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Abstract
An important contribution to the magnetohydrodynamic equilibrium at the tokamak edge comes from the Pfirsch–
Schlüter current. The parallel electric field that can be associated with these currents is necessarily poloidally
asymmetric and makes a similarly nonuniform contribution to the radial electric field on a flux surface. Here the role
of the poloidal variation of this radial electric field in the L–H transition power threshold is investigated. Dependence
of the resulting electric fields on magnetic topology, geometric factors such as the upper/lower triangularity and
elongation, and the relative position of the X-point(s) in the poloidal plane are examined in detail. Starting with
the assumption that an initially more negative radial electric field at the edge helps lower the transition power
threshold, we find that our results are in agreement with a variety of experimental observations. In particular, for a
‘normal’ configuration of the plasma current and toroidal field we show the following. (i) The net radial electric field
contribution by the Pfirsch–Schlüter currents at the plasma edge is negative for a lower single null and positive for
a corresponding upper single null geometry. (ii) It becomes more negative as the X-point height is reduced. (iii) It
also becomes more negative as the X-point radius is increased. These observations are consistent with the observed
changes in the L–H transition power threshold PLH under similar changes in the experimental conditions. In addition
we find that (iv) in USN with an unfavourable ion ∇B drift direction, the net radial electric field contribution is
positive but decreases as the X-point radius decreases. This is consistent with the C-Mod observation that an L–I
mode transition can be triggered by increasing the upper triangularity in this configuration. (v) Locally the radial
electric field is positive above the outer mid-plane and reverses sign with reversal of the toroidal field, consistent with
DIII-D observations in low-power L-mode discharges. Thus, taken as a whole, the Pfirsch–Schlüter current-driven
fields can explain a number of observations on the L–H or L–I transition and the required power threshold PLH levels
not captured by simple scaling laws. They may indeed be an important ‘hidden variable’.

(Some figures may appear in colour only in the online journal)

1. Introduction

Success of the next generation device ITER [1] is predicated
upon its operating in the high-confinement regime (H-
mode) [2], characterized by improved particle and energy
confinement. Transition to this enhanced confinement regime,
where the energy confinement time can be a factor of 2 or more
higher, is generally attributed to turbulence suppression and the
formation of a transport barrier at the edge due to shearing of
turbulent eddies by the E × B flows generated by a negative
radial electric field well [3–7].

Although the L–H transition is sometimes observed in
purely ohmic discharges, where it can be triggered by a
sawtooth heat-pulse [8], it generally requires auxiliary heating
power in excess of a machine-dependent threshold, PLH. In the

absence of a quantitative understanding of the transition itself,
a theoretical prediction for the power threshold in existing
machines, let alone in ITER, has been difficult. Currently,
based on data from major tokamaks around the world, there
exists only an empirical scaling law of the form [9]

PLH = 0.042n0.73
e B0.74

tor S0.98 [MW], (1)

where n̄e is the line-averaged density (1020 m−3), Btor is the
toroidal field [T ], and S is a measure of the plasma surface
area (m2).

However, as with all scaling laws, equation (1) is imperfect
in its predictions, and there are wide variations in the actual
power levels observed. For instance, in NSTX, a low aspect
ratio device, the threshold can be a factor of 5–6 higher
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than expected from this simple scaling law [10], and in
general there tend to be significant differences even among
machines running with similar global parameters. More
importantly there are variations in PLH obviously not captured
by equation (1), leading to theories of possible ‘hidden
variables’ [11]. Of these variations, the best-known example
is the almost universal factor of 2 or more increase in PLH

when the ion ∇B-drift (V∇Bi) points away from the active
X-point [12]. There are also indications that the relative
location of the X-point in the poloidal plane, (RX, ZX), plays an
important role, with PLH decreasing with decreasing X-point
height, ZX [13–16], or increasing radius, RX [10, 15]. A more
ambiguous issue, again related to the V∇Bi direction, is the
sensitive dependence of PLH on the exact magnetic topology:
ASDEX Upgrade (AUG), and the small aspect ratio tokamaks
NSTX and MAST find that PLH is a minimum for a balanced
double-null (DN) configuration [17], whereas C-Mod and
DIII-D see the lowest power threshold for a lower/upper single
null (LSN/USN) configuration with the V∇Bi in the direction
of the X-point [18, 19]. Results from DIII-D are qualified by
the observation that the DN configuration may actually have
a similar or lower threshold than a single-null depending on
triangularity [15, 20], thus once again pointing to the important
role the plasma shape may be playing in setting PLH.

Of course there are many other effects, such as the neutral
pressure outside the separatrix, and (lithium) wall conditioning
that also strongly influence the PLH levels (see, for instance,
[10, 21, 22]). However, these are beyond the scope of this
work, where we focus mainly on geometric and topological
effects.

1.1. Poloidal electric field

The charge separation due to guiding centre drifts, or
equivalently, the non-solenoidal diamagnetic current, is
prevented by a parallel ‘return current’ [23], which can be
calculated by demanding that the total current be divergence-
free, ∇ · J = ∇ · (J⊥ + J‖B/B) = 0. In our (ψ, θ, ζ )

flux coordinate system where we write the magnetic field as
B = ∇ψ × ∇ζ + F(ψ)∇ζ, this requirement leads to

J‖B = Fp′
(

1 − B2

〈B2〉

)
+

B2

〈B2〉
〈J‖B〉. (2)

The first term on the right is the Pfirsch–Schlüter current,
and the second can be associated with an externally driven
contribution such as the ohmic current. The angular-
brackets denote the usual flux-surface average: 〈A〉 ≡∮

AJ dθ/
∮

J dθ, where the Jacobian J = 1/∇ψ ·∇θ×∇ζ.

