT
"µ

) > πr2
0 E0B0mi#

′
ks

>
3π3√2E0 B2

0 r4
0

32 √
σp αksrWµ0

(
αplβpl

Lpl
(1 − x2

pl)
2 +

αcβc(1 − x2
c )2

4Lc

)

.

(40)
Thus the condition that the system be MHD stable with an
acceptable energy loss from the kinetic-stabilizer beam is

rW

r0
=

√
B0

BW
(41)

>
π2r0

80√
σpncLcLpl

〈nτ 〉fus
√

2E0 χ
(

µT
"µ

)

αksη

×
(

10αpl

(
1 − x2

pl

)2 βpl

βc

+
10
4

αc
Lpl

Lc

(
1 − x2

c

)2

)

.

The plasma beta is βc = nTc2µ0/B
2
0 . We use

n−1
c (m−3) = 4.5 × 10−21 Tc(100 keV)

βc

(
3

B0(T)

)2

. (42)
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Normalizing (42) to a reference parameter of approximately
100 MW fusion power production, we find

rW

r0
=

√
B0

BW
> 70.

λc
√

E0(keV)

r0(m)

(
Tc(100 keV)

βc

)(
3

B0(T)

)2

.

(43)
Here λc is a dimensionless parameter that characterizes the
machine

λc ≡
χ

(
µT
"µ

)

αksη
√
σp

(
100r0

Lc

) (
5r0

Lpl

) (
2

mi(a)

)1/2

(44)

×
(

10αpl

(
1 − x2

pl

)2 βpl

βc

+ 2.50αc
Lpl

Lc

(
1 − x2

c

)2

)

.

The injected ion mass mi(a) in the kinetic-stabilizer beam is
in atomic units so that mi = 2 for deuterium. The Lawson
number 〈nτ 〉fus = 2×1020 m−3 is used to characterize the alpha
particle power production; the terms in each of the parentheses
is estimated to be order unity and thus λc 0 1 is a characteristic
estimate.

The scaling law (43) indicates whether a system with a
given set of parameters can be MHD stable with an acceptable
energy loss from the kinetic-stabilizer beam. We choose a
reasonable set of parameters to test the MHD stability:

B0(T) = 3T, Tc(100) = 100 keV, r0 = 1√
3

m,

Lc = 100√
3

m, Lpl = 5r0 = 5√
3

m,

βpl = βc

5
= αks = αc = 2αpl = 1,

x2
pl = 0.5, x2

c = 0.1, mi(a) = 2, η = 1. (45)
With this choice of parameters we find λc = 0.175. We
find it necessary to have BW < 66 G when E0 = 1 keV or
BW < 660 G when E0 = 100 eV. For the parameters in (45)
the instability drive of the central cell is 0.4 times the drive
from the plug. If the drive from the plug could be reduced
or eliminated, (e.g. the plug drive could be neutralized if the
particle species in the plug were sufficiently energetic [12]), the
drive in the central cell alone would require BW < 7.9 β2

c 102 G
for E0 = 1 keV (or 0.79 β2

c T if E0 = 100 eV).
The use of high-current beams are technologically easier

to establish at higher energy. However, the energy of the beam
does not scale well with the constraint expressed in (41) that the
MHD system be stable with an acceptable energy loss from the
kinetic-stabilizer beam. This constraint is mitigated if direct
conversion of the beam energy is used [11]; direct conversion
allows for an increased value of the break-even factor η, with
the maximum possible beam energy increasing by a factor ofη2

as follows from (44). Thus, the kinetic-stabilizer beam energy
choices of 100 keV and 10 keV would require BW < 16.5 G
and BW < 165 kG respectively, which are reasonable design
conditions. Detailed improvements in design that increase λc
would allow the energy of the kinetic-stabilizer beam to be
increased by a factor λ2

c , with all other parameters fixed.
In summary we find that an expander whose magnetic

field at the wall could be as large as the order of several
100 G would enable MHD stability to be achieved by kinetic-
stabilizer beams of several hundred eV, in combination with
3 T central-cell magnetic field and αpl ≈ 0.5. The detailed
scaling is indicated in (43) and (44).

