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A drift-magnetohydrodynamical !MHD" fluid model is developed for an isolated, steady-state,
helical magnetic island chain, embedded in the pedestal of a large aspect ratio, low-!, circular cross
section, H-mode tokamak plasma, to which an externally generated, multiharmonic, static magnetic
perturbation whose amplitude is sufficiently large to fully relax the pedestal toroidal ion flow is
applied. The model is based on a set of single helicity, reduced, drift-MHD fluid equations which
take into account neoclassical poloidal and toroidal flow damping, the perturbed bootstrap current,
diamagnetic flows, anomalous cross-field diffusion, average magnetic-field line curvature, and
coupling to drift-acoustic waves. These equations are solved analytically in a number of different
ordering regimes by means of a systematic expansion in small quantities. For the case of a freely
rotating island chain, the main aims of the calculation are to determine the chain’s phase velocity,
and the sign and magnitude of the ion polarization term appearing in its Rutherford radial width
evolution equation. For the case of a locked island chain, the main aims of the calculation are to
determine the sign and magnitude of the polarization term. © 2010 American Institute of Physics.
#doi:10.1063/1.3432720$

I. INTRODUCTION

The ITER tokamak1 is designed to operate using a par-
ticular type of plasma discharge, called an H-mode,2 which is
characterized by strong density and temperature gradients lo-
calized in a !radially" thin annular region, known as the
pedestal, which is situated just inside the last closed mag-
netic flux surface. Unfortunately, such gradients drive an in-
termittent instability known as an edge localized mode
!ELM",3 and the large impulsive heat flux across the plasma
boundary which is typically associated with this instability
leads to an unacceptable limitation on the lifetime of the
ITER divertor plates.4 Consequently, it has become essential
to the success of the ITER project to find a reliable method
for suppressing ELMs in H-mode tokamak plasmas.

In experiments recently performed on the DIII-D !Ref.
5" and JET !Ref. 6" tokamaks, application of an externally
generated, nonaxisymmetric, static magnetic perturbation,
with a broad spectrum of helical harmonics, many of which
were resonant in the pedestal, to an H-mode discharge was
found to either completely suppress, or greatly mitigate, the
ELMs. The original motivation for these so-called resonant
magnetic perturbation !RMP" experiments was to create a
set of overlapping, static, helical magnetic island chains7,8 in
the pedestal, thereby causing the magnetic field there to be-
come ergodic.9–11 However, it appears likely that this did not
actually occur !since there was no collapse in the pedestal
electron temperature". Instead, magnetic island formation
was !presumably" suppressed to a large extent by equilibrium
plasma flows,12–19 and only a few nonoverlapping island
chains were produced. The purpose of this paper is to inves-
tigate the physics of such chains.

For a number of reasons, the physics of an isolated he-
lical island chain generated in the pedestal of an H-mode

tokamak plasma, during an RMP experiment, is significantly
different from that of a conventional island chain: e.g., a
chain generated by a neoclassical tearing mode20 !NTM"
resonant in the plasma core. First, the pedestal has much
smaller density !and temperature" scale length than the core
plasma. Second, an RMP induced island chain is necessarily
nonrotating, since it is locked to that helical harmonic of the
externally generated, static magnetic perturbation which
resonates at its associated rational surface.21 An NTM island
chain, on the other hand, is convected by equilibrium ion
flows in the plasma core, and therefore rotates.22 Finally, the
nonresonant harmonics of the external magnetic perturbation
in an RMP experiment generally produce a significant toroi-
dal flow damping effect23 which relaxes the toroidal ion flow
in the pedestal toward a fixed value determined by neoclas-
sical theory.24–26 !The resonant harmonic of the external per-
turbation, as well as the magnetic perturbation associated
with the island itself, also contribute to the toroidal flow
damping.27" Of course, the poloidal ion flow is already re-
laxed to a fixed value determined by neoclassical theory,28,29

due to the strong poloidal flow damping which is present in
all tokamak plasmas !because of the significant toroidicity-
induced poloidal variation of the toroidal magnetic-field
strength around magnetic flux surfaces30". It follows that, in
an RMP experiment with sufficiently large toroidal flow
damping, the poloidal and toroidal ion flow velocities are
both constrained to take fixed values in the pedestal. By con-
trast, whereas the poloidal ion flow in the core of a conven-
tional tokamak plasma !i.e., a plasma with no significant cen-
tral toroidal flow damping" is fixed, the toroidal flow is
generally free to vary.