The parallel electric field associated with this current, the
radial electric field that can be obtained from it, and the effect of
this radial field and its poloidal variation on the L–H transition
are the main topics of this work. To calculate this field, we
start with Ohm’s law of the form [24]

E = −∇φ +
Vl

2π
∇ζ = −v × B + ηJ − B

B2
∇ · ηH∇J‖B

B2
,

(3)

which, in addition to the resistive term, includes a hyper-
resistivity (ηH) contribution that will be used to model the

effects of edge turbulence. With Bψ = B · ∇ψ = 0, Bθ =
B · ∇θ = −1/J , Bζ = B · ∇ζ = F/R2, we have

E‖B = −Eθ

J
+

VlF

2πR2
= ηJ‖B − ∇ · ηH∇J‖B

B2
, (4)

where Eθ = −∂φ/∂θ, and the Jacobian is given by J =
−qR2/F (q(ψ) < 0 with our sign convention for B). Note
that we have assumed B · ∇p = 0 and ignored the pressure
gradient term in the Ohm’s law. Since the potential φ is single-
valued,

∮
(∂φ/∂θ) dθ = 0 determines the loop voltage as

Vl = 〈E‖B〉
∮

dθ
qB · ∇θ

=
(
η〈J‖B〉 −

〈
∇ · ηH∇J‖B

B2

〉)

×
∮

dθ
B · ∇ζ

. (5)

Finally, using equations (4) and (5) the poloidal electric field
can be put in the form

Eθ = −∂φ

∂θ
= q

F

(
E‖B

1/R2
− 〈E‖B〉

〈1/R2〉

)
, (6)

where we also made use of
∮

dθ
B · ∇θ

= 2πq

F 〈1/R2〉
. (7)

Since the Pfirsch–Schlüter current is a robust feature of
toroidal confinement valid in all collisionality regimes, here
we have focused on its role in generating a poloidal and
radial electric field at the tokamak edge. But clearly there are
other physical mechanisms that contribute (see, for example,
[3, 25]). In the Pfirsch–Schlüter regime, another important
contribution comes from the parallel variation of density and
temperature [26, 27]. This contribution has the same sign and
poloidal variation as that generated by the Pfirsch–Schlüter
current considered here; thus, its inclusion in our edge electric
field calculations will not make a qualitative change in our
results. Its quantitative effects will be examined elsewhere.

1.2. The potential and the radial electric field

Now the potential on a flux surface can be determined by
integrating Eθ :

φ(ψ, θ) = φ(ψ, 0) −
∫ θ

0
Eθ (ψ, θ ′) dθ ′, (8)

where φ(ψ, 0) is an as yet undetermined integration constant.
Since there does not appear to be a way to determine

this constant within the formalism of this work, we need to
make use of additional pieces of physics. First, we invoke
a result from our earlier initial value calculations with the
3D magnetohydrodynamic (MHD) code CTD; namely, the
outer mid-plane is a stagnation point for poloidal flows. This
follows directly from symmetry considerations for up–down
symmetric DN configurations (the physics behind this is clear
in figure 1 of [28]). The outer mid-plane remains a stagnation
point even for USN/LSN configurations (figure 2 of [29]). This
observation alone can be used to determine φ(ψ, 0) on each
flux surface. But because of the ambiguity in defining where
exactly the ‘mid-plane’ is where we set uθ (ψ, θmid) = 0,
we choose another approach, namely minimization of the
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energy in the electric field, which can be shown a posteriori
to guarantee consistency with the results of the initial value
calculations mentioned above.

Since the loop voltage is independent of the integration
constant φ(ψ, 0), we will minimize only the energy in the
field

Ẽ ≡
(

Eψ0 − ∂φ(ψ, 0)

∂ψ

)
∇ψ + Eθ∇θ, (9)

where Eψ0 is the value of the field with φ(ψ, 0) → 0 :

Eψ0 ≡
∫ θ

0

∂Eθ (ψ, θ ′)

∂ψ
dθ ′. (10)

Then minimizing the energy

WE = 1
2
ε0

∫
Ẽ2J dψdθ dζ (11)

with respect to φ(ψ, 0) requires on each flux surface
∮ [(

Eψ0 − ∂φ(ψ, 0)

∂ψ

)
|∇ψ |2 + Eθ∇ψ · ∇θ

]
J dθ = 0,

(12)

which leads to

∂φ(ψ, 0)

∂ψ
= 〈E0 · ∇ψ〉

〈|∇ψ |2〉
, (13)

where E0 ≡ Eψ0∇ψ + Eθ∇θ . Now the total field can be
written as

E =
(

Eψ0 − 〈E0 · ∇ψ〉
〈|∇ψ |2〉

)
∇ψ + Eθ∇θ +

Vl

2π
∇ζ. (14)

We can easily show that 〈E · ∇ψ〉 = 0. As a consequence,
there is no net charge build up in any volume enclosed by a
flux surface; charges are merely redistributed on the surface,
which can be seen by integrating Poisson’s equation:
∫

ψ ′>ψ

∇2φJ dψ ′ dθ dζ = −
∮

∇φ · ∇ψJ dθ dζ

= 2π 〈E · ∇ψ〉
∮

J dθ = 0.

(15)

In this respect, the physics driving the electric fields in this
work is different from the ion orbit loss mechanism of Shaing
and Crume [3], and the X-point loss mechanism of Chang et al
[25], both of which involve ion losses through the separatrix.
Of course, this new mechanism is meant to complement, not
replace them, as will be discussed more fully in the following
section.

The simple variational principle used here to determine
the flux function φ(ψ, 0) is not unique. We are also exploring
others that may be more appropriate, but they are not expected
to make qualitative changes in our results.

In the following sections we evaluate the electric field
of equation (14) for various equilibrium configurations. We
demonstrate correlations between some E-field-dependent
metrics that will be defined below and the experimental
changes in the transition power threshold, PLH, as the plasma
shape, magnetic topology, and other relevant parameters are
modified.

.

.
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B

I
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p
T

+ + + + + +++

- - - - - - - - - --

.ψ

θ

ζ

EV

JPS

Figure 1. Charge separation that would develop in a purely toroidal
field, and the poloidal projection of the parallel Pfirsch–Schlüter
currents (green arrows) that neutralize it when there is a rotational
transform. At the inboard (high-field) side, the currents are
anti-parallel to the field (negative) and subtract from the ohmic
current; they are positive on the low-field side. Also shown is the
(ψ, θ, ζ ) flux coordinate system used in this work. Note that
∇ψ ∼ −∇r, ∇θ ∼ −∇θp, where (r, θp, ζ ) is the usual orthogonal
toroidal coordinate system.