3.4. Beta limitation and adiabaticity limits

An additional facet of the kinetic-stabilizer ion plasma beta
should be considered. When β becomes larger than unity,
typically the field-lines cannot collimate the plasma because
self-consistent effects drive the plasma across field-lines [13].
For the injected kinetic-stabilizer ions, the local βks =
2µ0p/B2 must be less than unity along the imposed field-lines.
From (36) we find that in the kinetic-stabilizer region

βks = 2µ0p

B2

= µ0

B
mi

√
E0#

′
ks

[
[[(1 − bT)2 + ε2

ksb
2
ks]

1/2 + 1 − bT]1/2

[(1 − bT)2 + ε2
ksb

2
ks]1/2

+ 2(1 − bT)1/2

]

. (46)

Expressing #′
ks in terms of βks, we find that the MHD stability

condition from (39) and the expression for βks in (46) can be
expressed as

1 > Mks ≡ 3π2

64
√

2

r2
0

r2
W

B0

B
√
σp

rW

Lc

αcβc

βks
(1 − x2

c )2

×
[

1 +
4αpl

αc

Lc

Lpl

βpl

βc

(1 − x2
pl)

2

(1 − x2
c )2

]

×
[

[[(1 − bT)2 + ε2
ksb

2
ks]

1/2 + 1 − bT]1/2

[(1 − bT)2 + ε2
ksb

2
ks]1/2

+
√

2(1 − bT)

]
.

(47)

Here we again use the conservation of flux (r2
0 /r2

W)(B0/B) =
(BW/B). If the inequality has to be satisfied at every position,
(47) becomes

1 > Mks >
0.33αc√

σp
(1 − x2

c )2βcgMX, (48)

g =
[

1 +
4αpl

αc

Lc

Lpl

βpl

βc

(1 − x2
pl)

2

(1 − x2
c )2

]

. (49)

Here the expression MX is the maximum with respect to B of
the function

MX = Max

[
BW

B

[
[[(1 − bT)2 + ε2

ksb
2
ks]

1/2 + 1 − bT]1/2

[(1 − bT)2 + ε2
ksb

2
ks]1/2

+
√

2(1 − bT)

]]

. (50)

For the unfocused case where bT = 0 (also nearly applicable
for the focused case if εksB

2
ks/B

2
W " 1), the maximum of this

function occurs at B = BW, so MX = 2
√

2
√

1 − BW/Bks.
For the focused case, when εksB

2
ks/B

2
W $ 1 the maximum

occurs when bks = bT = 1 − εks/
√

3, yielding MX =
1.26(BW/Bks)(1/

√
εks).

The best MHD condition is achieved by making Mks as
small as possible subject to the condition thatβks always remain
less than unity. To fulfil MHD expectations and the βks < 1
condition limits the allowable range for Mks in the unfocused
case (or a focused case where "µBks/E0 > 1) to

1 > Mks = 0.95
√

1 − BW/BT
αcβc√

σp
g. (51)
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For the focused case the permitted range of operation for Mks is

1 > Mks " 0.4
BW

Bks

αcβc
√
σpε

1/2
ks

g. (52)

Thus the condition that the beta value of the kinetic-stabilizer
beam be less than unity may limit the utility of obtaining
enhanced MHD stabilization by focusing the beam at B = BT

because the inequality in (52) could be violated for small εks.
Another possible limitation to the KSTM is that the upper

ratio of B0/BW = r2
W/r2

0 must satisfy the particle orbit
adiabaticity condition. The ion parallel velocity must be
significantly larger than the curvature drift velocity, requiring
that

√
2E0 σad >

2E0

ωci(zW)

d2r(zW)

dz2
= σp

E0

ωci(zW)rW
, (53)

where σad ∼ 1 is a constant associated with the adiabaticity.
We find

BW(gauss) " 0.2E(keV)

B0(T )r2
0 (m)

(
σp

σad

)2 (
mi(a)

2

)
. (54)

For a 100 MW reactor where B0(T )r2
0 (m) ∼= 1 T m2, the

adiabaticity constraint does not impose a serious restriction
on the choice of design parameters.