This paper investigates the equilibrium of an isolated
!radially" thin, helical magnetic island chain, embedded in
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the pedestal of a large aspect ratio, low-!, circular cross
section, H-mode tokamak plasma, in the presence of an ex-
ternally generated, nonaxisymmetric, static magnetic pertur-
bation whose amplitude is sufficiently large to fully relax the
pedestal toroidal ion flow. For the sake of completeness, we
shall consider rotating island chains, in addition to chains
that are locked to the resonant harmonic of the perturbation.
For the case of a rotating island chain, the primary aims of
the investigation are to predict the chain’s steady-state phase
velocity, and the magnitude and sign of the ion polarization
current term appearing in its Rutherford radial width evolu-
tion equation.31 For the case of a locked island chain, whose
phase velocity is necessarily zero, the primary aim is to pre-
dict the magnitude and sign of the polarization term. In both
cases, the starting point for the investigation is a set of
steady-state, single helicity, reduced,32 drift-magneto-
hydrodynamical !MHD",33 fluid equations.22,34 These equa-
tions incorporate neoclassical effects such as poloidal and
toroidal flow damping, the perturbed bootstrap current,35 and
enhanced ion inertia,36,37 as well as more conventional ef-
fects such as shear-Alfvén waves, diamagnetic flows !includ-
ing the modification of ion diamagnetism due to the gyrovis-
cosity tensor33", resistivity, anomalous cross-field diffusion
of particles and momentum, average magnetic-field line
curvature,38 and coupling to drift-acoustic waves.39 On the
other hand, the equations neglect compressional-Alfvén
waves, kinetic effects,40–42 ion orbit widths !relative to the
radial island width",43 temperature gradients, electron inertia,
and poloidal coupling due to toroidicity, geodesic magnetic-
field line curvature,44 or parallel viscosity. Note that the cur-
vature, flow damping, and anomalous diffusion terms appear-
ing in the equations are phenomenological in nature, and are
not exact. The fundamental fluid equations are solved ana-
lytically in a number of distinct ordering regimes by means
of a systematic expansion in small quantities. The regimes in
question are chosen to illustrate the effect of various different
levels of poloidal flow damping on both freely rotating and
locked island chains. However, the regimes are also designed
to ensure that the constant-" approximation45 holds, and that
the ion fluid is largely constrained to flow around perturbed
magnetic flux surfaces, since this leads to a tremendous sim-
plification in the analysis. !The physics of nonconstant-" is-
land chains is examined in Ref. 46. Moreover, the complica-
tions which arise when an island chain becomes sufficiently
narrow that the ion fluid is not tied to magnetic flux surfaces
are discussed in Refs. 47–49."

II. PRELIMINARY ANALYSIS

A. Fundamental definitions

Consider a large aspect ratio, low-!, circular cross sec-
tion, H-mode tokamak plasma of major radius R0, and toroi-
dal magnetic-field strength B0. Let us adopt a conventional,
right-handed, quasicylindrical, toroidal coordinate system,
!r ,# ,$", whose symmetry axis !r=0" coincides with the
magnetic axis. The coordinate r also serves as a label for the
unperturbed !by the island chain" magnetic flux surfaces. Let
the equilibrium toroidal magnetic field and toroidal plasma
current both run in the +$ direction. Suppose that a helical

magnetic island chain, with m# poloidal periods, and n$ tor-
oidal periods, is embedded in the pedestal of the aforemen-
tioned plasma. The island chain is assumed to be radially
localized in the vicinity of its associated rational surface,
minor radius rs, which is defined as the unperturbed flux
surface where q!rs"=m# /n$%qs. Here, q!r" is the safety-
factor profile. Let the full radial width of the island chain’s
magnetic separatrix be 4w. Furthermore, let the chain rotate
!in the laboratory frame" at the angular velocity %. In the
following, it is assumed that &s%rs /R0'1 and w /rs'1.

It is helpful to define the magnetic shear length,
Ls%R0qs / !d ln q /d ln r"rs

, the density scale length,
Ln%−rs / !d ln n /d ln r"rs

, and the phenomenological mean
radius of curvature of magnetic-field lines, Lc. !Incidentally,
the mean curvature is assumed to be favorable.38" Here, n!r"
is the electron number density profile. It is also helpful
to define the ion diamagnetic velocity, V!i%Ti / !eB0Ln",
the ion beta, !i%(0n0Ti /B0

2, and the ion gyroradius,
)i%!Ti /mi"1/2 / !eB0 /mi", where n0%n!rs", Ti is the !uniform"
ion temperature, e the magnitude of the electron charge !as
well as the ion charge", and mi the ion mass. All of the
aforementioned parameters are evaluated at the rational sur-
face.

B. Fundamental parameters

The key parameters in our model are the temperature
ratio parameter, *%Te /Ti, the aspect-ratio parameter,
&%!&s /qs"2, the ion gyroradius parameter, )%!qs /
&s"2!)i /w"2, the density gradient parameter, +n%!&s /qs"
,!Ln /Ls"!w /)i"2, the magnetic curvature parameter,
+c%2!&s /qs"2!Ln /Lc"!w /)i"2, the plasma pressure param-
eter, !%!i!qs /&s"2!Ls /Ln"2!)i /w"2, and the phase velocity
parameter, v%!Vp−Vp

nc" /V!i. Here, Te is the !uniform" elec-
tron temperature in the vicinity of the rational surface,
Vp%% /k# the phase velocity of the island chain in the labo-
ratory frame, and k#%m# /rs. Note that if Vp is positive then
the chain propagates in the electron diamagnetic direction,
and vice versa. Furthermore, Vp

nc%V#i
nc− !&s /qs"V$i

nc, where
V#i

nc is the fixed velocity toward which neoclassical flow
damping relaxes the ion poloidal velocity profile in the vi-
cinity of the rational surface, and V$i

nc is the corresponding
fixed toroidal velocity. Any radial variation in these veloci-
ties across the island region is neglected. The parameter Vp

nc

is known as the neoclassical phase velocity,22 and is the
fixed value toward which neoclassical poloidal and toroidal
flow damping relax the phase velocity of the island chain.
Note that when v takes the values 0, 1, and 1+* then the
island chain is effectively convected by the unperturbed local
ion, E,B, and electron fluid, respectively, at the rational
surface.