2. Comparisons with experimental observations

The main thesis of this work is that the electric field
of equation (14), driven by the collisional and turbulent
modifications of the Pfirsch–Schlüter currents, plays an
important role in determining the L–H transition power
threshold, PLH. However, our present view is that this field only
modifies a background field Eback produced by a different set
of mechanisms, such as the ion orbit or the X-point loss physics
referred to earlier. Since there is as yet no satisfactory theory
of the L–H transition, here we only assume the existence of an
Eback with unspecified origins that is modified by the Pfirsch–
Schlüter field of equation (14) such that

Etotal = Eback + EPS. (16)

Generally Eback is assumed to be a flux function, i.e.
independent of the poloidal angle. Thus, EPS, which exhibits
a nearly sinusoidal variation on a flux surface (see figure 1;
this point is demonstrated explicitly in figures 3 and 4), either
adds to or subtracts from the background field, making the
transition easier or more difficult in terms of the heating power
requirement, depending on its net contribution to the total field.

In this section, using a free-boundary equilibrium code
especially developed for this purpose, we demonstrate in a
large number of configurations that the net variation in this field
EPS qualitatively parallels the expected behaviour of PLH, thus
providing a strong support for our thesis. Lack of a quantitative
understanding of the transition itself prevents us from being
more quantitative in our predictions, since it is not clear how
to translate a unit of change in the electric field metric used
here to a change in the required auxiliary input power.

Below we briefly describe the equilibrium code before we
discuss the computational results.
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Figure 2. A sample equilibrium with a DN magnetic geometry. Here the lower X-point is the active one. The smooth red curve represents a
four-parameter least-squares fit to the separatrix; it is used to define the effective values of the geometric parameters δU, δL, κU, and κL. On
the right, the pressure and safety factor profiles are plotted as functions of normalized flux, ρ ≡ (ψ0 − ψ)/(ψ0 − ψsep).

2.1. The equilibrium code

The Grad–Shafranov equation in the non-dimensional form

−,∗ψ ≡ −R2∇ ·
(

1
R2

∇ψ

)
= R2p′(ψ) + F(ψ)F ′(ψ)

(17)

is solved directly on an (R, Z) grid. Lengths are normalized
to minor radius a so that R ≡ R/a. The magnetic field is
normalized such that the toroidal field Btor ∼ O(R), and
the poloidal field (PF) Bp ∼ O(1). In particular, the poloidal
current function F ≡ RBtor = R2

0 for a vacuum field, where
R0 is the normalized major radius.

The equilibrium is calculated in two steps. First, a fixed
boundary equilibrium is obtained with a prescribed boundary
curve parametrized as follows [30]:

R(α) = R0 + cos(α + , sin α),

Z(α) = Z0 + κ sin α,
(18)

where
, = 1

2 ((δU + δL) + (δU − δL) sin α) ,

κ = 1
2 ((κU + κL) + (κU − κL) sin α) ,

and α is an angle-like parameter in the (R, Z) plane. Here
(κU, δU), and (κL, δL) are the elongation and triangularity for
the upper and lower half, respectively. This step determines
ψfixed(R, Z), with the boundary condition ψfixed = 0 on the
boundary curve of equation (18).

In the next step, a fixed external field, ψext, generated
by PF currents outside the boundary is calculated using the
well-known Green’s function for the ,∗−operator (see, for
example, [31]). This field is used to introduce one or more
X-points in the magnetic configuration. Then equation (17) is

solved again for ψfixed using the total flux ψ = ψfixed + ψext

in the evaluation of the input functions on the right-hand side.
In this step, the (inner) separatrix is defined as the plasma
boundary. An example is shown in figure 2.

In the final, free-boundary equilibrium, the plasma
boundary ψ = ψsep is typically far removed from the initial
fixed boundary curve. Using the parametrization defined by
equation (18), a four-parameter least-squares-fit to the new
boundary curve is obtained to find the new effective elongation
and triangularity values for the upper and lower halves of the
plasma cross-section. Such a fit is shown in figure 2(a) by the
smooth red curve. Note that the fitting error is largest near the
X-points, and elongations are typically underestimated by this
procedure.

2.2. General properties of the E-field and E × B velocity

For the purpose of evaluating the electric field at the edge,
we use global parameters for a DIII-D-like discharge, with
Btor = 2.1 T, Ip = 1 MA, ne = 2.5 × 1019 m−3, ne-sep =
1019 m−3, Te-sep = 50 eV, R0 = 1.66 m, a = 0.67 m [32].
With these we have the following: the characteristic Alfvén
velocity, vA ≡ (a/R0)Btor/

√
µ0mini = 3.7 × 106 m s−1,

the Alfvén time, τA ≡ a/vA = 1.8 × 10−7 s, the classical
resistivity at the separatrix, ηsep = 4.37 × 10−6 /m, and the
resistive diffusion time, τR ≡ µ0a

2/η = 1.3 × 10−1 s, which
gives a normalized resistivity of η̃ ≡ τA/τR = 1.4 × 10−6.

An ad hoc hyper-resistivity (electron viscosity) coefficient
ηH is used to incorporate edge-turbulence effects into the
model. Its value is chosen such that this term in Ohm’s law
becomes important only for length scales shorter than a radial
grid width, i.e.

δ2 = ηH

ηB2
< (δr)2. (19)
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Figure 3. The poloidal electric field at the edge for a LSN configuration. (a) The field in a narrow region at the edge. The radial width of
the computational domain shown has been magnified in order to make some of the details more easily visible. Note that the values are cut
off beyond ρ . 0.995. (b) The radial variation of (−Eθ ) near the outer mid-plane where the field has its maximum. (c) The poloidal
variation of the field on the ‘last closed flux surface’ (LCFS). The magnitude is given in dimensionless units. In the figures we have adopted
the following conventions: (i) Unless otherwise specified, the ion ∇B drift direction is downwards. (ii) In order to avoid confusion, we use a
more conventional coordinate system (ρ, θp) for the plots, where ρ ≡ (ψ0 −ψ)/(ψ0 −ψsep), ∇ρ ∼ −∇ψ , and θp is not the flux coordinate
θ but the usual poloidal angle that increases in the counter-clockwise direction, i.e. ∇θp ∼ −∇θ .

For collisional plasmasηH/η ! 10−4 [33]; we useηH = 10−4η

throughout this work.
Calculated under these (or very similar) conditions, a

typical poloidal electric field profile, Eθ (ψ, θ), is shown in
figure 3. In this and other figures to follow, we actually
plot the negatives of the field components, (−Eψ ), (−Eθ ),
since the usual radial and poloidal vectors ∇r, ∇θp are in
opposite directions to our flux coordinate vectors ∇ψ, ∇θ ,
respectively: Er . −EψRBp, and Ep . −Eθ .