4. Trapped particle instability

Now let us consider the influence of the trapped particle mode
to the stability of the KSTM. The crucial aspect to establish
stability of the trapped particle mode is to have enough
electrons that communicate between the central-cell region and
kinetic-stabilizer region. To determine if stabilization of the
fast-growing trapped particle mode is possible, we estimate the
fraction of electrons in the kinetic-stabilizer region that need
to reflect back into the central plasma [14].

To obtain a reasonable estimate we need to describe the
structure of the potential well in the region outside of the plugs.
Immediately outside of the MHD destabilizing plug (shown on
the right-hand side of figure 6) an ambipolar potential energy
of electrons exists, 2(B) = −|e|3(B) (with the choice 3W =
0). This ambipolar potential forms in the region between the
wall and plugs, preventing all but the most energetic electrons
from escaping. The effective potential acting on electrons is
Ueff(B) = 2(B) + µB. Due to the opposite sign of their
electric charge, the ambipolar potential forces an immediate
escape of any ions that reach the expander region beyond the
plug.

In the region labelled R1 in figure 6, the escaping ions
experience an increase in kinetic energy, E = Tic +κTe0 that is
several times the central-cell electron temperature, with κ 0 5.
The ions in this escaping beam are moving nearly parallel to
the magnetic field. We assume that there is a rapid transition
around a stand-off region where B = Bst. At the stand-off
region there is a transition in the ambipolar potential; towards
the central-cell region (to the right of Bst in figure 6). The
ambipolar potential energy varies on the scale of the central-
cell electron temperature. Towards the kinetic-stabilizer region
(to the left of Bst in figure 6) the ambipolar potential tracks with

B

−
ψ

(B
)

0

Bm

BksBW

Bst

R1R2R3

Figure 6. Schematic diagram of the negative of the electrostatic
potential energy felt by the electrons for the focused (solid) and
unfocused (dashed) cases. In region R1, the ambipolar potential is
determined by the electron temperature of the
tandem-mirror-confined plasma. Region R2 is the plateau region
where the electron density and ambipolar potential are nearly
constant in space. Region R3 is the kinetic-stabilizer region of large
stabilizing concave curvature.

the significantly lower electron temperature of the expander.
The stand-off position may be determined at the point where
the total stress tensor of the effluent matches the pressure of
the kinetic-stabilizer beam. However, a proper theory for this
intuitively-described model of the potential structure on either
side of the abrupt stand-off region still remains for future work.

The characteristics of region R2 are determined by the
kinetic-stabilizer beam. As has been discussed in section 2,
in region R2, between the KS region and the stand-off point,
a density plateau exists where the ambipolar potential and ion
density are nearly spatially constant. This plateau region exists
regardless of whether the KSTM beam is focused or unfocused;
however, the plateau region has significantly higher density in
the unfocused case.

We assume that the electrons in the kinetic stabilizer have
a long mean-free-path and can be described by a Maxwellian
distribution with temperature Teks. For simplicity, we take
Teks $ miE0, although we stretch this inequality to its limits
of validity. The Maxwellian assumption can be justified for
the focused case where an ambipolar potential produces a
dominant fraction of trapped electrons (shown in figure 6 in
region R3 as a solid curve between BW < B < Bks); the
majority of the electrons are trapped and confined long enough
to relax by collisions to a Maxwellian distribution [5]. For the
unfocused case, the determination of the mean electron energy
in the R2 and R3 regions is far more complex. The electron
distribution may not be a Maxwellian distribution in this case.
For the unfocused case, the ambipolar potential monotonically
increases to the wall values.

For the focused case, the schematic view of the ambipolar
potential is shown in the region R3 of figure 6. This region
is dominated by a large population of trapped electrons
that neutralize the incoming ion beam but do not readily
communicate with electrons in the central cell. The bulk of
the electrons in the kinetic-stabilizer region are insulated from

8
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the central-cell plasma by an ambipolar potential. The case
with maximum MHD stabilization is particularly susceptible
to the trapped particle instability [5].