The three parameters which control flow damping in our
model are -̂#i%!&s /qs"2!-#i /%!i", -̂$i%!-$i /%!i", and -̂#e
%!me /mi"!&s /qs"2!-#e /%!i". Here, %!i=k#V!i is the ion dia-
magnetic frequency, -#i the phenomenological ion poloidal
flow damping rate, -$i the phenomenological ion toroidal
flow damping rate !due to the combined effect of the reso-
nant and nonresonant harmonics of the external magnetic
perturbation", -#e the phenomenological electron poloidal
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flow damping rate, and me the electron mass. All quantities
are evaluated at the rational surface. Any radial variation in
the damping rates across the island region is neglected.

Finally, the three parameters which control cross flux-
surface transport in our model are .%.& / !(0%!iw2",
D%D" / !%!iw2", and (%("i / !n0mi%!iw2". Here, .& is the
parallel electrical resistivity, D" the phenomenological per-
pendicular particle diffusivity !due to small scale plasma tur-
bulence", and ("i the phenomenological perpendicular ion
viscosity !likewise, due to small scale plasma turbulence".
Again, all quantities are evaluated at the rational surface, and
any radial variation in the transport coefficients across the
island region is neglected.

C. Fundamental fields

Making use of a standard single helicity approximation,
all fields in our model are assumed to depend only on the
normalized radial coordinate X%!r−rs" /w and the helical
angle /%m##−n$$−%t.

The steady-state fluid equations which constitute the
starting point for our investigation involve the following four
fields:50

"!X,/" % ' Ls

B0w2(A& , !1"

N!X,/" % 'Ln

w
('n − n0

n0
( , !2"

0!X,/" % − ' 1

wV!iB0
( + ' Vp

V!i
X( , !3"

V!X,/" % ' &s

qs
('V&i − V$i

nc

V!i
( , !4"

as well as the auxiliary field

J!X,/" % !−1'− 1+
Ls

B0
#2A&( . !5"

Here, A& is the parallel !to the equilibrium magnetic field at
the rational surface" magnetic vector potential, 1 the scalar
electric potential, and V&i the parallel ion fluid velocity. The
field " serves as a label for the perturbed magnetic flux sur-
faces; the field N measures the chain-induced modification to
the electron number density profile; the field 0 is a stream
function for the E,B flow in a frame of reference which
co-rotates with the island chain; the field V parameterizes the
chain-induced deviation of the ion parallel velocity profile
from its fixed neoclassical value; and the field J measures the
perturbed parallel current density.

D. Fundamental fluid equations

Our fundamental set of steady-state, single helicity, re-
duced, drift-MHD, fluid equations takes the form22,34

0 = #0 + *N,"$ + !.J + +n
−1-̂#e

,)+n
−1J + V − $X!0 + *N" + v − 1− ** , !6"

0 = #0,N$ − )#+nV + J,"$ − +c)#0 + *N,X$ + D$X
2N

− )-̂#e)+n
−1J + V − $X!0 + *N" + v − 1− ** , !7"

0 = &$X#0 − N,$X0$ + #J,"$ + !1 + *"+c#N,X$

+ &($X
4!0 − N" + -̂#i$X)V − $X!0 − N" + v* − &-̂$i$XV

+ -̂#e$X)+n
−1J + V − $X!0 + *N" + v − 1− ** , !8"

0 = #0,V$ − !1 + *"+n#N,"$ + ($X
2V − -̂#i

,)V − $X!0 − N" + v* − -̂$iV − -̂#e

,)+n
−1J + V − $X!0 + *N" + v − 1− ** , !9"

0 = $X
2" − 1− !J . !10"

Here, $X%$ /$X +/, $/%$ /$/ +X, and #A ,B$%$XA$/B−$/

,A$XB. Equation !6" is the parallel component of Ohm’s
law, Eq. !7" is the parallel component of the curl of Ohm’s
law !combined with the continuity equation", Eq. !8" is the
parallel component of the plasma vorticity equation, and Eq.
!9" is the parallel component of the plasma equation of mo-
tion. Finally, Eq. !10" is obtained directly from Maxwell’s
equations. Equations !8" and !9" can be combined to give

0 = #J,"$ − !1 + *"+c#N,X$ + $XG , !11"

where

G % &#0 − N,$X0$ + #0,V$ − !1 + *"+n#N,"$

+ ($X
2)V + &$X!0 − N"* − !1 + &"-̂0iV . !12"

Equations !6"–!11" are subject to the boundary conditions

"!X,/" → 1
2X2 + cos / , !13"

N!X,/" → − X , !14"

0!X,/" → − !1 − v"X , !15"

V!X,/" → 0, !16"

J!X,/" → 0, !17"

as +X+→2. Equations !13", !14", and !17" are obtained via
asymptotic matching to the perturbed plasma equilibrium,
assuming that the island chain is radially thin !i.e., w'rs".
Furthermore, Eqs. !15" and !16" ensure that the ion poloidal
and toroidal velocities both asymptote to their fixed neoclas-
sical values far from the chain. This follows because

V#i − V#i
nc

V!i
= V − $X!0 − N" + v , !18"

V$i − V$i
nc

!qs/&s"V!i
= V , !19"

where V#i!X ,/" and V$i!X ,/" are the respective velocities.
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E. Determination of island chain radial width

