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a b s t r a c t

A linear kinetic stability code for tokamak plasmas: AEGIS-K (Adaptive EiGenfunction Inde-
pendent Solutions-Kinetic), is described. The AEGIS-K code is based on the newly devel-
oped gyrokinetic theory [L.J. Zheng, M.T. Kotschenreuther, J.W. Van Dam, Phys. Plasmas
14 (2007) 072505]. The success in recovering the ideal magnetohydrodynamics (MHD)
from this newly developed gyrokinetic theory in the proper limit leads the AEGIS-K code
to be featured by being fully kinetic in essence but hybrid in appearance. The radial adap-
tive shooting scheme based on the method of the independent solution decomposition in
the MHD AEGIS code [L.J. Zheng, M.T. Kotschenreuther, J. Comp. Phys. 211 (2006) 748] is
extended to the kinetic calculation. A numerical method is developed to solve the gyroki-
netic equation of lowest order for the response to the independent solutions of the electro-
magnetic perturbations, with the quasineutrality condition taken into account. A transform
method is implemented to allow the pre-computed Z-function (i.e., the plasma dispersion
function) to be used to reduce the integration dimension in the moment calculation and to
assure the numerical accuracy in determining the wave–particle resonance effects. Periodic
boundary condition along the whole banana orbit is introduced to treat the trapped parti-
cles, in contrast to the usual reflection symmetry conditions at the banana tips. Due to the
adaptive feature, the AEGIS-K code is able to resolve the coupling between the kinetic res-
onances and the shear Alfvén continuum damping. Application of the AEGIS-K code to
compute the resistive wall modes in ITER is discussed.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

The linear magnetohydrodynamic (MHD) stability codes, such as PEST, ERATO, GATO, DCON, AEGIS, MARG2D, MISHKA,
etc. [1–9], have been proved to be important for tokamak physics studies. For magnetically confined plasmas, charged par-
ticles are sticked on the magnetic field lines to the leading order in the finite Larmor radius (FLR) expansion. This makes the
brevity MHD model capture the dominant feature of the complicated many charged particle problem in the direction per-
pendicular to the magnetic field line. However, the particle movements in the direction parallel to the magnetic field line are
not localized. Kinetic description is necessary in this direction. There is long history in studying the kinetic effects on the
MHD modes. The recent discovery of the stabilization of resistive wall modes (RWMs) by the kinetic and shear Alfvén res-
onances has stimulated the global computational studies of resistive wall modes by taking into account the non-ideal MHD
effects [10–14].

Due to the complexity of the global computation of the kinetic effects on MHD modes, several kinetic MHD codes based
the perturbed numerical scheme have been developed, for example NOVA-K [15], the code combining MISHIKA and HAGIS
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[9,16], and the code based on PEST [17]. The perturbed numerical scheme uses the ideal MHD eigen functions to evaluate the
kinetic energy perturbatively and therefore cannot take into account the kinetic effects consistently. The effort to develop the
non-perturbative code has been made in MARS-K code [18]. The current AEGIS-K (Adaptive EiGenfunction Independent Solu-
tions-Kinetic) code is another effort in this direction with different underlying set of equations and new numerical scheme.

In the aspect of the underlying equations, we avoid the hybrid method used so far in this field, for example by MARS-K
code [18]. In Ref. [19], we have successfully reformulated the gyrokinetic theory so that the MHD equations can be recovered
in the proper limit. The current AEGIS-K code is based on this new gyrokinetic formalism. This makes our AEGIS-K code to be
featured by being fully kinetic in essence but hybrid in appearance. For simplicity, in the current AEGIS-K effort we drop the
FLR effects and concentrate to study all remaining kinetic effects: such as the kinetic resonance, trapped particle, and parallel
electric field effects. Even in this lowest order description, our formalism is significantly different from the conventional gyr-
okinetic (in lowest order) or drift kinetic formalism. In the direction perpendicular to the magnetic field we found that the
Pfirsch–Schlüter current effect has not been kept completely in the conventional gyrokinetic formalism. In the direction par-
allel to the magnetic field, we found that the coupling of the gyrophase-dependent part of the distribution function needs to
be taken into account to derive the gyrokinetic equation of the lowest order (i.e., the drift kinetic equation). Only this cou-
pling is taken into consideration properly, the structure of the MHD equation in the direction parallel to the magnetic field
can be recovered in the proper fluid limit. In addition, we also include the parallel electric field effect by introducing the
quasineutrality condition, which is another feature of AEGIS-K code.

In the aspect of the numerical scheme, we employ the radially adaptive shooting scheme by extending the MHD AEGIS
numerical algorithm to the current kinetic one. The adaptive computation of MHD modes is vitally important to achieve the
numerical accuracy. This is because the kinetic and shear Alfvén resonances can couple each other at the resonance magnetic
surfaces. The importance of the adaptive scheme can be seen by inspecting the GATO grid density [5]. From GATO compu-
tation experience, the maximum number of the radial grid with the good numerical convergency (packed on the rational
surfaces) is roughly 500 for up-down symmetric equilibrium. In the kinetic computation the eigen function is complex
and therefore the matrix size is about four times larger. Furthermore, the MHD matrix is Hermitian, but the kinetic one
not. All of these make the numerical convergency in the grid method a tough task for the kinetic computation . In the AEGIS
formalism, however, the radial direction is based on the adaptive shooting of the independent solutions. Increasing the radial
resolution does not increase the eigen matrix size. Our computation shows that the minimum radial resolution has to be over
600 grid points with packing at the resonance surfaces. This shows the advantage of the current adaptive numerical scheme.
With such high radial resolution required, it would be hard for radially grid based kinetic codes, e.g., MARS-K code [18], to
resolve kinetic and Alfvén resonances while ensuring the numerical convergence.

We also improve the numerical scheme in several other aspects. For example, a new transform technique is developed to
solve the integro-differential gyrokinetic equations, that allows the pre-computed Z-function (i.e., the plasma dispersion
function) [21] to be used to reduce the integration dimension in the kinetic moment calculation, and the periodic boundary
conditions around the banana orbits are used to compute the trapped particle effects, etc.

The paper is arranged as follows: In Section 2 the equilibrium calculation is outlined. In Section 3 the eigen-value problem
is formulated. In Section 4 the numerical results are given. In the last section the conclusions and discussion are presented.