The unfocused case leads to moderately reduced MHD
stabilization, but has a far less restrictive condition for
achieving trapped particle mode stabilization. Because the
electrostatic potential monotonically increases in the direction
from the expander towards the central cell, electrons with
magnetic moment µ = 0 feel an inwardly directed electrostatic
force. However, electrons with a finite magnetic moment
feel an outwardly directed mirror force that by itself would
produce a magnetic trap what would prevent entrance to the
central cell. Nevertheless, we presume that if any electron
from the distribution of temperature Teks penetrates through
the stand-off point B = Bst, it will also penetrate into the
central cell because of the large electrostatic forces directed
towards the central cell for B > Bst. For this to happen
TeksBmx/Bst < κTe0, where κ is a numerical constant of order
unity. However the spatial potential profile is an important
issue that may still prevent some electron penetration. For
example, if most of the large potential drop is very close to the
plug, a large fraction of the electrons would be reflected by the
magnetic field and reduce the trapped electron penetration into
the central cell. Nonetheless, we choose the most favourable
case for satisfying the trapped particle instability: the case
where all electrons that reach the abrupt stand-off section
penetrate into the central region of the plasma.

Ions moving towards the central cell from the end wall
do not have enough energy to penetrate beyond the stand-
off region since the large ambipolar potential there repels
them. These ions are blocked from penetrating by both the
repulsive quality of the magnetic mirror force (accounted for
in the distributions we have chosen) and ultimately by the
extremely strong electrostatic force in the transition region that
confines the hot central-cell electrons. In contrast, electrons
in the kinetic-stabilizer region, whose source is from a supply
originating from the end-walls, feel forces pushing them into
the central cell. Hence, there are no confined ions sharing
both the central cell and kinetic-stabilizer region. There are
electrons that circulate both in the central cell and in the kinetic-
stabilizer region. These electrons are a source for the charge
uncovering term that is a stabilizing factor for the trapped
particle mode [14].

The MHD stability criterion that we use in this paper
strictly is the stability criterion for a low beta m = 1 flute
mode where the radially perturbed displacement is constant
everywhere along a cylindrical-like column and we shall
apply this criterion to the finite beta regime. Consider a
test function that pinches off the displacement so that there
is zero displacement in the regions of favourable curvature.
The trapped particle mode arises because the pinched-off
potential removes the stabilizing influence from the good
curvature region. In ideal MHD, the pinching process excites
bending energy that allows the continued stabilization of
the mode. However, kinetic processes enable the excitation
of an electrostatic perturbation that does not excite bending
energy. In addition, a low-beta flute mode is electrostatic,
which enables relatively efficient coupling to other electrostatic
perturbations. In a tokamak such coupling leads to the
Kadomtsev–Pogutse trapped particle mode [15], which allows

a curvature-driven instability to persist, but at a significantly
reduced growth rate compared with the prediction from MHD
theory. In a tokamak this reduced growth rate occurs due to
the circulation of passing particles through the entire plasma.
In a tandem mirror there is a substantially lower fraction of
connecting particles than in a tokamak (where the fraction is
near unity). Thus the relative growth rate of the trapped particle
mode is larger relative to the trapped particle growth rate in a
tokamak. When the fraction of trapped particles is sufficiently
low and no additional stabilization mechanism is employed,
the growth rate can even be as large as the MHD growth rate
of the central cell and plugs. Mode stabilization of the trapped
particle mode in a tandem mirror relies on the property that
there can be a different fraction of connecting electrons to
connecting ions. This difference leads to a stabilizing effect,
which is considered below.

The stabilization condition for the m = 1 mode does
not have the usual finite Larmor radius stabilization [16].
However, a similar stabilization mechanism arises due to
charge uncovering, the difference between the number of
electrons and ions that sample both the central cell and the
kinetic-stabilizer regions. In ideal MHD, the cross-field
currents due to the lowest order E × B drift do not produce
an electrical current due to cancellation of electron and ion
flow velocities. Because of finite Larmor radius effects, the
ion E × B drift differs from the electron E × B drift. This
leads to a current that produces charge accumulation. For
trapped particle and for electrostatic modes, a similar current
emerges due to the difference in electron and trapped ion
particle populations.