We note that the field (−Eθ ) is negative/positive on the
inboard/outboard sides of the torus, respectively, in agreement
with the physical picture presented in figure 1; roughly it is
directed vertically upwards when the ion ∇B-drift direction is
downwards. The poloidal variation can also be understood by
extracting the dominant (Pfirsch–Schlüter) term in equation (6)
and rewriting it in the form

Eθ,PS . η(ψ)q(ψ)p′(ψ)〈
B2

〉 R2 (
〈B2〉 − B2) , (20)

and recalling that q(ψ) < 0, p′(ψ) > 0 in our flux coordinate
system (ψ, θ, ζ ). The reasons for the dominance of the field
on the outboard side (mainly due to the R2 term) and the
in–out variation (due to the (〈B2〉−B2) term) becomes obvious
through equation (20). The large radial gradient is due to
variations in the resistivity η ∼ p−3/2 and q profiles at the
edge.

Dimensionless units are used in the figures. The electric
field E can be converted to SI units using ESI = (vAB0)E.

Thus, with vA = 3.7 × 106 m s−1, B0 = 2.1(a/R0) T, a/R0 =
0.67 m/1.66 m we have vAB0 = 3.14 × 106 V m−1, and the
maximum PF in figure 3 is Eθ . 70 V m−1, near the outboard
mid-plane.

Figure 4 shows (−Eψ ), which is a measure of the radial
electric field: Er . −EψRBp, where Bp = |∇ψ |/R is the
PF. Again, the field is dominant on the low-field side of the
torus, and as expected from the physics driving it (see figure 1),
approximately it is negative/positive in the lower/upper half-
planes, respectively. Thus, in this configuration, the lower
half-plane adds to the background field, which is assumed to be
negative, and subtracts from it in the upper half-plane. Below
we will use its flux-surface average 〈−Eψ 〉 to quantify its net
contribution. Note that in dimensional units the radial electric
field minimum in figure 4 is Er . −3.7 kV m−1 in the lower
half-plane about halfway between the X-point and the outer
mid-plane.

Poloidal projection of the edge E × B flows generated
by the electric field of equation (14) is shown in figure 5(a).
The arrow heads indicate the direction of the flow and
their colour the velocity amplitude. Using the same DIII-D
global parameters as above, we have in dimensional units the
maximum poloidal velocity VE . 3.7 km s−1. As expected,
the poloidal flows have a stagnation point near the outer mid-
plane; they are also in agreement with the edge flows generated
in an earlier calculation with the 3D MHD code CTD that
are shown in figure 5(b). An interesting feature of these
E × B flows is that they provide an obvious neutral recycling
path from the divertor region to the edge plasma within the
separatrix.

2.3. Change in PLH between LSN and USN magnetic
geometries

A universal feature of the L–H transition is that the required
heating power is a factor of 2 or more higher if the ion ∇B

drift points away from the active X-point [12]. This change in
PLH is observed, for example, when the toroidal field direction
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Figure 4. The radial electric field at the edge for a LSN configuration. (a) The field in a narrow region at the edge. The radial width of
the computational domain has been magnified in order to make some of the details more easily visible. (b) The radial variation of (−Eψ )
in the lower half-plane at a point where it has its minimum value. (c) The poloidal variation of the field on the ‘last closed flux surface’
(LCFS).
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Figure 5. (a) The edge E × B flows (inside the separatrix) for a LSN configuration, as calculated by the equilibrium code. (b) Flows
calculated with the 3D MHD code CTD, reproduced from figure 2 of [28] with permission (© 2009 IOP Publishing). Here both the inside
and outside (scrape of layer (SOL)) flows are shown. Note that the flows within the separatrix in (a) and (b) are in qualitative agreement and
both show a stagnation point near the outer mid-plane.

is reversed, thus reversing the ion ∇B drift direction with
respect to a fixed magnetic (X-point) geometry [34]. Similarly,
it can be observed by holding the toroidal field fixed while
changing the magnetic geometry between lower (LSN) and
USN configurations (e.g. [35]).

In this section we examine the changes in the Pfirsch–
Schlüter current-induced electric field as the magnetic
geometry is gradually varied between a LSN and USN while
the ion ∇B drift is held fixed in the direction of the lower
X-point. As figures of merit, we will use the flux-surface
average of the radial electric field 〈−Eψ (ψ, θ)〉 =〈 ∂φ/∂ψ〉
and that of the associated shearing rate 〈ωS(ψ, θ)〉, where ωS

is defined as [4, 5]

ωS =
(RBp)

2

B

∂Eψ

∂ψ
. (21)

As mentioned earlier, the assumption here is that there
is both a ‘background’ and a Pfirsch–Schlüter contribution
〈−Eψ 〉 to the total electric field such that a negative 〈−Eψ 〉
lowers PLH and makes the L–H transition easier while a
positive 〈−Eψ 〉 increases it. In fact, in this and the following
sections we will see that a decreasing (increasing) 〈−Eψ 〉
is correlated with a lower (higher) PLH under corresponding
experimental conditions. Thus, although details of the function
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Figure 6. Changes in the electric field Eψ and the shearing rate ωs as the magnetic geometry is gradually varied from a LSN to USN.
(a) The separatrices for LSN, USN, and a perfectly balanced DN configuration are shown. (b) Changes in the four parameters characterizing
the plasma boundary shape, κU, κL, δU, δL (the centre axis) and the flux-surface averages 〈−Eψ 〉, 〈ωS/50〉 (the right axis) are shown. Note
that the shearing rate has been rescaled by a factor of 50. The horizontal axis is X ≡ (IXU − IXL)/(IXU + IXL), where IXU, IXL are the
currents in the upper and lower X-point PF coils, respectively. The separatrices for the two points labelled (i) and (ii) in (b) are plotted
explicitly in figure 7.

f is not known at this point, we can say that the power threshold
has the functional form

PLH = f (〈−Eψ 〉, ξ), with
∂PLH

∂〈−Eψ 〉
> 0. (22)

Here the vector ξ represents all other dependences, i.e. ξ =
(B, n̄e, S, . . .).