Standard asymptotic matching21,31,51 reveals that the so-
called “Rutherford” equation which determines the island
chain’s radial width takes the form

dw

dt
3 4!rs + 2m#'wv

w
(2

cos 0

+ Jc!i'qs

&s
(2' Ls

Ln
(2')i

rs
(2' rs

w
(3

, !20"

where 4! is the tearing stability index for the m#, n$ mode,45

4wv the full radial width of the vacuum island chain associ-
ated with the resonant harmonic of the static external mag-
netic perturbation, 0 the helical phase difference between the
island chain and the vacuum island chain, and

Jc % − 2,
−2

2 - J cos /dX
d/

25
. !21"

In deriving Eq. !20", we have made the simplifying assump-
tion that the equilibrium plasma current external to the ratio-
nal surface is negligible. Of course, a steady-state island
chain is characterized by dw /dt=0. The first term on the
right-hand side of Eq. !20" parameterizes the intrinsic MHD
stability of the island chain, the second measures the desta-
bilizing effect of the resonant harmonic of the external per-
turbation, and the third parameterizes the combined stabiliz-
ing or destabilizing effect of the ion polarization current,
mean magnetic-field line curvature, and the perturbed boot-
strap current. Note, incidentally that 4! becomes a function
of w for a sufficiently wide island chain.52–54

F. Determination of island chain helical phase

Standard asymptotic matching21,31,51 also shows that the
helical phase of the island chain evolves as

d20

dt2 3 − 2m#'wv

rs
(2'w

rs
(2

sin 0

+ Js!i'qs

&s
(2' Ls

Ln
(2')i

rs
(2'w

rs
( , !22"

where

Js = −2 ,
−2

2 - J sin /dX
d/

25
. !23"

Of course, a steady-state island chain is characterized by
d20 /dt2=0. The first term on the right-hand side of Eq. !22"
parameterizes the electromagnetic torque exerted on the
plasma in the vicinity of the island chain by the resonant
harmonic of the external perturbation,21,51 and the second
term parameterizes the neoclassical drag torque due to equi-
librium ion flow relative to the chain.22,55

In the limit in which the resonant electromagnetic torque

is too weak to significantly affect the chain’s helical phase
!i.e., wv→0", the steady-state version of Eq. !22" simply
reduces to

Js = 0. !24"

The above criterion determines the phase velocity parameter
for a freely rotating island chain !i.e., a chain which is not
subject to an externally generated, resonant electromagnetic
torque". On the other hand, if the resonant electromagnetic
torque is sufficiently large to lock the chain to the static
external perturbation then the chain’s phase velocity is nec-
essarily zero, and its phase velocity parameter takes the fixed
value

vl % −
Vp

nc

V!i
. !25"

G. Fundamental expansion procedure

Equations !6"–!11" are solved via an expansion in two
small parameters, 4 and 6, where 4≪6'1.56 The expan-
sion procedure is as follows. First, the coordinates X and /
are assumed to be O!4060". Next, some particular ordering
scheme is adopted for the thirteen physics parameters v, *,
&, ), +n, +c, !, -̂#i, -̂$i, -̂#e, ., D, and (. The fields ", N,
0, V, and J are then expanded in the form "!X ,/"
=.i,j=0,2"i,j!X ,/", etc., where "i,j /O!4i6 j". Finally, Eqs.
!6"–!11" are solved order by order. This procedure is applied
to three distinct ordering schemes that are designed to illus-
trate the effect of various different levels of ion poloidal flow
damping on both freely rotating and locked island chains.

III. STRONG POLOIDAL FLOW DAMPING
REGIME

A. Ordering scheme

The ordering scheme adopted in the so-called strong po-
loidal flow damping regime is

406−1:-̂#i,

4060:v,*,+n,+c,

4061:&,),! ,

4160:.,D,(, -̂$i,

4161:-̂#e.

This scheme implies that

-#i 7 !&s/qs"2-#i 7 %!i ≫ -.,-D,-(,-$i,!me/mi"-#,e,

!26"

where -.=.& /(0w2, -D=D" /w2, and -(=("i /n0miw2 are
the radial diffusion rates for magnetic flux, particles, and ion
momentum, respectively, across the island region. According
to the above inequality, the ion poloidal flow damping term
is dominant in both the parallel plasma vorticity equation !8",
and the parallel plasma equation of motion, Eq. !9". Further-
more, the perpendicular diffusion terms, as well as the ion
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toroidal and electron poloidal flow damping terms, are all
very small compared to the leading order terms in Eqs.
!6"–!11". !This is a natural assumption for the diffusion
terms, since %!i/-., -D, and -( is a characteristic ordering
for a comparatively narrow linear layer, rather than a
comparatively wide nonlinear island chain, and -., -D, and
-(3w−2." The above ordering scheme also implies that

+Vp − Vp
nc+ / V!i, !27"

Ln ' ' &s

qs
(Ls, !28"

'qs

&s
()i ' w ' ' Ls

Ln
()i, !29"

!i ' ' &s

qs
(2

, !30"

Lc / ' &s

qs
(Ls. !31"

Note that the inequality !28" is only likely to hold in the
pedestal of an H-mode tokamak plasma, where the density
scale length is relatively small #typically, Ln/!&s /qs"Ls in
the core of such a plasma$. The inequality !29" implies that
the island chain is much wider than the poloidal ion gyrora-
dius, )#i%!qs /&s")i !and is, thus, also much wider than a
typical trapped ion orbit", but still too narrow for ion acoustic
waves to play an important role in the island dynamics
#since such waves are generally only important when
w0!Ls /Ln")i !Ref. 57"$. Finally, inequality !30" ensures that
the ion polarization current in the vicinity of the island chain
does not become large enough to invalidate the constant-"
approximation.45,58