2. Equilibrium

For simplicity we consider the axisymmetric systems and assume that the system is up-down symmetric. The equilibrium
calculation is similar to that of the AEGIS code [7]. For toroidally symmetric configurations the magnetic filed B

!
can be ex-

pressed as

B
!
¼ v0$/" $wþ g$/ ¼ v0ð$f" $wþ q$w"$hÞ;

where / is the axisymmetric toroidal angle, h and f are generalized poloidal and toroidal angles, respectively, w labels the
magnetic surface, vðwÞ denotes the poloidal magnetic flux, gðvÞ is the poloidal current flux, q represents the safety factor,
and prime denotes derivative with respect to w. Here and later on in this paper, the arrow is used to represent the vector
in the configuration space. The poloidal flux v is governed by the Grad–Shafranov equation, with the pressure profile PðvÞ
and poloidal current flux gðvÞ specified. The Grad–Shafranov equation usually needs to be solved numerically by the equi-
librium codes, for example TOQ (the MHD equilibrium code developed at General Atomics, San Diego, CA). The numerical
equilibrium data, computed for example by TOQ, is the input to the AEGIS-K code. The data required by the AEGIS-K code
are as follows: The profile functions including the poloidal magnetic flux vðwÞ, the pressure PðwÞ, and the poloidal current
flux gðwÞ, and the flux coordinates: Xðw; hÞ and Zðw; hÞ at grids, where X and Z are the Cartesian coordinates at / ¼ const
plane. The AEGIS-K code performs re-griding both for radial coordinate and poloidal angle. The re-griding relies on the spline
interpolations of the equilibrium data. As proposed in the PEST code [1] the coordinate splines are established on the gen-
eralized polar coordinate system. During the re-griding, choice is made available with respect to various coordinate systems,
such as the PEST [1], Hamada [22], and the equal-arclength coordinate systems.

Here, we note that, since we have assumed that the equilibrium has perfect magnetic surfaces, the treatment of X-points
has not been considered in our current version of AEGIS-K code. Nevertheless, AEGIS-K code can approach rather closely to
the X-points by introducing more Fourier harmonics. Since AEGIS-K uses the radial independent solution method, its matrix
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size is much smaller than that in the radial grid based codes. Therefore, AEGIS-K formalism allows considerably more poloi-
dal Fourier harmonics to be added.

The Jacobian of the equilibrium coordinate system is defined as follows

J ¼ 1
$w" $h & $f

:

We also introduce the equilibrium matrices

G11 ¼ Jð$h" $fÞ & ð$h" $fÞ;
G22 ¼ Jð$f" $wÞ & ð$f" $wÞ;
G33 ¼ Jð$w" $hÞ & ð$w" $hÞ;
G12 ¼ Jð$h" $fÞ & ð$f" $wÞ;
G31 ¼ Jð$w" $hÞ & ð$h" $fÞ;
G23 ¼ Jð$f" $wÞ & ð$w" $hÞ:

Beside these metric parameters the following decomposition of the curvature of the equilibriummagnetic field lines ~j is also
introduced:

~j" B
!
¼ Ks B

!
"~sþ Kw$w" B

!
; ð1Þ

where~s ¼ v0ð$f' q$hÞ.

3. Eigen-value problem

In this section the eigen-value problem is constructed. In difference from the ideal MHD case, the current kinetic problem
is non-Hermitian. The whole system consist of the plasma, inter vacuum, resistive wall, and outer vacuum regions. For sim-
plicity, it is assumed that the wall is thin. We denote respectively the interfaces between the plasma and the inner vacuum
regions, the inner vacuum region and the wall, and the wall and the outer vacuum region as wa;wb', and wbþ. We focus our
attention on the plasma region, where the kinetic effects take place, while briefly outline the vacuum and wall description.

3.1. The matrix description of the plasma region

In this subsection we first give our basic set of equations and then describe the solution of the gyrokinetic equation and
construction of the compressibility part of the pressure tensor. The set of the Euler–Lagrange equations for plasma region
will be given at the end.

3.1.1. The basic set of equations for plasma region
We use our newly developed gyrokinetic formalism in Ref. [19] for constructing our basic set of equations. Having recov-

ered the MHD from this formalism, we are able to study the MHD modes in a non-hybrid manner. We assume the mode
frequency x is larger than the ion diamagnetic drift frequency but smaller than the electron bounce frequency. The basic
set of equations for AEGIS-K code is as follows: the perpendicular momentum equation

'qmx̂2~n ¼ d J
!
" B

!
þ J

!
"d B

!
'$dpc ' $?dpk; ð2Þ

the gyrophase-independent part of the gyrokinetic equation for ion species

vk & $df ' ix̂df ¼ ix̂mq

Ti
lBFg0$? &~nþ ix̂mq

Ti
ðlB' v2

k ÞFg0~j &~n' ix̂ Zei
Ti

Fg0du; ð3Þ

and the quasineutrality condition

du ¼ ' 1
1þ Zs

Te

Zei
1
n0

Z
d3vdf : ð4Þ

Here, ~n is the perpendicular field line displacement, dpc ¼ '~n & $P; dpk ¼
R
d3vðmqlBÞdf , P represents the equilibrium pres-

sure, qm is the mass density,mq denotes the mass, ei is the ion charge, Z is the charge number, n0 is the ion density, B
!
denotes

the equilibrium magnetic field, d B
!
¼ $"~n" B

!
; d J

!
¼ $" d B

!
, v is the ion speed, l ¼ v2

?=2B is the magnetic moment, T rep-
resents the temperature, s ¼ Ti=Te with subscripts i and e represents respectively the ion and electron species. ~j represents
the field line curvature, du specifies the parallel electric field effect, df denotes the gyrophase averaged distribution function
for ion species, Fg0 is the Maxwellian distribution function, and the subscripts \ and k represent respectively the perpendic-
ular and the parallel components to the equilibrium magnetic field line. Due to the assumption that the mode frequency is
lower than the electron bounce frequency, we can assume that the electron response to be adiabatic. We denote the particle
energy with E and the pitch angle with k ¼ l=E.
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We assume rotation frequency X to be modestly low, i.e., much smaller than the parallel ion acoustic frequency but larger
than the ion diamagnetic drift frequency. By assuming that the rotation frequency is larger than the ion diamagnetic drift
frequency, we can avoid to treat the finite Larmor radius effects, especially the resonance effects with the ion precessional
drift [17]. We consider only the case with rotation frequency smaller than the parallel ion acoustic frequency, since it is more
interesting for ITER. Consequently, we can include the rotation effects simply by introducing the Doppler shift: i.e., by replac-
ing the mode frequencyx (or growth rate c) with x̂ ¼ iĉ ( xþ nX in Eqs. (2)–(4), where n is the toroidal mode number. The
particle drift effects due to the centrifugal and Coriolis forces are negligible in this case.

Our representation of perturbed magnetic field d B
!
¼ $"~n" B

!
is MHD-like. It holds only for plasmas without resistivity.

In Ref. [19], we have proposed an alternative representation d B
!
¼ g$"~f"r/ that can avoid this limitation. However, in

order to make apparent the eigen-function benchmark with existing ideal MHD codes, we have used MHD-like representa-
tion in our current work.