We analyse the case where density and pressure profiles
are Gaussian and have the form R(z,ψ) = r(z) exp [−ψ/2ψ0]
where ψ = ψ(0) = B0r

2
0 /2 = B(z)r2(z)/2. We follow past

trapped particle mode studies in describing the electrons in the
trapping region (in this work the KS region) by a Maxwellian
distribution at a fixed temperature, Teks. Neglecting the effect
of rotation found in their work, Berk and Lane [17] found the
stability condition to be

(
ω∗

e"Q
)2

> 4γ 2
MHD(1 + Q), (55)

where ω∗
e = Teks/|e|B0r

2
0 . The square of the MHD growth rate

γ 2
MHD is defined to be

γ 2
MHD =

∫ L

−L
dzr3

0 (z) d2r0(z)
dz2

(
p⊥(z) + p||(z)

)

∫ L

−L
dzr4

0 (z)ρm(z)
, (56)

where ρm(z) is the mass density. Q is defined

Q =
2

(
B0r

2
0

)2 ∑
j

∫
ks

dz
Tj

r2
0 (z)nctj (z)e

2
j

∫ L

−L
dzr4

0 (z)ρm(z)
, (57)

and

ω∗
e"Q =

−2B0r
2
0

∑
j

∫
ks dzr2

0 (z)nct(z)ej

∫ L

−L
dzr4

0 (z)ρm(z)
, (58)

where j denotes the species of particle with charge ej . The
density of particles of species j at position z that connect is
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nctj (z), i.e. these particles travel directly between the kinetic-
stabilizer region and the central cell when a long mean-free-
path electron limit is assumed.

In the kinetic-stabilizer region the eigenmode excitation is
assumed to be negligibly small. The ambipolar sheath prevents
ions outside the central region from returning to the central
region, so that only electrons connect to the central cell. Thus
in the expression for Q and "Q, only electrons contribute to
the sums. For this case "Q = Q, so that we find fulfilment of
the trapped particle stability criterion requires

Q > 2
(
γMHD

ω∗
e

)2


1 +

√

1 +
(

ω∗
e

γMHD

)2




[(
ω∗

e
γMHD

)2
$1

]

−→ 4
(
γMHD

ω∗
e

)2

. (59)

If this condition is not met, the growth rate of the trapped
particle mode is approximately given by [17]

γtp ≈ γMHD/
√

1 + Q. (60)

If Q < 1 the intrinsic growth rate is purely MHD, as if no
kinetic stabilizer were present.

For simplicity, as the stability condition for (59), we only
use Q > 4(γMHD/ω∗

e )
2 of (59), a necessary condition for the

stability of the kinetic stabilizer to the trapped particle mode. In
terms of physically intuitive parameters, the necessary stability
condition is

Teks

∫

ks
dzr2

0 (z)nct(z) > 4

×
∫ Lc+Lpl

0
dz

(
p⊥(z) + p‖(z)

)
r3

0 (z)
d2r0(z)

dz2
, (61)

where ks refers to the z integration over a single kinetic-
stabilizer region.

We investigate conditions that satisfy both MHD and
trapped particle stability. To clarify the stability boundary we
consider the MHD marginality parameter Mks defined in (39).
For an MHD stable system

Mks =
∫ Lc+Lpl

0 dz
(
p⊥ + p‖

)
r3

0
d2r0
dz2

∫
ks dz

(
p⊥ + p‖

)
r3

0
d2r0
dz2

< 1. (62)

It is convenient to express the trapped particle stability
condition relative to the MHD stabilization drive of the kinetic
stabilizer as

Teks
∫

ks dzr2
0 (z)nct(z)

4
∫ Lc+Lpl

0 dz
(
p⊥(z) + p‖(z)

)
r3

0
d2r0
dz2

=
Teksλkσp

4miE0Mks

〈nct

n

〉
> 1.

(63)

In this expression, 〈nct/n〉 is the fraction of electrons that have
orbits in the kinetic stabilizer and also penetrate into the central
cell. This fraction is

〈nct

n

〉
=

∫
ks

dz
B

nct(z)∫
ks

dz
B

n(z)
. (64)

The numerical factor λk from the ratio in (63) is

λk =

∫
ks dz

∫ 1
0

dx
(1−x)1/2

(
"µB
E0

)

(
x− B

BT

)2
+
(

"µB
E0

)2

∫
ks dz

∫ 1
0

dx
(1−x)1/2 (2 − x)

(
"µB
E0

)

(
x− B

BT

)2
+
(

"µB
E0

)2

(65)

∼=

∫
ks dz 1(

1− B
BT

)1/2

∫
ks dz

2− B
BT(

1− B
BT

)1/2

. (66)

The last approximate integral in (66) applies when the ion
beams satisfy

"µBks/(E0 − B/BT) $ 1.