With equation (22) in mind, we now look at changes
in various quantities during a LSN→USN scan, which are
summarized in figure 6. In figure 6(a) the separatrices
for a LSN, USN and the intermediate DN configuration
demonstrate the change in the magnetic topology. In
figure 6(b), variations in the four parameters κU, κL, δU, δL

characterizing the plasma boundary shape, and the flux-surface
averages of (−Eψ ) and ωS are shown. Unlike the other
parameter scans discussed below, LSN→USN is a rather
drastic modification of the boundary that involves changes
in all four parameters, although the pair (κL, δL) is nearly
constant during the LSN→DN phase, and (κU, δU) is constant
during the DN→USN phase of the transition. Recall that
these parameters are obtained by a least-squares fit to the
separatrix and do not capture the variation near the X-points
very accurately (see figure 2).

Of course the most important point about figure 6 is
the change in 〈−Eψ 〉: in normalized units, it varies from
−3.13 × 10−4 in full LSN to +3.13 × 10−4 in USN, a net
change of about 2 kV m−1 in the flux-surface averaged radial
electric field. In other words, the Pfirsch–Schlüter field adds
to the background field in LSN and opposes it in USN. Note
that 〈ωS〉 also exhibits a similar change between LSN and USN
configurations. In LSN, the induced shear by Eψ,PS adds to that
of the background field, thus enhancing it, whereas in USN, it
reduces it.

An interesting feature of the 〈−Eψ 〉 variation in figure 6(b)
is the nearly step-function jump it exhibits around the X = 0
(balanced DN) point. A similar jump is also seen in the

〈ωS〉 curve. This result may explain the highly sensitive
dependence of PLH on the ‘imbalance of the two divertors’
seen in DIII-D [15]. Apparently, for a discharge near but just
below the threshold, the L–H transition can be triggered at
a desired point in time by adjusting the balance between the
upper and lower X-points in favour of the one in the ion ∇B
direction.

As seen in figure 7(a), such an adjustment can involve
not much more than a change in the location of the active
X-point. Here the LSN (labelled (i)) and USN separatrices (ii)
are essentially identical curves except near the X-points. The
corresponding points in the LSN ↔ USN scan of figure 6(b)
are indicated by arrows, where Xi = −0.05, 〈−Eψ 〉i =
−6.73 × 10−5, and Xii = +0.05, 〈−Eψ 〉ii = +6.73 ×
10−5. The variable X measures the balance between
the currents in the upper and lower X-point PF coils:
X ≡ (IXU − IXL)/(IXU + IXL).

The L–H transition when the plasma is pushed from state
(ii) to (i) can be understood better by looking at it in the
(Paux, 〈−Eψ 〉) plane of figure 7(b). Here the power threshold
function PLH(〈−Eψ 〉, ξ) is represented graphically by a line
with a positive slope. At constant auxiliary heating power
Paux, point (ii) with 〈−Eψ 〉ii > 0 is below the threshold but
its antisymmetric part (i) with 〈−Eψ 〉i = −〈−Eψ 〉ii < 0 is
above it, thus triggering the L–H transition. Note that another
important implication of this result is that the X-points play a
crucial role in the transition physics, since the plasma boundary
for the two configurations are almost identical except for the
location of the X-point.

Briefly summarizing, with the ion ∇B drift pointing
down, we have 〈−Eψ,PS〉 < 0 for a LSN, and 〈−Eψ,PS〉 > 0
for an USN; from symmetry, 〈−Eψ,PS〉 = 0 for a perfectly
balanced DN. Based on these results, we would expect P LSN

LH <
P DN

LH < P USN
LH . This ordering of the L–H transition power

threshold agrees with observations on, for example, DIII-
D [19] and C-Mod [18], but it does not appear to be universally
true [17]. In particular, in the spherical tokamaks MAST and
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Figure 8. Changes in the net radial electric field 〈−Eψ 〉 as the X-point height (ZX) is reduced by varying the lower elongation κL.
(a) Separatrices for three different values of κL. The X-point radius (RX) is essentially constant. (b) 〈−Eψ 〉 and the scaled shearing rate,
〈ωS/10〉 (the right scale). The remaining three parameters, κU, δU, δL are constant during the scan (the left scale). Note that the radial
electric field becomes more negative as the X-point height decreases (as κL increases), leading to lower PLH.

NSTX, the DN configuration seems to have the lowest PLH,

although at least in NSTX it is possible that this is only a local
minimum, as the absolute lowest PLH is apparently obtained
in LSN [36]. But it is also possible that these experimental
results need to be re-examined given the extreme sensitivity
of PLH to a shift in the location of the active X-point as seen
both in DIII-D [15] and in our computational results discussed
above (figures 6(b) and 7).

Below we will examine other changes in the plasma
boundary and provide further confirmation for the posi-
tive correlation between 〈−Eψ 〉 and PLH assumed in
equation (22).

2.4. Role of the X-point height ZX

In a number of devices, the ‘height’ of the X-point is seen to
affect the power threshold strongly, lower X-points resulting
in significant reductions in PLH [13–16]. Here we look at the
changes in 〈−Eψ,PS〉 as the lower elongation κL is increased
while keeping the other boundary parameters δL, κU, δU

fixed, which effectively lowers the X-point while minimizing
unwanted perturbations to the plasma boundary shape.

The results of this X-point height scan are summarized
in figure 8. The lower elongation, κL, varies between 1.44–
1.66, while δL . 0.52, κU . 1.31, δU . 0.38. In
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〈ωS/50〉 (the right scale). The remaining three parameters, κU, κL, δU are constant during the scan (the left scale). Note that the radial
electric field becomes more negative as the X-point radius increases (as δL decreases), leading to lower PLH.

(a) the separatrices for three points from the scan, κL =
1.44, 1.55, 1.66, are shown, indicating that only the X-point
height is varying, with very little change in its radius.
Figure 8(b) shows that the net radial electric field, 〈−Eψ 〉,
is negative, as expected from the LSN geometry with the ion
drift pointing down, and as the lower elongation increases (the
X-point height decreases), it becomes more negative. This
change in 〈−Eψ 〉 with lower ZX is also in agreement with
JET measurements that show a more negative radial electric
field at lower X-point height [14] and is consistent with the
decrease in PLH seen in, for example, NSTX [16], DIII-D [15],
and JET [13, 14] with lower ZX. Note that there is very little
change in the net shearing rate, 〈ωS〉, during this scan, possibly
implying that the depth of the radial electric field more than
the shearing rate is the important parameter in setting PLH.