B. Zeroth order solution

To zeroth order in the primary and secondary expansions
!i.e., to order 4060", Eqs. !6", !7", !11", !9", and !10" yield

0 = #00,0 + *N0,0,"0,0$ , !32"

0 = #00,0,N0,0$ , !33"

0 = #J0,0,"0,0$ + !1 + *"+c#N0,0,X$

+ $X)#00,0,V0,0$ − !1 + *"+n#N0,0,"0,0$* , !34"

0 = − -̂#i)V0,0 − $X!00,0 − N0,0" + v* , !35"

0 = $X
2"0,0 − 1, !36"

respectively.

Equations !13" and !36" give

"0,0 = 1
2X2 + cos / % 8!X,/" . !37"

Hence, the lowest order magnetic flux-function, 8!X ,/",
maps out a constant-" magnetic island chain whose O-points
lie at X=0, /=5, and 8=−1, whose X-points lie at X=0,
/=0, and 8=1, and whose magnetic separatrix corresponds
to 8=1.31

Equations !14", !15", !32", and !33" yield

00,0 = s00!8" , !38"

N0,0 = sN0!8" , !39"

where s%sgn!X". It follows that the lowest order electro-
static potential !in the frame of the island chain" and density
profiles are odd !in X" magnetic flux-surface functions. This
implies that, to lowest order, the ion and electron fluids
#whose stream functions !in the island frame" are 0−N and
0+*N, respectively$ do not cross magnetic flux surfaces. Let

M!8" % −
d00

d8
, !40"

L!8" % −
dN0

d8
. !41"

Note that 00=N0=M =L=0 within the magnetic separatrix
!i.e., −198:1", since it is impossible to have an odd flux-
surface function in this region. This means that the density
profile is locally flattened by the island chain.57 Moreover,
the boundary conditions !14" and !15" reduce to

M!8 → 2" →
1 − v
128

, !42"

L!8 → 2" →
1

128
. !43"

Note that the flattening of the density profile is not due to the
action of ion acoustic waves. Instead, the flattening is attrib-
utable to the fact that, to lowest order, the density is simply
convected by the E,B flow #i.e., #0 ,N$ is the dominant
term in Eq. !7"$, combined with the fact that the lowest order
electron stream function, 0+*N, is constrained to be a flux-
surface function #since #0+*N ,"$ is the dominant term in
Eq. !6"$.

Equation !35" gives

V0,0 = $X!00,0 − N0,0" − v = − +X+!M − L" − v . !44"

Observe that this expression automatically satisfies the
boundary condition !16".
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Finally, Eq. !34" yields

#J0,0,"0,0$ = − !1 + *"+c#N0,0,X$

− $X)#00,0,V0,0$ − !1 + *"+n#N0,0,"0,0$* ,

!45"

which reduces to

#J0,0,8$ = #!1/2"d8#M!M − L"$X2 − !1 + *"+cL+X+,8$ ,

!46"

where d8%d /d8. It follows that

J0,0 = !1/2"d8#M!M − L"$X2̃ − !1 + *"+cL+X+̃ + J̄!8" .

!47"

Here,

Ã % A − 2A3/213 , !48"

and

2A!s,8,/"3 % 4- A!s,8,/"
#2!8 − cos /"$1/2

d/

25
1 9 8

-
/0

25−/0 A!s,8,/" + A!− s,8,/"
2#2!8 − cos /"$1/2

d/

25
− 1 9 8 : 1,5 !49"

where /0=cos−1!8" !with 09/095". The operator 2¯ 3 is
the lowest order magnetic flux-surface average. Note that
2Ã3%0 and 2#A ,8$3%0 for any A!X ,/".

The expression !47" for the lowest order perturbed par-
allel current density, J0,0!8 ,/", contains three unknown flux-
surface functions, M!8", L!8", and J̄!8". Moreover, al-
though J0,0 contributes to the cosine integral !21", it makes
no contribution to the sine integral !23" !since J0,0 has the
symmetry of cos /". In order to determine the three unknown
flux-surface functions, as well as the value of the sine inte-
gral, it is necessary to go to higher order in our primary
expansion scheme.

C. First order solution

To first order in the primary expansion, and zeroth order
in the secondary expansion !i.e., to order 4160", Eqs. !6", !7",
!11", !9", and !10" yield

0 = #01,0 + *N1,0,"0,0$ + #00,0 + *N0,0,"1,0$ , !50"

0 = #01,0,N0,0$ + #00,0,N1,0$ + D$X
2N0,0, !51"

0 = #J1,0,"0,0$ + #J0,0,"1,0$ + !1 + *"+c#N1,0,X$ + $XG ,

!52"

0 = − -̂#i)V1,0 − $X!01,0 − N1,0"* , !53"

0 = $X
2"1,0, !54"

respectively, where

G = #01,0,V0,0$ + #00,0,V1,0$

− !1 + *"+n#N1,0,"0,0$ − !1 + *"+n#N0,0,"1,0$

+ ($X
2V0,0 − -̂$iV0,0. !55"

Moreover, Eq. !54", !50", !53", !51", and !52" #in combina-
tion with Eqs. !38"–!41" and Eq. !44"$ give

"1,0 = 0, !56"