For beams with "µBT/E0 ( 1, i.e. unfocused beams, we
obtain λk

.= 1/2. For well-focused beams, where BT = Bks

and "µBks/E0 $ 1 we have λk
.= 1.

For a focused beam, the ion density build-up at B 0 BT

allows for increased MHD stabilization of a factor of 1.5–3, as
shown in figure 5. However, the focusing creates an ambipolar
potential that prevents most of the electrons within the kinetic
stabilizer from connecting to the central cell. For this reason
the focused case may have the best MHD properties but is
extremely susceptible to the trapped particle mode because the
factor 〈nct/n〉, the fraction of trapped and connecting electrons,
is exponentially small.

We therefore examine the unfocused case which will have
a substantially larger value of 〈nct/n〉; for this case it may be
possible to satisfy the trapped particle stabilization criterion.
An unfocused beam results inλk ∼= 0.5 and the trapped particle
stability criterion is

〈nct

n

〉 1
8

Teks

miE0
> Mks. (67)

To apply this stability condition, we have calculated the
normalized connecting particle electron density nct(z)/n(z)

nct(z)

n(z)
= 1 −

√

1 − B(z)

Bst
exp

[

−
(
ψst − ψ(z)

Bst
B(z)

− 1

)]

, (68)

where ψ(z) = −|e|φ(z)/Teks. The derivation of this formula
is given in the appendix. Recall that the subscript st refers to
the stand-off position. The connecting fraction of electrons
〈nct/n〉, defined in (64), is evaluated numerically. The results
of this calculation are shown in figure 7.

Despite an increase in the value of 〈nct/n〉 compared with
the trapped case, it is still difficult to satisfy the stability
criterion given by (67) even when Mks is substantially less
than unity. This is because all factors on the left-hand side
of (67) are relatively small. For example, in figure 7, 〈nct/n〉
tends to be small, although it can be close to unity if the stand-
off position can be made close to the inbound entrance to the
kinetic-stabilizer region. Furthermore, if one attempts to raise
the ratio Teks/miE0 to an order-unity quantity, the emerging
ambipolar potential may prevent ion penetration into kinetic-
stabilizer region. We find, in a calculation not discussed
here [5], that when a self-consistent attempt to construct an
ambipolar potential is made, raising Teks/miE0 ≈ 0.3 leads
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Figure 7. The connecting fraction of electrons in the
kinetic-stabilizer region that reach the central cell. The relative
radius of the kinetic-stabilizer entrance is rks/rW = 0.6. The various
curves are for different values of ε = "µBks/E0. The connecting
fraction is plotted as a function of the stand-off position
xks = rks/rW.

to a breakdown of the quasi-neutrality condition. Although
higher electron temperature solutions should be possible with
the formation of internal potential jumps on the order of a
Debye length, it is likely that the maximum ratioTeks/miE0 that
can give penetration of the ion beam into the kinetic stabilizer
will remain below unity.

To satisfy the trapped particle stability criterion given by
(67), we need to make the MHD stability margin parameter Mks

as small as possible; at the same time we must ensure that the
largest acceptable kinetic-stabilizer beam power throughput is
less than the alpha particle power production of the central cell.
It then follows from (43) that Mks lies in the interval

1 > Mks > 70
λc

r0(m)

(
BW

B0
E0(keV)

)1/2

×
(

Tc(100 keV)

βc

) (
3

B0(T)

)2

. (69)

We fold in the trapped particle stability criteria of (67)
in with the MHD power constraint given in (43). For
simultaneous stability to the MHD and trapped particle modes,
as well as compatibility with the power restrictions of the
kinetic-stabilizer beam, the kinetic-stabilizer’s window is

min
[

1,
〈nct

n

〉
σp

Teks

8miE0

]
< Mks (70)

< 0.7
λc

r0(m)

(
BW

B0
E0(keV)

)1/2 (
Tc(100 keV)

βc

) (
3

B0(T)

)2

.