In our set of equations the wave-particle resonances, the shear Alfvén continuum damping, the trapped particle effect,
and the parallel electric effects are all taken into account, while the FLR effects are dropped in our current effort. Even in this
limit our starting equations are different from those of the conventional drift kinetic formalism. In the conventional deriva-
tion of the drift kinetic equation, the coupling between the gyrophase-averaged part and the gyrophase-dependent part of
the gyrokinetic distribution function through the term _a1@df=@a has not been taken into account. Here, df is the distribution
function and a is the gyrophase, with the subscript ‘‘1” denoting the first-order and the dot representing the time derivative
along the unperturbed particle orbit. Actually, only if this coupling is taken into account, the parallel MHD equation of mo-
tion can be retrieved in the proper limit. This coupling can be, alternatively, taken into account by including a1 into the gen-
eralized gyrophase definition.

We have not considered the precessional drift resonance either, since we note that considering the resonance alone is
insufficient for ordering consistency. Since hxdi=x)i * a=R, inclusion of the hxdi effect also needs to take into account the
x)i effect (i.e., k

2
?q2

i effects) for consistency. Here, hxdi is the processional drift frequency, x)i is the ion diamagnetic drift
frequency, k? represents the perpendicular wave number, and qi is the ion gyro radius. Due to this complexity, we postpone
this part of the work to the future studies.

Here, let us also outline the decompositions for the perturbations. The magnetic field line displacement is decomposed as
follows [6]

~n" B
!
¼ ns$wþ nwv0ð$f' q$hÞ: ð5Þ

Since we deal with the linear problem, the Fourier transform method can be used to decompose the perturbed quantities in
the poloidal and toroidal directions, for example

n expf'infg ¼
X1

m¼'1
nm

1ffiffiffiffiffiffiffi
2p

p expfiðmh' nfÞg; ð6Þ

with

nm ¼
Z p

'p
dhn

1ffiffiffiffiffiffiffi
2p

p expf'imhg:

With the toroidal symmetry assumed, only a single toroidal Fourier component needs to be considered. As usual, the equi-
librium quantities can be decomposed as the matrices in the poloidal Fourier space, for example

J mm0 ¼ 1
2p

Z p

'p
dhJðhÞeiðm'm0 Þh:

In the poloidal Fourier decomposition, the Fourier components are cut off both from the lower and upper sides respectively
by mmin and mmax. Therefore, the total Fourier component under consideration is M ¼ mmax 'mmin þ 1. We use the bold face
(or alternatively [[& & &]]) to represent the vector (e.g., n) and the calligraphic capital letters (or alternatively h& & &i) to represent
the corresponding equilibrium matrices (e.g., J for J) in the poloidal Fourier space.

3.1.2. Solution of the gyrokinetic equation
In this sub-subsection we describe the solution of the gyrokinetic equation. Using the decompositions in Eqs. (1) and (5),

the gyrokinetic equation in Eq. (3) is reduced to

rk
ffiffiffi
2

p ffiffiffi
E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p v0

J B
@

@h
df ' inrk

ffiffiffi
2

p
q

ffiffiffi
E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p v0

J B
df ' iðxþ nXÞdf

¼ iðxþ nXÞ
mqE
Ti

Fg0ðRsns þ R1n
0
w þ R0nwÞ þ

Zs
1þ Zs Fg0Rudu

" #
; ð7Þ

where Rs ¼ iRe
s þ Ro

s ;R0 ¼ 'iRo
0 þ Re

0, and
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Re
s ¼

v0

J B2 ½nðG22 þ qG23Þ þ ðG23 þ qG33Þm,kB;

Ro
s ¼ KsðkB' 2Þ;

R1 ¼ v02

J B2 ½ðG22 þ qG23Þ þ qðG23 þ qG33Þ,kB;

Re
0 ¼ v0

J B2 v00ðG22 þ qG23Þ þ ðqv0Þ0ðG23 þ qG33Þ
$ %

þ l0P
0

B2

" #
kBþ KwðkB' 2Þ;

Ro
0 ¼ v02

J B2 ðG12 þ qG31Þðm' nqÞ:

Here, rk represents the sign of the parallel velocity. Note that the electric potential du depends on the distribution function
df . Eq. (7) is actually an integro-differential equation.

To solve the gyrokinetic Eq. (7), one needs to specify the boundary condition for trapped particles. The conventional con-
dition for trapped particles is that f ðrk > 0Þ ¼ f ðrk < 0Þ at the turning points, i.e., the reflection symmetry: the trapped par-
ticles approaching to the turning points equal to those leaving from the points. To establish an unified treatment for
circulating and trapped particles, we consider the period boundary condition for a trapped particle along its complete
banana orbit, which can be proved to be equivalent to the conventional boundary condition.

We introduce the following coordinate transform both for circulating and trapped particles:

ĥðk; hÞ ¼ 2p
scv0

Z h

0

J Bdhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p ;

where the range of ĥ is from 0 to 2p. The bounce time sc is defined differently for circulating particles

scðkÞ ¼ 2
1
v0

Z p

0

J Bdhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p ;

and for trapped particles

scðkÞ ¼ 4
1
v0

Z ht

0

J Bdhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p :

In order to use directly the plasma dispersion function (Z-function) for energy integration in the moment calculations, we
introduce the transform

df ¼ df̂ einqðh'ĥÞ:

Therefore, the gyrokinetic equation Eq. (7) becomes

rk2
ffiffiffi
2

p
p 1
sc

ffiffiffi
E

p @df̂
@ĥ

' irk2
ffiffiffi
2

p
pnq 1

sc
ffiffiffi
E

p
df̂ ' iðxþ nXÞdf̂

¼ iðxþ nXÞe'inqðh'ĥÞ mqE
Ti

Fg0ðRsns þ R1n
0
w þ R0nwÞ þ

Zs
1þ Zs Fg0Rudu

& '
: ð8Þ

To solve the gyrokinetic Eq. (8), we decompose the distribution function into the ĥ space Fourier series:

df̂ ¼ 1ffiffiffiffiffiffiffi
2p

p
Xþ1

'1
df̂ m̂ expfim̂ĥg: ð9Þ

Using transforms for df̂ in Eq. (9) and for ~n in Eq. (6), the gyrokinetic equation in (8) can be formally solved

df̂ m̂ ¼ ðxþ nXÞ
X

m

mq

Ti
ðRs;m̂mns;m þ R1;m̂mn

0
w;m þ R0;m̂mnw;mÞ "

EFg0

rk2
ffiffiffi
2

p
p 1

sc

ffiffiffi
E

p
ðm̂' nqÞ ' ðxþ nXÞ

(

þ Zs
1þ ZsRu;m̂mdum

Fg0

rk2
ffiffiffi
2

p
p 1

sc

ffiffiffi
E

p
ðm̂' nqÞ ' ðxþ nXÞ

)
; ð10Þ

where for circulating particles
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Rs;m̂mðkÞ ¼ i
1
p

Z p

0
dĥfRe

s cos½ðm' nqÞh' ðm̂' nqÞĥ, þ Ro
s sin½ðm' nqÞh' ðm̂' nqÞĥ,g;

R1;m̂mðkÞ ¼
1
p

Z p

0
dĥR1 cos½ðm' nqÞh' ðm̂' nqÞĥ,;