2.5. Role of the X-point radius RX

Stability of the pedestal is generally assumed to be governed
by the edge-current driven peeling and pressure gradient
driven ballooning modes [37, 38]. While triangularity has a
stabilizing influence on these ideal MHD instabilities (see,
for example, [39, 40]), ironically it also makes access to the
H-mode more difficult by leading to higher PLH values [10, 15].

Here we look at the changes in the Pfirsch–Schlüter
current-induced radial electric field as the X-point is swept
radially inwards by increasing lower triangularity, δL, while
the remaining boundary-shape parameters are held fixed. The
results are summarized in figure 9. In (a), the separatrices
for δL = 0.44, 0.49, 0.54 are shown at constant values of
κU . 1.22, κL . 1.56, and δU . 0.17. In (b), the net radial
electric field 〈−Eψ 〉 is negative but becomes less so as the
lower triangularity is increased. Again, a less negative net
contribution to the total edge radial electric field is correlated
with the experimentally observed increase in PLH. Note that
here the net shearing rate 〈ωS〉 also exhibits a similar behaviour,

becoming less negative with increasing δL. In NSTX, this
correlation between increasing X-point radius and lower PLH

was explained in terms of increased X-point losses (thus higher
Er ) seen in the XGC0 code at lower B [41]. The mechanism
proposed here is in agreement in terms of its net effect on the
edge radial electric field but does not depend on ion losses
through the separatrix.

2.6. Role of triangularity in the I-mode transition

Up to this point we have been describing the possible role
of the Pfirsch–Schlüter current-induced edge electric fields in
setting the L–H transition power threshold. The same physics
can be used to explain a particular feature of the transition to
I-mode observed in C-Mod [42] that at first seems difficult to
understand, as it contradicts some of the observations on the
L–H transition discussed above.

The I-mode appears to be an intermediate stage between
L-mode with its ‘low’ energy and particle confinement and
H-mode where both the energy and particle confinement show
a dramatic improvement. In I-mode, the energy confinement
improves, leading to a temperature pedestal at the edge, but
the particle confinement retains its L-mode character. As such,
the I-mode represents an ideal confinement regime, avoiding
density, ash, and impurity buildup without the deleterious
effects of large edge-localized modes (ELMs), while at the
same time leading to higher core temperatures.

I-mode is typically observed in discharges with an
unfavourable ion drift direction (USN with the ∇B drift
pointing down) at auxiliary heating power levels below the
threshold for the L–H transition itself; thus, empirically PLI <
PLH. A puzzling feature of the L–I transition is that it can
be triggered by increasing the upper triangularity [42], i.e. by
reducing the X-point radius RX, which is the exact opposite
of what one would expect from the observations on the L–H
transition discussed in the previous section: the L–H transition
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Figure 10. Changes in the net radial electric field 〈−Eψ 〉 as the X-point radius (RX) is reduced by increasing the upper triangularity δU in an
USN magnetic geometry. (a) Separatrices for three different values of δU. The X-point height (ZX) is essentially constant. (b) 〈−Eψ 〉 and
the scaled shearing rate, 〈ωS/50〉 (the right scale). The remaining three parameters, κU, κL, δL are constant during the scan (the left scale).
Note that the radial electric field is positive and decreases as the X-point radius decreases with increasing δU, triggering an L–I transition at
some point. This behavior is the exact opposite of what is seen in the LSN configuration of figure 9.

in LSN has a lower threshold at larger RX and can be triggered
by decreasing lower triangularity. This point can be resolved
by examining 〈−Eψ 〉 under conditions that trigger an L–I
transition.

Although the same results can be deduced using symmetry
arguments and figure 9, we have explicitly examined the
variation of 〈−Eψ 〉 for an USN with the ion ∇B drift
in the unfavourable direction (pointing down) as the upper
triangularity (thus RX) is varied. The results are shown in
figure 10. Again, figure 10(a) shows the variation of the
plasma boundary (the separatrix) as δU is varied between 0.44
and 0.54, while keeping the remaining boundary parameters
approximately constant. In figure 10(b), we see that the net
radial electric field is positive, as expected from this magnetic
geometry and ion drift direction, and it becomes less positive
as δU increases. A similar behaviour is observed for the net
shearing rate 〈ωS〉.

Again, examined in the (Paux, 〈−Eψ 〉) plane, it becomes
clear how an L–I transition can be triggered by a positive
Pfirsch–Schlüter contribution that becomes less positive as the
triangularity is increased (figure 11(a)). Here we assume a
lower power threshold for the L–I transition, with a similar
functional dependence on 〈−Eψ 〉:

PLI = g(〈−Eψ 〉, ξ) < PLH(〈−Eψ 〉, ξ),
∂PLI

∂〈−Eψ 〉
> 0. (23)

In the USN configuration of figure 11(a), 〈−Eψ 〉 > 0 but
decreases in the direction of increasing δU (recall figure10(b)).
Thus, while point (1) is below the L–I threshold, at a
fixed auxiliary heating power level, the discharge can be
pushed above PLI at a higher δU (point (2)). In fact, it
should be possible to trigger an I–H transition by increasing
the triangularity even further (point (3)). Physically, these
transitions with the unfavourable drift direction are made
possible by a decreasing opposition to the transition by

the Pfirsch–Schlüter current-driven radial electric field as it
becomes less positive.

Similar arguments will show that I-mode in LSN with
the ion drift in the favourable direction should occur at higher
triangularity than H-mode. Figure 11(b) shows the possible
transitions for a LSN geometry. Recall that now 〈−Eψ 〉 < 0
and increases (becomes less negative) with increasing lower
triangularity (recall figure 9(b)). Then point (4) in L-mode
can be pushed into I-mode at constant Paux by decreasing δL

(point (5)); an I–H mode transition is possible with a further
decrease in δL (point (6)).

2.7. Edge radial electric field comparison with low-power
DIII-D observations

Pfirsch–Schlüter currents provide a robust mechanism for
generating edge electric fields that should be observable under
a wide variety of experimental conditions. However, since
there are clearly other contributions to Er , e.g., from pressure
gradients and neutral beam-driven flows, L-mode discharges
with low auxiliary heating power may provide the cleanest
experimental conditions for such a measurement.