01,0 = − *N1,0, !57"

V1,0 = − !1 + *"$XN1,0, !58"

#N1,0,8$ =
D!X2d8L + L"

M + *L
, !59"

#J1,0,8$ = − !1 + *"+c#N1,0,X$ − $XG , !60"

respectively, where

G = *#N1,0, +X+!M − L"$

− !1 + *"M#+X+$8N1,0,8$ − !1 + *"+n#N1,0,8$

− ()+X+3d8
2 !M − L" + 3+X+d8!M − L"*

+ -̂$i)+X+!M − L" + v* , !61"

and $8%$ /$8 +/. In addition, the lowest order flux-surface
average of Eq. !6" reduces to

!!. + +n
−2-̂#e"J̄213 = − !1 + *"+n

−1-̂#e!L − 213" . !62"

Equation !62" implies that

J̄!8" = !1 + *"+n' &-#e*e

1 + &-#e*e
(!1 − L/213" , !63"

where the electron collision time, *e, is defined *e
%me / !n0e2.&".
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The flux-surface average of Eq. !59", combined with the
boundary condition !43", yields

L!8" =
1

2X23
, !64"

outside the magnetic separatrix !i.e., 8;1". Equation !59"
also gives

#N1,0,8$ =
DX2̃d8L

M + *L
, !65"

outside the separatrix. However, it is assumed that
#N1,0 ,8$=0 inside the separatrix.

The flux-surface average of Eq. !60" yields

0 = d8)2+X+G3 + !1 + *"+c2+X+#N1,0,8$3* , !66"

outside the separatrix, whereas the flux-surface average of X
times this equation gives

2X#J1,0,8$3 = − d8)2X2G3 + !1/2"!1 + *"+c2X2#N1,0,8$3*

+ 2G3 . !67"

Now, it can be demonstrated that

2+X+ jG3 = !1 + j"−1)*!M − L" − j!1 + *"M*

,d82+X+ j+1#N1,0,8$3 + *d8!M − L"

,2+X+ j+1#N1,0,8$3 + j!1 + *"M2+X+ j−1#N1,0,8$3

− !1 + *"+n2+X+ j#N1,0,8$3

− ()2+X+ j+33d8
2 !M − L" + 32+X+ j+13d8!M − L"*

+ -̂$i)2+X+ j+13!M − L" + v2+X+ j3* , !68"

outside the separatrix, and

2+X+ jG3 = -̂$iv2+X+ j3 , !69"

inside the separatrix.
Equation !66" can be integrated in 8 to give

0 =
d

d8
62X43d8!M − L" +

1
2

D

(
2X2̃X2̃3d8L7 −

1
2

D

(
2X2̃X2̃3

,)!1 + 2*"d8M − *d8L*
d8L

M + *L
− !1 + *"!+c − +n"

,
D

(
2+X+̃X2̃3

d8L

M + *L
−

-̂$i

(
)2X23!M − L" + v* , !70"

outside the separatrix, where use has been made of Eqs. !42",
!64", !65", and !68".

Finally, Eq. !67" can be integrated in 8 to give

,
−1

2

2X#J1,0,8$3d8

= ,
−1

2

2G3d8 = -̂$i,
−1

2

!M − L + v213"d8 , !71"

where use has been made of Eqs. !42", !64", !65", !68", and
!69".

D. Separatrix boundary layer

The flux-surface functions M!8" and L!8" are both zero
inside, and nonzero just outside, the magnetic separatrix. The
apparent discontinuities in these two functions are resolved
in a thin boundary layer on the separatrix of !un-normalized"
width )i.

49 Inside this layer, Eq. !70" reduces to

0 0
d2

dy2'M − L +
1
2

D

(
L(

−
1
2

D

(
dy)!1 + 2*"M − *L*

dyL

M + *L
, !72"

where y= !8−1" / !)i /w", and dy %d /dy. Note that dy
/O!w /)i"71. Here, we have made use of the fact that

2X43= 2X2̃X2̃3 close to the separatrix. Let us assume that
M = !1−v0"L within the layer, where v0 is a constant. It
follows that

0 =
d

dy
'L

dL

dy
( − 6v0

2 − !1 + *"!1 + D/("v0 + !1 + *"D/(
!v0 − 1− *"!v0 − D/2(" 7

,'dL

dy
(2

. !73"

Integrating across the layer from just inside the separatrix
!i.e., y→−2, where L=0" to just outside the separatrix
#i.e., y→2, where dyL/O!)i /w"'1, since d8L/O!1"$, we
obtain

8v0
2 − !1 + *"!1 + D/("v0 + !1 + *"D/(

!v0 − 1− *"!v0 − D/2("
8

,,
−2

2 'dL

dy
(2

dy ' 1. !74"

Now, the integral in the above expression is positive definite,
and also much larger than unity. Thus, the only way in which
Eq. !74" can be satisfied is if

v0
2 − !1 + *"!1 + D/("v0 + !1 + *"!D/(" 0 0, !75"

which implies that

v0 =
!1 + *"

2
'1 +

D

(
− 61 −2

D

(
'1 − *

1 + *
( + 'D

(
(271/2( .

!76"

Here, we have chosen the root of the quadratic equation !75"
which corresponds to the obvious physical solution v0=0
when D /(=0.58 Note that 09v091.