R0;m̂mðkÞ ¼
1
p

Z p

0
dĥfRe

0 cos½ðm' nqÞh' ðm̂' nqÞĥ, þ Ro
0 sin½ðm' nqÞh' ðm̂' nqÞĥ,g;

Ru;m̂mðkÞ ¼
1
p

Z p

0
dĥ cos½ðm' nqÞh' ðm̂' nqÞĥ,;

and for trapped particles

Rs;m̂mðkÞ ¼ i
2
p

Z p=2

0
dĥfRe

s cos½ðm' nqÞh' ðm̂' nqÞĥ, þ Ro
s sin½ðm' nqÞh' ðm̂' nqÞĥ,g;

R1;m̂mðkÞ ¼
2
p

Z p=2

0
dĥR1 cos½ðm' nqÞh' ðm̂' nqÞĥ,;

R0;m̂mðkÞ ¼
2
p

Z p=2

0
dĥfRe

0 cos½ðm' nqÞh' ðm̂' nqÞĥ, þ Ro
0 sin½ðm' nqÞh' ðm̂' nqÞĥ,g;

Ru;m̂mðkÞ ¼
2
p

Z p=2

0
dĥ cos½ðm' nqÞh' ðm̂' nqÞĥ,:

3.1.3. Pressure moment and quasineutrality condition
In this sub-subsection, we construct pressure and density moments using the solution of the gyrokinetic equation ob-

tained in the last sub-subsection. Using the energy and pitch angle as variables, the perturbed kinetic pressure can be ex-
pressed as

dpk ¼ 2
ffiffiffi
2

p
pmqB2

Z
dkdEffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p E3=2k
dfþ þ df'

2
:

Here, the subscript + and ' represent the sign of the parallel velocity for circulating particles. For trapped particles, however,
+ represents the counter-clockwise orbits, while – clockwise ones. Introducing Fourier decomposition in Eq. (6), we obtain
the vector equation in the Fourier space for kinetic pressure:

fdpkgm0 ¼ n0Ti
1ffiffiffiffiffiffiffi
2p

p
Z 2p

0
dhB2e'im0h

Z 1=B

0
dk

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p 2
ffiffiffi
2

p
p

n0

mq

Ti

Z 1

0
dEE3=2 dfþ þ df'

2
:

Inserting the solution of the gyrokinetic equation Eq. (10), one obtains

dpk ¼ n0TiðPsns þ P1n
0
w þ P0nw þ PuduÞ; ð11Þ

where the elements of pressure response matrices are given as follows

Pðs;1;0Þ;m0m ¼
ffiffiffiffi
2
p

r Z p

0
dhB2

Z 1=B

0
dk

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p
X

m̂

Rðs;1;0Þ;m̂;mðkÞ cos½ðm̂' nqÞĥ' ðm0 ' nqÞh,g3ðfðscðkÞ; m̂ÞÞ;

Pu;m0m ¼ Zs
1þ Zs

ffiffiffiffi
2
p

r Z p

0
dhB2

Z 1=B

0
dk

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p
X

m̂

Ru;m̂;mðkÞ cos½ðm̂' nqÞĥ' ðm0 ' nqÞh,g2ðfðscðkÞ; m̂ÞÞ;

with

gk ¼ fZkðfÞ;

ZkðfÞ ¼
fffiffiffiffi
p

p
Z 1

0
dE

Ek'1=2

E' f2
e'E;

f ¼ 1ffiffiffiffiffi
b0

p
R0q0

x̂N

2pðm̂' nqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti=Ti0

p
=sc

:

ð12Þ

Here, k is integer, b represents the ratio of plasma to magnetic energies, R is the major radius, the subscript 0 denotes being at
the magnetic axis, and the subscript N for frequency or growth rate denotes the normalization by the Alfvén frequency at the
magnetic axis 1=sA. Note that with Z0 is just the usual plasma Z-function [21].

Similarly, we can express the Fourier component of the perturbed electrostatic potential in the quasineutrality condition
Eq. (4) as follows

dum ¼ 1ffiffiffiffiffiffiffi
2p

p
Z p

'p
dhBe'im0h

Z 1=B

0
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p 2
ffiffiffi
2

p
p

n0

Z 1

0
dEE1=2 dfþ þ df'

2
:
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Inserting the solution of the gyrokinetic equation Eq. (10), one obtains

du ¼ Esns þ E1n
0
w þ E0nw þ Eudu; ð13Þ

where the matrix elements are given as follows

Eðs;1;0Þ;m0m ¼
ffiffiffiffi
2
p

r Z p

0
dhB

Z 1=B

0
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p
X

m̂

Rðs;1;0Þ;m̂;mðkÞ cos½ðm̂' nqÞĥ' ðm0 ' nqÞh,f2ðfðscðkÞ; m̂ÞÞ;

Eu;m0m ¼ Zs
1þ Zs

ffiffiffiffi
2
p

r Z p

0
dhB

Z 1=B

0
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' kB

p
X

m̂

Ru;m̂;mðkÞ cos½ðm̂' nqÞĥ' ðm0 ' nqÞh,f1ðfðscðkÞ; m̂ÞÞ;

We can solve du in Eq. (13), yielding

du ¼ E'1
u Esns þ E'1

u E1n
0
w þ E'1

u E0nw;

where E ¼ I ' E and I is the unitary matrix. Inserting this solution into Eq. (11), we finally get the kinetic-effect-induced
pressure moment:

dpk ¼ n0Ti½ðPs þ PuE'1
u EsÞns þ ðP1 þ PuE'1

u E1Þn0w þ ðP0 þ PuE'1
u E0Þnw,: ð14Þ

3.1.4. Euler–Lagrange equations for plasma region
The pressure moment constructed in the last sub-subsection can be used to derive the Euler–Lagrange equations in the

plasma region by reducing the perpendicular momentum Eq. (2). We first insert the kinetic-effect-induced pressure moment
in Eq. (14) into Eq. (2), project the resulting equation respectively onto two directions J2$h" $f & B

!
"½& & & " B

!
,=B2 and

ð1=qv0ÞJ2$f" $w & B
!
"½& & & " B

!
,=B2, and then introduce the Fourier transformation in Eq. (6) to the two projected equations.

These procedures lead to the following two sets of differential equations in matrices

ðBLns þDn0w þ EnwÞ
0 ' ðCLns þ ELn0w þHnwÞ ¼ 0; ð15Þ

Ans þ Bn0w þ Cnw ¼ 0; ð16Þ

where the equilibrium matrices (A;B, etc.) are given in Appendix A.
The structure of the set of differential Eqs. (15) and (16) is same as the ideal MHD one, except the matrices becomes com-

plex and non-conjugate. The procedure in MHD AEGIS code can be extended to solve this set of equations. We can reduce this
set of equations into the set of the first-order differential equations as in the DCON formalism [6]. By solving Eq. (16), we
obtain

ns ¼ 'A'1Bn0w 'A'1Cnw:

Inserting this solution into Eq. (15), we get

d
dw

ðFn0 þ KnÞ ' ðKLn0 þ GnÞ ¼ 0; ð17Þ

where

F ¼ D' ByA'1B;
K ¼ E ' BLA'1C;
KL ¼ EL ' CLA'1B;
G ¼ H' CLA'1C:

These matrices can be further simplified, as detailed in Appendix B.