In fact, there is such a measurement in a low-power
L-mode discharge in DIII-D, and interestingly the edge electric
field Er is seen to change sign when the toroidal field is
reversed in a LSN geometry [34]. This sign reversal cannot be
understood in terms of ion orbit [3] or X-point loss mechanisms
[25], since these will always lead to a negative Er. But the
transformation Er → −Er when Btor → −Btor follows
trivially from the physics of the Pfirsch–Schlüter currents and
the associated edge electric fields. When Btor is reversed, ∇B

drift direction and the direction of the return current, i.e., the
Pfirsch–Schlüter current in figure 1, are both reversed, thus
reversing both the PF Eθ and the potential φ of equation (6).
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transitions L–I–H requires decreasing δL. In general, I-mode should be more common at higher triangularity.
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Figure 12. Edge radial electric field reverses sign when the toroidal field is reversed. In (a) and (b) flux surfaces for lower and USN
geometries used in the calculations are shown. The arrows indicate the approximate location of the fixed point in the (R, Z) plane where the
experimental and computational measurements of Er are made. (c) Experimental results from a low-power, L-mode, LSN discharge in
DIII-D, reproduced from [34] with permission (© 2000 European Physical Society) (figure 1(f )). The blue circles are for Btor > 0 (ion ∇B
drift towards the X-point). The red squares are for Btor < 0. (d) Normalized (−Eψ ) . Er/(RBp) due to Pfirsch–Schlüter currents. The
dotted–dashed blue line is for USN, and the solid blue line is for LSN, both with Btor > 0. The red dashed line is for LSN with Btor < 0.

Reversal of the radial electric field follows trivially since
Eψ = −∂φ/∂ψ.

The experimental measurements from DIII-D are
compared with our computational results in figure 12. Since
Eψ = Eψ (ψ, θ), for this purpose a point near but slightly
above the mid-plane is chosen, indicated by arrows in
figures 12(a) and (b), which is approximately where the charge
exchange recombination (CER) spectroscopy measurements
in DIII-D appear to have been made. Figure 12(c) is
reproduced from [34] and shows the edge Er for ion ∇B drift
pointing towards (blue circles) and away from (red squares)
the X-point in a LSN. In (d) the numerical results are shown;
Er . −EψRBp > 0 with the favourable drift direction and
negative otherwise, in agreement with the DIII-D results. In a
subsequent series of experiments in DIII-D where the toroidal
field direction was held fixed but the magnetic geometry was

changed between an upper and LSN, Er was found to be
positive in both USN and LSN [35]. As seen in figure 12(d),
this observation is also consistent with our calculations since
Er remains positive in the upper half-plane regardless of the
location of the X-point; its sign is determined by the absolute
direction of the ∇B drift, not its relative direction with respect
to the X-point.

3. Summary and discussion

The parallel ‘return current’ of equation (2) develops in
response to a non-solenoidal diamagnetic current in the
toroidal geometry; equivalently, we can say that it represents
a parallel flow of charges connecting the top and bottom
of a toroidal surface to neutralize the charge separation that
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would result from charge-dependent ∇B and curvature drifts
(figure 1). At the collisional edge, near the separatrix, there
can be a significant parallel electric field associated with this
current. Its poloidal component, as shown in equation (6),
and more explicitly in equation (20), vanishes at two critical
points, (Rc, Zc)U, (Rc, Zc)L, one each in the upper and lower
half-planes, respectively, where B2 . 〈B2〉 (figure 3(c); the
equality is exact if the ohmic contribution is ignored):

Eθ [(Rc, Zc)U] = Eθ [(Rc, Zc)L] = 0. (24)

Location of these points in the poloidal plane is determined to
a large degree by the plasma boundary shape.

Since ∂φ/∂θ = −Eθ , these critical points are also
where the potential has its extrema. Also, using making
use of ∂Eψ/∂θ = ∂Eθ/∂ψ, and assuming that the flux
surface shape and equilibrium quantities do not vary very
fast between neighbouring flux surfaces, we see that Eψ also
attains maximum and minimum values on a flux surface at
approximately the same points (see plots of −Eθ (θp) and
−Eψ (θp) in figures 3(c) and 4(c)). Thus, near the separatrix
we have

(−Eψ (θ))max . −Eψ [(Rc, Zc)U],

(−Eψ (θ))min . −Eψ [(Rc, Zc)L].
(25)

Recalling that (−Eψ ) . Er/RBp, we see that equation (25)
is consistent with the physical picture presented in figure 1.
Note that here we have assumed a ‘normal’ configuration
for the plasma current and toroidal field, as shown in
figure 1. If the toroidal field (thus the ∇B drift direction) is
reversed, the extrema for the radial electric field would change
places: the maximum/minimum would be in the lower/upper
half-plane.

The properties of the radial electric field, as measured by
(−Eψ ) . Er/RBp of equation (14), have been the focus of
much of this work. Since (−Eψ ) is poloidal angle-dependent,
we have chosen to use its flux-surface average, 〈−Eψ 〉, along
with that of the shearing rate wS (equation (21)), as figures of
merit to determine whether a particular magnetic configuration
should have a higher or lower L–H transition power threshold,
PLH, compared with others.

For a diverted tokamak, there is one or two additional
critical points, the X-points, where B2

p = 0. We find that
the location of the X-point(s), (RX, ZX), with respect to the
critical points of equations (24), (Rc, Zc)U,L, where Eθ = 0
and Eψ has an approximate extremum, plays a crucial role
in determining 〈−Eψ 〉 and 〈wS〉, and thus the contribution
to the power threshold PLH by the Pfirsch–Schlüter current-
driven electric fields. A clear example can be seen by revisiting
the results of section 2.5, where we examined how changing
the X-point radius RX affects 〈−Eψ 〉 and thus PLH in a LSN
geometry (see figure 9). Changes in the net radial electric
field and shearing rate of figure 9(b) can be understood by
looking at how the fields at the edge respond to a change in
lower triangularity δL, which in turn affects the X-point radius
RX. In figure 13 various quantities on a flux surface near
the separatrix are shown as functions of the poloidal angle θp