E. Determination of flow profiles

It is convenient to define a new flux-surface label
k%#!1+8" /2$1/2. Thus, k=0 corresponds to the O-points of
the island chain, k=1 to the X-points and the magnetic sepa-
ratrix, and k→2 to +X+→2. It is also helpful to define the
complete elliptic integrals

E!k" % ,
0

5/2
!1 − k2 sin2 u"1/2du , !77"
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K!k" % ,
0

5/2
!1 − k2 sin2 u"−1/2du . !78"

It is easily demonstrated that

213 = 9K!k"/5 0 9 k : 1

K!1/k"/!k5" 1 : k ,
: !79"

2X23 = 9!4/5"E!k" + !4/5"!k2 − 1"K!k" 0 9 k : 1

!4k/5"E!1/k" 1 9 k ,
:

!80"

2+X3+3 = 2!2k2 − 1" 1 9 k , !81"

2X43 = !16k/35"#2!2k2 − 1"E!1/k" − !k2 − 1"K!1/k"$ 1 : k .

!82"

Equation !70" reduces to

0 =
d

dk
6 2X43

4k
dkM + '1 −

1
2

D

(
( 2X43213

2X232 7 +
1
2

D

(

' 2X43213
2X232 − 1( #!1 + 2*"2X23dkM + *4k213/2X23$

2X23M + *

+ !1 + *"!+c − +n"
D

(
' 2+X+33213

2X23
− 1( 4k

2X23M + *

−
-̂$i

(
4k#2X23M + v − 1$ , !83"

where dk%d /dk. The above equation describes a competi-
tion between cross flux-surface momentum transport due to
perpendicular ion viscosity !first term on the right-hand
side", ion toroidal flow damping !last term on the right-hand
side", and coupling to drift waves !all terms proportional to
D /(". !Incidentally, the D /( terms are associated with
coupling to drift waves because they contain the resonant
denominator 2X23M +*3%−k#!VE+V!e", where VE and V!e

are the local equilibrium E,B and electron diamagnetic ve-
locities, respectively." Equation !83" must to be solved for
M!k" in the region 1:k:2, subject to the boundary condi-
tions #see Eq. !42" and Sec. III D$

M!k → 1" → !1 − v0"
5

4
, !84"

M!k → 2" →
1 − v

2k
, !85"

where v0 is given by Eq. !76". This procedure fully specifies
M!k".

It follows from Eqs. !18", !19", !38"–!41", !44", and !64"
that, to lowest order,

V#i − V#i
nc

V!i
= 0, !86"

V$i − V$i
nc

!qs/&s"V!i
= 9− v 0 9 k 9 1

− 2#k2 − cos2!//2"$1/2!M − 1/2X23" − v 1 : k .
: !87"

Thus, in the strong poloidal flow damping regime there is
complete damping of the ion poloidal flow in the vicinity of
the island chain. Moreover, in general, the ion toroidal flow,
which is not completely damped, is discontinuous across the
magnetic separatrix !since v0 is generally nonzero". How-
ever, this apparent discontinuity is resolved within the
boundary layer described in Sec. III D.

F. Evaluation of cosine integral

The lowest order contribution to the cosine integral, Jc,
which is defined in Eq. !21", comes from J0,0. Hence,

Jc = −2 ,
−2

2 - J0,0 cos /dX
d/

25
= −4 ,

−1

2

2J0,0 cos /3d8 .

!88"

It follows from Eqs. !20", !47", !63", and !64" that the island
chain’s Rutherford equation takes the form

dw

dt
3 4!rs + 2m#'wv

w
(2

cos 0 + Ip!i'qs

&s
(2' Ls

Ln
(2

,')i

rs
(2' rs

w
(3

+ Ib!1 + *"!i'qs

&s
(' Ls

Ln
(

,6 !&s/qs"2-#e*e

1 + !&s/qs"2-#e*e
− 2' &s

qs
('Ls

Lc
(7' rs

w
( , !89"

where

Ip = −
25

3
v0!1 − v0" + ,

1

2 2X23
213 ' 2X43213

2X232 − 1(
,#dkM!2X23M − 1" + 2X23M!dkM + 4k213/2X232"$dk ,

!90"

Ib = 8,
1

2 k

213' 2+X3+3213
2X23

− 1(dk = 1.58. !91"

Here, the third term on the right-hand side of Eq. !89" is the
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contribution of the neoclassically enhanced ion polarization
current.37 This contribution is destabilizing if the polariza-
tion integral, Ip, is positive, and vice versa. #Note that the
first term on the right-hand side of the expression !90" for Ip
originates from the boundary layer on the magnetic
separatrix,59 whereas the second term originates from the
region immediately outside the separatrix.$ The final term
on the right-hand side of Eq. !89" is the combined contribu-
tion of the perturbed bootstrap current35 and mean magnetic-
field line curvature.38 !The bootstrap current contribution
#first term in square brackets$ is destabilizing, whereas the
curvature contribution #second term in square brackets$ is
stabilizing."

G. Evaluation of sine integral

The lowest order contribution to the sine integral, Js,
defined in Eq. !23", comes from J1,0. Hence,

Js = −2 ,
−2

2 - J1,0 sin /dX
d/

25
= −4 ,

−1

2

2X#J1,0,8$3d8 .

!92"

It follows from Eqs. !64" and !71" that

Js = − 16-̂$i'v,
0

1

k213dk + ,
1

2

k#M − 1/2X23 + v213$dk( .