Introducing the expanded 2M unknowns u ¼ n
u2

( )
, where u2 ¼ Fn0 þ Kn, Eq. (17) is reduced to the set of 2M first-order

equations

u0 ¼ Lu; ð18Þ

where 2M " 2M matrix

L ¼ 'F'1K F'1

G 'K LF'1K KLF'1

 !
:

We note that n and u2 in the plasma region are related to the magnetic field and pressure as follows
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½½J$w & d B
!
,, ¼ iQn;

' ½½J ðB
!
&d B

!
' n

!
&$PÞ,, ¼ u2:

The set of the eigen mode equations in Eq. (18) can be solved by means of the independent solution method as described in
Ref. [7]. With M boundary conditions imposed at the magnetic axis, there remain only M independent solutions:

Np

W2

( )
( n1; & & & ; nM

u1
2; & & & ; uM

2

 !

;

where the superscripts are used to label the independent solutions. As the ideal MHD case [7], we use the cylinder limit to
describe the boundary condition at the magnetic axis, i.e., nw;m / rm. The general solution can be then obtained as a combi-
nation of the M independent solutions,

n

u2

( )
¼ i

Np

Wp

( )
cp; ð19Þ

where cp is a constant vector with M elements. Without loss of generality (by defining cp ¼ N'1
p cnewp and Wnew

p ¼ WpN'1
p ), we

can set Np to be unity I . Therefore, we have

½½J$w & d B
!
,, ¼ 'Qcp; ð20Þ

' ½½J ðB
!
&d B

!
' n

!
&$PÞ,, ¼ iWpcp: ð21Þ

3.2. The solution of the vacuum region

For completeness, in this subsection we briefly review the vacuum solutions in Ref. [7]. The vacuum regions are described
by the Laplace equation

$2u ¼ 0; ð22Þ

where u is the magnetic scalar potential and is related to the perturbed magnetic field by d B
!
¼ '$u. Here, we note that this

representation of vacuum magnetic field, although being simple, excludes the consideration of n ¼ 0 modes. To study n ¼ 0
modes, one more scalar is needed to represent the vacuum magnetic field [20]. For the sake of conciseness, we outline the
general solutions for the inner and outer vacuum regions simultaneously.

As in the plasma region, Fourier decompositions are introduced for both poloidal and toroidal directions to solve Eq. (22).
Then Eq. (22) becomes a set of second-order differential equations of number M for u. This set of second-order differential
equations can be transformed into a set of first-order differential equations of number 2M, by introducing a new field
v ¼ '½½J$w & d B

!
,,, which is related to the magnetic scalar potential in Fourier space as follows:

v ¼ hJ j$wj2i @u
@w

þ hiJ$w & $hiMu:

There are 2M independent solutions for Eq. (22), which can be used to construct the following independent solution
matrices:

U1

V1

( )
(

u1; . . . ;uM

v1; . . . ;vM

 !

;

U2

V2

( )
(

uMþ1; . . . ;u2M

vMþ1; . . . ;v2M

 !
:

The general solutions in the vacuum regions can be expressed as a linear combination of the independent solutions:

u
v

( )
¼

U1

V1

( )
cv þ

U2

V2

( )
dv ; ð23Þ

where cv and dv are constant vectors in the independent solution space. To distinguish the inner and outer vacuum solutions,
we let cv1 and dv1 denote the constants for the inner vacuum region and cv2 and dv2 for the outer vacuum region.

In the outer vacuum region, the scalar potential u is subjected to M boundary conditions at infinite w. With these M
boundary conditions imposed, there are only M independent solutions left. Without loss of generality, we can set cv2 to
be zero in this case. Consequently, eliminating dv2 in Eq. (23), we obtain

ujwbþ
¼ T vjwbþ

;

where theM "M matrix T is given by T ¼ U2V'1
2 jwbþ

. The matrix T can be computed by means of the Green function method
[23].
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In the inner vacuum region, the independent solutions can be constructed, for example, with the use of an inward numer-
ical shooting [7], with the following boundary conditions imposed at wb':

U1

V1

( )

wb'

¼
I
O

( )
; ð24Þ

U2

V2

( )

wb'

¼
T
I

( )
; ð25Þ

where O is the M "M zero matrix. Since the boundary conditions in Eq. (24) give d B
!
&$w ¼ 0 at the wall, these conditions

correspond to a set of solutions that corresponds to the perfectly conducting wall type. On the other hand, since the bound-
ary conditions in Eq. (25) guarantee that the independent solutions to be continuous with the outer vacuum solutions, these
conditions correspond to a set of solutions that corresponds to the no-wall type. Using the general expression for the solu-
tions in Eq. (23), we can express the normal and parallel magnetic fields at the plasma-vacuum interface as follows:

½½J$w & d B
!
,, ¼ 'V1cv1 ' V2dv1; ð26Þ

' ½½J B
!
&d B

!
,, ¼ iQðU1cv1 þ U2dv1Þ: ð27Þ

3.3. Eigen-value problem

The solutions in the plasma and vacuum regions described in the last two subsections can be used to construct the eigen-
value problem as in the ideal MHD case in Ref. [7]. The normal magnetic field component and the combined magnetic and
thermal pressures are required to be continuous at the plasma-vacuum interface. Matching the plasma [Eqs. (20) and (21)]
and the vacuum [Eqs. (26) and (27)] solutions at the interface wa gives

dv1 ¼ F'1
1 dWbdW'1

1 F 2cv1; ð28Þ

where dW1 ¼ Wp 'Q½U2V'1
2 ,wa

Q; dWb ¼ Wp 'Q½U1V'1
1 ,wa

Q;F 1 ¼ Q½U2 ' U1V'1
1 V2,wa

, and F 2 ¼ Q½U1 ' U2V'1
2 V1,wa

. Note that
dW1 and dWb correspond to the energy matrices without a wall and with a perfectly conducting wall at wb, respectively, as
can be seen from the boundary conditions in Eqs. (24) and (25).