The trapped particle is always more restrictive than the MHD
criterion. We take λc = 0.175, although design improvement
from our nominal parameter choice can reduce λc. Hence the
compatibility criterion becomes

4.6
(λc/0.175)√

3 r0(m)σp

(
3BW(g)

B0(T)E0(keV)

)1/2 (
Tc(100 keV)

βc

)

×
(

3
B0(T)

)2 (
miE0

2Teks

) 〈
n

2.5nct

〉
< 1. (71)

We have arranged the left-hand side of (71), so that each of
the bracketed terms have a nominal value of unity. We see
difficulty in fulfilling this condition. Experimental designs

that will allow the bracketed terms to achieve smaller values
are needed. Much of the detailed physics is buried in the factor
λc. For example, because λc is proportional to 1/η, direct
conversion of energy can reduce λc by an additional factor of
five. Additional novel ideas could be developed to enable (71)
to be satisfied. The nominal value of other factors, such as
(miE0/2Teks) and 〈n/2.5nct〉, have been selected to have the
smallest value we deemed possible. Hence, the present theory
for a collisionless trapped particle mode indicates that there is
a significant issue for the stabilization of a symmetric mirror
machine with a kinetic stabilizer.

5. Summary and conclusions

We have investigated the compatibility of the kinetic stabilizer
to both MHD stability and trapped particle stability. With
sufficient kinetic-stabilizer beam input power, both MHD
stability and trapped particle stability can be achieved.
However the kinetic-stabilizer beam input power is limited
because the power requirement for sustaining the kinetic-
stabilizer beam must be substantially less than the fusion power
being produced. Thus a window needs to be established in
which sufficient beam power is provided to satisfy the MHD
and trapped particle stability criteria and yet not violate the
power input constraint imposed by the necessity of producing
a power plant. Such a window is likely to be established
from the power and MHD constraints alone. However, we
find that it is significantly more difficult to satisfy the trapped
particle stability criterion than the MHD stability criterion.
The greater challenge to the kinetic-stabilizer concept is to
be able to satisfy simultaneously both power constraints and
stability to the trapped particle mode.

In our analysis the nominal maximum beam power is taken
to be the fusion alpha power production, approximately 20%
of the total fusion power production. The resulting MHD
and power constraints lead to an allowable range of values for
the MHD stability parameter Mks, given by (52). A smaller
value of Mks improves stability and Mks = 1 is the transition
value between MHD instability and stability. The window of
operation for simultaneous fulfilment of power requirements
and trapped particle stability leads to the constraint (71). For
the values chosen, the trapped particle instability criterion
together with power constraints would not be satisfied in a
burning plasma. Designs that could improve on our choices
for the nominal parameters are needed. In the text we note that
the parameter λc decreases substantially if direct conversion of
the input beam power for the kinetic stabilizer is implemented.
For example, if an 80% energy conversion efficiency could be
achieved, the parameter λc reduces by a factor of 5. In this case
the condition that both trapped particle stability and kinetic-
stabilizer beam power input constraints are fulfilled, expressed
by (71), is narrowly satisfied with all of the other parameters
held fixed so that the parenthetic terms in (71) are unity.

A pertinent issue is how severe the trapped particle
instability can be. A systematic experimental study of this
instability has yet to be undertaken. In the kinetic-stabilizer
region, if the electrons are in the short mean-free-path regime,
the trapped particle instability growth rate is likely to decrease.
Then it may be feasible to implement feedback techniques to
prevent or reduce the harmful effects of the trapped particle
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instability. Further studies, especially experimental studies,
are needed to establish a database to assess the implications of
exciting the trapped particle instability and determine whether
the harmful effects of this instability can be mitigated.

Our study also indicates the need to develop systematic
calculations for the ambipolar potential in the kinetic-stabilizer
regime. The shape of the electric field in the case of
unfocused beam propagation is particularly challenging to
evaluate, because electrons in the kinetic stabilizer are in
contact with the wall. In one transit, electrons are unlikely
to be described by a Maxwellian distribution; it is necessary
to verify how reasonable the model used in this work is
for describing the potential structure in the KS region. A
successful theory would enable the determination of the stand-
off position, which separates the region where the ambipolar
potential energy variation is characterized by the central-cell
electron temperature from the region where it is characterized
by the electron temperature.