(recall that ∇θp ∼ −∇θ , where θ is the flux coordinate).
The solid red lines are for δL = 0.44, and the dashed blue
lines for δL = 0.54. As seen in figure 13(a), both the poloidal
electric field amplitude around the flux surface and the critical
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Figure 13. Changes in the fields on a flux surface near the separatrix
as lower triangularity δL is increased from 0.44 (solid red lines) to
0.54 (dashed blue lines), which decreases the X-point radius RX (see
also figure 9(a)). (a) The poloidal electric field −Eθ . Note that the
lower and upper critical points (Rc, Zc)L,U where Eθ = 0 do not
move appreciably. (b) Variation of Bp = |∇ψ |/R on the flux
surface, showing that the X-point moves closer to the lower critical
point at lower δL (larger RX). (c) The contribution to 〈−Eψ 〉 from
the region around the X-point increases as it moves closer to the
critical point where −Eψ has its minimum value on the flux surface.

point locations (Rc, Zc)L,U are essentially unchanged. The
X-point, however, moves closer to (Rc, Zc)L (figure 13(b))
where −Eψ has a minimum. Recalling that 〈−Eψ 〉 =∮
(−dlθEψ/Bp)/

∮
(dlθ/Bp), where dlθ is the poloidal arc

length, in figure 13(c) we plot −Eψ/Bp around the flux surface.
Clearly a large portion of the contributions to the integral∮
(−dlθEψ/Bp) comes from poloidal angles near the X-point,

and since the X-point is closer to the minimum of −Eψ for
δL = 0.44 (the solid red curve), we have

∮

δL=0.44

(−Eψdlθ

Bp

)
<

∮

δL=0.54

(−Eψdlθ

Bp

)
. (26)

Thus, 〈−Eψ 〉δL=0.44 is more negative than 〈−Eψ 〉δL=0.54,
implying a lower PLH. Looking at it from another point of view,
since Bp ∼ 0 near the X-point, the field lines (and plasma)
dwell near the X-point much longer than at other points around
the flux surface. Since this is a region of more negative radial
electric field for the lower δL case, the plasma experiences
a stronger net negative radial electric field, making the L–H
transition easier.
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Figure 14. (−Eψ/Bp) as a function of the poloidal angle θp for LSN
(dashed blue line) and USN (solid red line) configurations close to a
balanced DN, at the points indicated by the labels (i) and (ii) in
figures 6(b) and 7. Contribution to 〈−Eψ 〉 for the two cases is
essentially identical around the flux surface except near the PF nulls.
The dominant contribution comes from the active X-point.

The differences in 〈−Eψ 〉 between the USN and LSN
configurations discussed in section 2.3 (figure 6) can be
understood using similar arguments. In figure 14 we plot
(−Eψ/Bp) = (∂φ/∂ψ)/Bp as a function of the poloidal
angle θp for the LSN data point labelled (i) and the USN
point labelled (ii) in figures 6(b) and 7. The lower X-point
is in the vicinity of the critical point (Rc, Zc)L and makes a
negative contribution to the net radial electric field integral.
Similarly, the upper X-point is near (Rc, Zc)U and makes a
positive contribution. Which one dominates depends on which
one of them is the active X-point where B2

p is smaller (closer to
zero). Thus the difference between 〈−Eψ 〉LSN and 〈−Eψ 〉USN

seen in figure 6(b) around the symmetric DN data point is
entirely due to differing contributions near the two X-points.
Of course, in general, other points around the flux surface will
make differing contributions for LSN and USN geometries;
these two data points ((i) and (ii) in figures 6(b) and 7) illustrate
the special significance of the X-points.

Variations in 〈−Eψ 〉 for the other cases discussed in
previous sections have similar explanations in terms of
geometry-induced changes in the various field components and
the related changes in the locations of the X-points with respect
to the critical points (Rc, Zc)L,U.

In summary, we believe we have identified an important
‘hidden variable’ that plays a significant role in determining the
L–H transition power threshold PLH: an intrinsic electric field
associated with the Pfirsch–Schlüter currents at the plasma
edge. These parallel currents are a robust, collisionality-
independent feature of confinement in the toroidal geometry.
The electric fields become significant only at the collisional
edge close to the separatrix, near the foot of the pedestal
that forms in H-mode. Their relevance to the L–H transition
derives from the observation that they can either augment
or oppose to a varying degree the radial electric field well
observed at the transition, depending on the magnetic topology
and plasma boundary shape. Thus not only is their source
robust (toroidal geometry) but also their influence can be
characterized through easily measured, gross features of an
equilibrium configuration, without having to require a detailed
knowledge of the discharge parameters.

In this work we showed qualitatively but in some detail
how these electric fields, in particular the net radial electric field
contribution as measured by the flux-surface average 〈−Eψ 〉,

can explain a series of experimental observations:

• In the LSN geometry, the intrinsic radial electric field
helps the formation of the negative field well at the edge:
〈−Eψ 〉LSN < 0. For a corresponding USN, 〈−Eψ 〉USN =
−〈−Eψ 〉LSN > 0, i.e. it opposes the well-formation
(figure 6). Experimentally PLH can differ by more than a
factor of 2 for these configurations.

• In LSN, 〈−Eψ 〉 becomes more negative as the X-point
height ZX is reduced by increasing the lower elongation
κL (figure 8). Experimentally PLH is reduced for
decreasing ZX.

• In LSN, 〈−Eψ 〉 becomes more negative as the X-point
radius RX is increased by reducing the lower triangularity
δL (figure 9). Experimentally PLH is reduced for
increasing RX.

• In C-mod USN discharges with the ion ∇B drift pointing
down, I-mode can be triggered by increasing the upper
triangularity δU, thus reducingRX. This can be understood
in terms of a positive 〈−Eψ 〉 that becomes less so as δU

is increased (figure 10). In fact, in this configuration it
should be possible to trigger an I–H transition by reducing
the X-point radius even further.

• In an L-mode low-power discharge, away from
L–H transition threshold, edge radial electric field
measurements in DIII-D were found to reverse sign with
the reversal of the toroidal field in a LSN discharge. This
reversal is reproduced in our calculations (figure 12). In
fact, our Pfirsch–Schlüter current-induced field is unique
in that this observation cannot be explained by an ion-loss
mechanism at the edge.

Thus, we can explain many of the features of the L–H,
or the even less well understood L–I transition, that are not
captured by a simple scaling law and are generally attributed
to ‘hidden’ variables. Admittedly we are not at the stage yet
where we can make quantitative predictions for the power
threshold. But we intend to extend this work in directions
that should eventually provide more quantitative answers.
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