We now consider the matching across the thin resistive wall. For the radial magnetic field, the Maxwell equation
$ & d B

!
¼ 0 and the thin wall assumption lead to

vjwb'
¼ vjwbþ

¼ dv1: ð29Þ

The current in the resistive wall causes a jump in the scalar magnetic potential. This can be obtained from the Ampére law

$" $" d B
!
¼ 'cl0rd B

!
; ð30Þ

where r is the wall conductivity. Eq. (30) can be reduced to

Vðujwbþ
' ujwb'

Þ ¼ swcNdv1; ð31Þ

where sw ¼ l0rdb=sA, d is the wall thickness, b is the average wall minor radius, and

V ¼ MhJ j$wk$hj ' J j$w & $hj2=ðj$wk$hjÞiMþ n2hJ j$/j2j$wj=j$hji:

Since cv2 ¼ 0, we find that Eqs. (23)–(25) yield

ujwbþ
' ujwb'

¼ 'cv1: ð32Þ

From Eqs. (28), (31), and (32) we find the eigen mode equations

D0ðcNÞdv1 ( swcNdv1 þ VF'1
2 dW1dW'1

b F 1dv1 ¼ O:

The dispersion relation for this eigen-value problem is given by the determinant equation det jD0ðcNÞj ¼ 0. In general the
Nyquist diagram can be used to determine the roots of this dispersion relation. For RWMs, however, the growth rate is much
smaller than the Alfvén frequency. Therefore, the growth rate dependence of dW1dW'1

b can be neglected for determining the
stability condition. Consequently, one can use the reduced eigen-value problem

'VF'1
2 dW1dW'1

b F 1dv1 ¼ swcNdv1; ð33Þ

with the RWMmode growth rate cN on the right hand side of this equation used as the eigen-value to determine the stability.
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4. Numerical results

In this section we will describe the numerical work to implement the theoretical formalism described in the previous sec-
tion. Note that the vacuum and wall parts are basically the same as the ideal MHD case as described in Ref. [7], except the
complex nature in the kinetic description. We therefore focus ourselves on describing the plasma region. We have used the
NAG mathematics library to build our code.

Fig. 1. The real (a) and imaginary (b) parts of the function g3ðfÞ as defined in Eq. (12) for real argument f.
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We first describe the computation of the kinetic matrices. The kinetic effects reside in the following matrices:
Ak;Ak ' iðn=v0ÞBk;Ak þ iðn=v0ÞBL

k; Ck; CL
k; ½Ak þ iðn=v0ÞBL

k, þ ðn2=v02Þ½Dk ' iðn=v0ÞBk,; Ek ' iðn=v0ÞCk; EL
k þ iðn=v0ÞCL

k, and Hk. To
determine these matrices, one needs to compute the ion pressure moment matrices: Ps;Ps1;P0, and the density moment
matrices: Es; Es1; E0. In the previous section, we have shown that the energy integration can be dissociated and expressed

Fig. 2. The real (a) and imaginary (b) parts of the unstable RWM eigen mode as computed by the AEGIS-K code for ITER advanced scenario. The Hamada
coordinates are employed for poloidal coordinate in this plot.
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as the generalized Z-function gkðfÞ ðk ¼ 1;2;3Þ in these kinetic moment matrices. Note that the function gk is related to the
plasma dispersion function and therefore can be bench marked. We compute gk by using our Z-function code. Fig. 1(a) and
(b) give, respectively the real and imaginary parts of g3ðfÞ. As a benchmark, our double precision Z-function code is found to
reproduce the 8 digit results in the Z-function table in Ref. [21]. Note that the wave-particle resonance effect is contained in
gk, our procedure can secure the accuracy in computing the wave-particle resonance effect. In our code, the values of the
functions gkðfÞðk ¼ 1;2;3Þ are tabulated and splined. This reduces the dimension of the integrations in computing the kinetic
moment matrices.

Next, let us discuss the solution of the Euler–Lagrange Eq. (18). Due to our newly developed gyrokinetic formalism in Ref.
[19] employed, the structure of the Euler–Lagrange Eq. (18) appears fluid-kinetic-hybrid-like, although our underlying for-
malism is fully kinetic. Therefore, we can extend the numerical scheme developed for MHD AEGIS code [7] to obtain the gen-
eral solution for Eq. (18). We suppose the kinetic matrices are known in describing the solution. In Eq. (18) the Fourier
decomposition has been performed in the poloidal direction. In the radial direction we solve for the general solution by using
the decomposition based on the independent solutions in Eq. (19) and use the adaptive shooting scheme for independent
solutions. The key difficulty to obtain the independent solutions lies in that each independent solution contains both the
so-called large and small solutions at the mode resonance surfaces. If shooting directly from the magnetic axis to the plasma
edge, the overall independent solutions are numerically polluted. To suppress the numerical pollution and get a better ma-
trix condition, we employ a multiple region matching technique to get the overall independent solutions, as in the MHD AE-
GIS code. Indeed, we find that our numerical scheme combining the adaptive shooting and multiple region matching works
also well for the current non-Hermitian problem.

Note that the kinetic eigen-value problem is complex and non-Hermitian. In generalizing the ideal MHD shooting proce-
dure for real independent solutions in AEGIS code [19] to the current one for complex independent solutions, we make the
real and imaginary parts to be balanced. This is achieved by setting the boundary conditions at the magnetic axis to be the
same for real and imaginary parts, i.e., nw;m / rm þ irm. This gives an opportunity to check the expansion from the original real
formalism in MHD AEGIS code to the current complex problem in AEGIS-K code. Indeed, in the ideal MHD limit our AEGIS-K
code yields the identical real and imaginary parts of the eigen functions which are both the same as that computed by AEGIS.
We have also checked the fluid part of the AEGIS-K code with the case of pure continuum damping in the incompressible
limit in Ref. [12]. An agreement is also found. This is because AEGIS-K code uses the same numerical formalism as that in
Ref. [12]. From Appendix B one can see that, if the kinetic matrices (Ak;Bk, etc) are set to zero, AEGIS-K code becomes iden-
tical to the code used in Ref. [12].

AEGIS-K code can be used to study kinetic effects on various modes, for example resistive wall modes, peeling-ballooning
modes, etc. Its application to resistive wall modes in ITER advanced scenario has been described in details in Ref. [14]. Here,
we focus ourselves on discussing the numerical aspect of the application of AEGIS-K code. As Ref. [14], we consider an ITER
advanced tokamak configuration and the n ¼ 1 resistive wall modes. The numerical equilibrium is generated by the TOQ

Fig. 3. Three dimensional re-plot of Fig. 2a, with the poloidal Fourier components displayed separately.
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code. A typical equilibrium parameters are as follows: the normalized beta bN ¼ 3:4; q0 ¼ 2:76; qa ¼ 5:39; qmin ¼
2:17; q95 ¼ 4:22, elongation ja ¼ 1:74, and triangularity da ¼ 0:48. Here, q0; qa; qmin, and q95 are respectively the safety factor
values at the magnetic axis, the plasma edge, the q minimum, and the 95% radial flux surface. We consider the conformal
wall with the wall position b ¼ 1:5 normalized by the plasma minor radius. As discussed in the last section, for the RWM
problem, the reduced eigen-value problem in Eq. (33) can be used to study the stability. The the real and imaginary parts
of the eigen function for the normalized rotation frequency X ¼ 0:005 (normalized by the Alfvén frequency at magnetic axis

Fig. 4. The re-plots of Fig. 2 in the PEST coordinates and with redefined real ½ðnr þ niÞ=2, and imaginary ½ðni ' nrÞ=2, parts.
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VA=Rq) are plotted in Fig. 2(a) and (b), in which the Hamada coordinates are employed. The eigen-value for this case is
swcN ¼ 10:08. Fig. 3 is the three dimensional plot of Fig. 2(a), with the poloidal Fourier components displayed separately.
As shown in Fig. 3 a good poloidal convergency can be achieved generally by about 20 poloidal Fourier components for
n ¼ 1 modes. It is found that for even smaller rotation frequency, the eigen function becomes closer to that of purely con-
tinuum damping case [12]. This is because the strength of the wave-particle resonance effect depends on the number of the
resonance particles. The smaller the rotation frequency, the less the number of the resonance particles.