There is an additional concern regarding the trapped
particle stabilization criterion. If trapped particle stability is
achieved by improving the communication of electrons from
the kinetic-stabilizer beam to the central cell, there may be a
break down in the thermal insulation of the hot electrons in the
centre of the machine. Suppose a value of 〈nct/n〉 ∼ 0.3 is
achieved, a reasonable estimate of the fraction of connecting
electrons necessary to fulfil the trapped particle instability
criterion. Then the current of cold electron entering the central
cell will be 30% of the kinetic-stabilizer beam current. These
connecting electrons are accelerated to the peak energy of the
ambipolar potential and replace more energetic electrons that
leave the system. The energy lost per electron in the exchange
is comparable to the central-cell electron temperature. The
thermal loss rate would be 〈nct/n〉PksTec/E0, where Tec is the
electron temperature in the central cell and Pks is the power
sustaining the kinetic stabilizer. Since Tec will be very large
("104) the connection of the particles leads to an unacceptable
power drain.

Another concern is that the local beta achieved by a
focused kinetic-stabilizer beam may exceed unity. Such a
plasma is formed by injecting a beam narrowly distributed in
magnetic moment so that the beam will reflect back to the wall
at designated target field position B = Bks. At that position
there is large favourable field-line curvature with the magnetic
field designed so that drks/dz = 0. Such a condition leads to a
logarithmically large, stabilizing MHD response. Mixing the
response of a focused beam with a completely unfocused beam
may enable the best satisfaction of both MHD and trapped
particle instability. The increase in the MHD response is
logarithmic in the small parameter δ ≡

√
("r"µ)/(rksµT),

where rks is the plasma field-line radius at z = zks and "r is the
spread in the focusing position of the injected particle beam.
The local beta increases as δ−1/2. Thus if significant MHD
enhancement is achieved, the local beta value at Bks is likely
to be substantially larger than unity as has been discussed in
section 3.4. An issue then arises regarding whether the desired
focusing can be achieved.
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Appendix. Calculation of the density of connecting
electrons

We wish to derive an expression for the density of connecting
electrons, nct(z). The electrons are assumed to have
Maxwellian distribution of the form

f
(
v2) = 1√

2π
exp

[

ψ(z) −
(

v2
⊥
2

+
v2

‖

2

)]

, (A.1)

where the normalization had been chosen so that the electron
kinetic energy and ion potential energy ψ are in units of
Teks/me and that local density is

n(z) = nW

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥v⊥f

(
v2) = nW exp [ψ(z)].

(A.2)

The connecting particles are those that reach the stand-off
position z = zst with a non-zero v||. It follows from
energy conservation and magnetic moment conservation that
the connecting particles satisfy the condition

v2
⊥
2

+
v2

‖

2
− ψ(z) " v2

⊥Bst

2B(z)
− ψst. (A.3)

Thus

v2
⊥ !

v2
‖ + 2 [ψ (zst) − ψ(z)]

Bst
B(z)

− 1
≡ v2

⊥ mx(v‖). (A.4)

The connecting density is then evaluated by integrating over the
electron Maxwellian distribution inside the kinetic stabilizer
with the inequality given by (A.4) satisfied.

nct(z) = nW

∫ ∞

−∞

dv‖√
2π

exp

(

−
v2

‖

2

)

×
∫ v2

⊥ mx(v‖)

0

dv2
⊥

2
exp

(
−v2

⊥
2

+ ψ(z)

)
, (A.5)

= n(z)

(

1 −
∫ ∞

−∞

dv‖√
2π

× exp

[

−
v2

‖

2
[Bst + (ψst − ψ(z)) B(z)]

Bst − B(z)

] )

, (A.6)

= n(z)

(

1 −
(

Bst − B(z)

Bst

)1/2

× exp
[
− (ψst − ψ(z)) B(z)

Bst − B(z)

] )

. (A.7)
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