Fig. 5. The ideal MHD eigen mode for same equilibrium and coordinate system as Fig. 4a as computed by AEGIS.

Fig. 6. RWM growth rate swcN versus normalized rotation frequency X with beta normal bN as parameters.
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To compare with the ideal MHD case, we transform Fig. 2(a) and (b) from the Hamada coordinates to the PEST coor-
dinates and multiply the eigen function with a normalization constant ð1' iÞ=2 (which corresponds to the boundary con-
ditions at the magnetic axis: nw;m / rm þ i0). The transformed results are plotted in Fig. 4(a) and (b). When kinetic and
Alfvén resonances are removed, the solution becomes completely real. Therefore, the curves Fig. 4(b) are just reduced
to zero and those in Fig. 4(a) becomes exactly the MHD eigen function in Fig. 5 as computed by AEGIS or GATO codes.
With the kinetic resonance taken into account, the modulation due to gk at each side of the mode rational surfaces appears
in the eigen functions. We have also checked our formalism and code for recovering the MHD apparent mass effect in the
large aspect ratio limit. In this limit, the perpendicular inertia is given by the term ĉ2NAk in F , which equals to ĉ2Nð1=Rq

2
0Þ in

the large aspect ratio limit. The apparent mass term is present in the term ½Ak þ iðn=v0ÞBL
k, þ ðn2=v02Þ½Dk ' iðn=v0ÞBk, also in

F . In the large aspect ratio limit, ½Dk ' iðn=v0ÞBk, becomes negligibly small and the reminding term is as follows
Ac þ iðn=v0ÞBL

c ¼ ð4=3Þĉ2Nð1=Rq
2
0Þ2q2:This gives exactly the MHD apparent mass term, except the factor 4/3. As proved in

Ref. [7], this factor results from the collisionless description in the parallel direction in the AEGIS-K code, as compared
with the MHD adiabatic assumption.

As shown in Ref. [14], AEGIS-K computation predicts that the resistive wall modes in ITER advanced scenario can be sta-
bilized by a modestly low rotation. Fig. 6 shows the further details about the rotation stabilization of resistive wall modes in
ITER advanced scenario as given in Ref. [14]. In Fig. 6, the normalized RWM growth rates are plotted versus the normalized
rotation frequency. Three different values (3.2, 3.4, and 3.6) of beta normal are given in Fig. 6. The beta normal values for no
wall and for perfectly conducting wall are respectively 2.95 and 3.84. From Fig. 6, one can see that the RWM growth rate
initially increases with the rotation frequency when rotation frequency is small, but later decreases when rotation frequency
is sufficiently large. Fig. 6 also shows that RWMs in ITER advanced scenario can be fully stabilized by modestly low rotation.
The higher the beta normal, the lower the rotation frequency required for full stabilization. Here, we note that AEGIS-K code
in its current version has not taken into account the finite Larmor radius effects, especially those related to the resonances
with ion precessional drift [17]. Therefore, the low rotation results in Fig. 6 requires to include more subtle physics. But, the
results with modestly low rotation (larger than ion diamagnetic frequency), predicted for full stabilization of resistive wall
modes, are unaffected [14].

Currently, we have run AEGIS-K code at IBM p575 POWER 5 computer system BASSI at National Energy Research Scien-
tific Computing Center, which is composed of 1.9 GHz POWER 5 processors. For determining a RWM eigen mode for ITER
type of configuration with up-down symmetry, it takes about 20 h with single processor. Most of computing time spent
in AEGIS-K is used to compute kinetic matrices (Ak, etc.) at about 800 radial grid points packed at the rational surfaces.
We believe further optimization of the code is possible.

5. Conclusions and discussion

In this paper we describe the AEGIS-K code and its numerical scheme for computing the tokamak stability in the kinetic
formalism. Our work improves the global numerical computation of the kinetic effects on the MHD modes both from the
underlying theoretical formalism and the numerical scheme.

In the theoretical formulation we are able to avoid the hybrid formulation and the perturbative method, used widely in
this field. This attributes to that the AEGIS-K formalism is based on our newly developed gyrokinetic theory in Ref. [19].
One of the important features of our newly developed gyrokinetics lies in the recovery of the full MHD in the proper limit.
By exploiting this feature, our AEGIS-K code is constructed as a fully kinetic code and nevertheless with a hybrid appear-
ance. This makes our kinetic investigation of the global MHD modes to have kept the MHD root. This is not trivial. Very
easily a fully kinetic or nonhybdrid computation of the MHD modes ends up with losing MHD trace, so that it is hardly to
tell the correctness of the numerical results. The vigor of the MHD trace lies in that it reflects the particle localization by
the strong magnetic field. In the AEGIS-K code we have taken into account the following non-MHD effects: (1) the cou-
pling of kinetic resonances with the continuum damping, (2) the parallel electric effects, and (3) the trapped particle ef-
fects. Our procedure is based on the self-consistent investigation of the eigen value problem, instead of the perturbative
method.

In the numerical scheme we are able to compute the kinetic effects on the MHD modes with an adaptive numerical
scheme. This is important since there is coupling between the Alfvén continuum damping and kinetic resonances. High
resolution computation is required to resolve this coupling. We extend the adaptive shooting scheme in the AEGIS
code for real MHD stability problem to treat the current complex and non-Hermitian kinetic stability problem in
the AEGIS-K code. We develop a numerical scheme based on the independent solution method to solve the integro-
differential gyrokinetic equation, in which the parallel electric field effect included. In computing the kinetic resonance
effect, we develop a coordinate transform so that the Z-function can used directly to compute the pressure moment.
This assures the computation accuracy of the wave-particle resonance effects and also speeds up the computing time.
In the treatment of the trapped particle effect we introduce the periodic boundary condition around the banana
orbit. This unifies the treatment of the circulating and trapped particles. In general the Nyquist diagram is needed
to determine the stability. However, in the RWM case a simplified eigen-value problem can be developed. As a show-
case of the AEGIS-K code application, we present our calculation for the kinetic effects on RWMs in the ITER advanced
tokamak scenario.
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Our AEGIS-K code is an useful tool for studying the tokamak global stabilities with kinetic effects included, for example
RWMs [14]. The applicable frequency domain of the AEGIS-K code lies in between the ion diamagnetic drift and the electron
transit frequencies. As AEGIS-K code keeps the main feature of the AEGIS, it can be used to study both low and medium high
n modes. In our current effort the FLR effects have not been included, especially the precessional drift resonance effect [13].
We propose it as a future research.
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Appendix A. Definitions of the matrices in Eqs. (15) and (16)

The equilibrium matrices in Euler–Lagrange equations, Eqs. (15) and (16), are consist of three parts: the MHD part (de-
noted by subscript ‘‘f”, which is DCON-like [6]), the inertia part (denoted by subscript ‘‘i”), and the kinetic part (denoted by
subscript ‘‘k”), for example

A ¼A f þ ĉ2NAi þAk:

Here, the MHD matrices are given as follows

Af ¼ nðnG22 þ G23MÞþMðnG23 þ G33MÞ;
Bf ¼ 'iv0 ½nðG22 þ qG23Þ þMðG23 þ qG33Þ,;
Cf ¼ 'i½v00ðnG22 þMG23Þ þ ðqv0Þ0ðnG23 þMG33Þ, ' v0ðnG12 þMG31ÞQ þ iðg0Q ' l0nP

0J =v0Þ;
Df ¼ v02½ðG22 þ qG23Þ þ qðG23 þ qG33Þ,;
Ef ¼ v0 ½v00ðG22 þ qG23Þ þ ðqv0Þ0ðG23 þ qG33Þ, ' iv02ðG12 þ qG31ÞQ þ l0P

0J ;

Hf ¼ v00 ½v00G22 þ ðqv0Þ0G23, þ ðqv0Þ0 ½v00G23 þ ðqv0Þ0G33, þ iv0 ½v00ðMG12 ' G12MÞþ ðqv0Þ0ðMG31 ' G31MÞ,
þ v02QG11Qþ l0P

0v00J =v0 þ l0P
0J 0 ' g0q0v0I ;

where Mmm0 ¼ mImm0 and Qmm0 ¼ ðm' nqÞImm0 . The perpendicular inertia matrices are as follows

Ai ¼
B2
0

X2
0q2

0

J qN

B2 j$wj
2

* +
;

Ci ¼
B2
0

X2
0q2

0

v0J qN

B2 ð$w & $f' q$w & $hÞ
* +

;

Hi ¼
B2
0

X2
0q2

0

v02J qN

B2 ðj$fj
2 þ q2j$hj2 ' 2$h & $fÞ

* +
;

where qN is the dimensionless mass density normalized by the mass density at the magnetic axis. The kinetic matrices are as
follows

Ak ¼ il0n0Ti
1
q

1
v0 hJ iM' v0 1

B2 ðG22 þ qG23ÞiQ
* '& *

Ps þ PuE'1
u Esi;

Bk ¼ il0n0Ti
1
q

1
v0 hJ iM' v0 1

B2 ðG22 þ qG23Þ
* +

Q
& '

hP1 þ PuE'1
u E1i;

Ck ¼ il0n0Ti
1
q

1
v0 hJ iM' v0 1

B2 ðG22 þ qG23Þ
* +

Q
& '

hP0 þ PuE'1
u E0i;

BL
k ¼ 'l0n0TihJ ihPs þ PuE'1

u Esi;

Dk ¼ 'l0n0TihJ ihP1 þ PuE'1
u E1i;

Ek ¼ 'l0n0TihJ ihP0 þ PuE'1
u E0i;

CL
k ¼ l0n0Ti iv02 1

B2 ðG12 þ qG31ÞiQ þ hJ 0
* +& '

hPs þ PuE'1
u Esi;

EL
k ¼ l0n0Ti iv02 1

B2 ðG12 þ qG31ÞiQ þ hJ 0
* +& '

hP1 þ PuE'1
u E1i;

Hk ¼ l0n0Ti iv02 1
B2 ðG12 þ qG31ÞiQ þ hJ 0

* +& '
hP0 þ PuE'1

u E0i:

Here, we note that the superscript L represents just the Hermitian conjugate for MHD and inertia parts of matrices.
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Appendix B. Simplification of matrices in Eq. (17)

The matrices in Eq. (17) can be further simplified as follows

F ¼ v02

n2 QG33Qþ ĉ2NAi þ Ak þ i
n
v0 B

L
k

( )
þ n2

v02 Dk ' i
v0

n
Bk

( )"

' ĉ2NAi þ Ak þ i
n
v0 B

L
k

( )
þQðnG23 þ G33MÞ

& '

"A'1 ĉ2NAi þ Ak ' i
n
v0 Bk

( )
þ ðnG23 þMG33ÞQ

& '#
;

K ¼ v0

n
i ĉ2NAi þ Ak þ i

n
v0 B

L
k

( )
þQðnG23 þ G33MÞ

& '
A'1C

"

'Q½v00G23 þ ðqv0Þ0G33 ' iv0G31Q' g0I , ' iĉ2NCi
,
þ Ek ' iv0 1

n
Ck

( )
;

KL ¼ v0

n
'iCLA'1 ĉ2NAi þ Ak ' i

n
v0 Bk

( )
þ ðnG23 þMG33ÞQ

& '"

'½v00G23 þ ðqv0Þ0G33 þ iv0QG31 ' g0I ,Q þ iĉ2NCi
,
þ EL

k þ iv0 1
n
CL
k

( )
:

Here, the MHD part simplification is DCON-like [6]. In these matrices, the kinetic parts can be further combined as follows

Ak ' i
n
v0 Bk ¼ il0n0Ti

1
q

1
v0 hJ iM' v0 1

B2 ðG22 þ qG23Þ
* +

Q
& '

hPs1 þ PuE'1
u Es1i;

Ak þ i
n
v0 B

L
k ¼ il0n0Ti

1
q

1
v0 hJ iQ ' v0 1

B2 ðG22 þ qG23Þ
* +

Q
& '

hPs þ PuE'1
u Esi;

Ak þ i
n
v0 B

L
k

( )
þ n2

v02 Dk ' i
v0

n
Bk

( )
¼ il0n0Ti

1
q

1
v0 hJ iQ ' v0 1

B2 ðG22 þ qG23Þ
* +

Q
& '

hPs1 þ PuE'1
u Es1i;

Ek ' iv0 1
n
Ck ¼ l0n0Ti

1
nq

hJ iQ ' v02 1
B2 ðG22 þ qG23Þ

* +
Q

& '
hP0 þ PuE'1

u E0i;

EL
k þ iv0 1

n
CL
k ¼ il0n0Ti

v0

n
iv02 1

B2 ðG12 þ qG31Þ
* +

Qþ hJ 0i
& '

hPs1 þ PuE'1
u Es1i;

where Ps1 ¼ Ps ' iðn=v0ÞhP1i and Es1 ¼ Es ' iðn=v0ÞhE1i.
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