!93"

H. Low toroidal flow damping limit

In the low toroidal flow damping limit, 6'-̂$i /('1, the
solution to Eqs. !83"–!85" is somewhat simplified. Indeed,
far from the separatrix, in the region 1'k, these equations
yield

M!k" 0
1 − v + !v − v f"e−2!-̂$i/("1/2k

2k
, !94"

where v f is an arbitrary constant. Closer to the separatrix, in
the region 1:k' !-̂$i /("−1/2, Eq. !83" reduces to

0 0
d

dk
6 2X43

4k
dkM + '1 −

1
2

D

(
( 2X43213

2X232 7 +
1
2

D

(

,' 2X43213
2X232 − 1( #!1 + 2*"2X23dkM + *4k213/2X23$

2X23M + *

+ !1 + *"!+c − +n"
D

(
' 2+X+33213

2X23
− 1( 4k

2X23M + *
. !95"

The above equation must be solved in the region 1:k:2,
subject to the boundary conditions

M!k → 1" → !1 − v0"
5

4
, !96"

M!k → 2" →
1 − v f

2k
, !97"

where v0 is given by Eq. !76". This procedure fully specifies

both M!k" and the constant v f. Now, according to Eqs. !93"
and !94",

Js 0 − 4!-̂$i("1/2!v − v f" + O!-̂$i" . !98"

Hence, making use of the criterion !24", we can identify v f as
the characteristic phase velocity parameter for a freely rotat-
ing island chain. Now, the polarization integral, Ip, specified
in Eq. !90", converges for k' !-̂$i /("−1/2, and can thus be
evaluated using the solution to Eq. !95". It follows that Ip
depends on the free phase velocity parameter, v f, but not on
the actual phase velocity parameter, v. In other words, the
contribution of the ion polarization current to the Rutherford
equation is the same for both a freely rotating and a locked
island chain.

Figure 1 shows the phase velocity parameter, v f, of a
freely rotating island chain plotted as a function of D /( for
various different values of +c−+n. It can be seen that v f =0
when D /(=0, but that v f ;0 when D /(;0. This suggests
that coupling to drift waves !parameterized by D /(" causes a
freely rotating island chain to propagate in the electron dia-
magnetic direction, relative to the local unperturbed ion
fluid. !The actual phase velocity of the chain is Vp

nc+v fV!i,
where Vp

nc is the neoclassical phase velocity." Note that the
relative propagation velocity decreases with increasing
+c−+n, i.e., the relative velocity is a decreasing function of
mean magnetic curvature. Figure 2 shows the polarization
integral, Ip, plotted as a function of D /( for various different
values of +n−+c. It can be seen that Ip=0 when D /(=0, but
that 0; Ip<−1 when D /(;0. This implies that coupling to
drift waves allows the neoclassically enhanced ion polariza-
tion current to have a relatively strong stabilizing effect on
both a freely rotating and a locked island chain.

FIG. 1. !Color online" The phase velocity parameter, v f, for a freely rotating
island chain, calculated as a function of the perpendicular diffusivity ratio,
D /(, in the low toroidal flow damping limit of the strong poloidal flow
damping regime. The first, second, third, fourth, and fifth curves !in order
from the top to the bottom" correspond to +c−+n=−1.0, =0.5, 0.0, 0.5, and
1.0, respectively. The calculations are performed with *=1.0.
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I. High toroidal flow damping limit

In the high toroidal flow damping limit, 1'-̂$i /('6−1,
the solution to Eqs. !83"–!85" is very considerably simpli-
fied. In fact, it is easily demonstrated that

M!k" 0
1 − v
2X23

+
5

4
!v − v0"e−!6-̂$i/("1/2!k−1". !99"

Hence, Eq. !93" yields

Js 0 − 16-̂$iv6,
0

1

k213dk + ,
1

2

k'213 −
1

2X23(dk7
−18

3
5!-̂$i("1/2!v − v0"

= − 5.51-̂$iv − 5.13!-̂$i("1/2!v − v0" . !100"

Thus, from Eq. !24", the characteristic phase velocity of a
freely rotating island chain is

v f 0 0.93' (

-̂$i
(1/2

v0, !101"

where v0 is given by Eq. !76". Note that v0=0 when D /(
=0, but that 0:v0:1 when D /(;0. It follows that v f =0
when D /(=0, but that 0:v f '1 when D /(;0. We con-
clude that coupling to drift waves causes a freely rotating
island to propagate weakly in the electron diamagnetic direc-
tion, relative to the local unperturbed ion fluid. According to
Eq. !90", the polarization integral takes the form

Ip 0 v!v − 1"625

3
− 8,

1

2 k

2X23' 2X43213
2X232 − 1(dk7

= 1.38v!v − 1" . !102"

So, for a freely rotating island chain, with v=v f, this expres-
sion reduces to

Ip 0 − 1.28' (

-̂$i
(1/2

v0. !103"

Note that Ip=0 when v0=0, but that 0; Ip7−1 when
v0;0. We conclude that coupling to drift waves allows the
neoclassically enhanced ion polarization current to have a
relatively weak stabilizing effect on a freely rotating island
chain. Now, for a locked island chain, with v=vl, where vl is
given in Eq. !25", Eq. !102" implies that the polarization
current has a stabilizing effect when 0:vl:1, and a desta-
bilizing effect otherwise. It follows that the polarization cur-
rent is stabilizing provided the locked chain’s neoclassical
phase velocity, Vp

nc, is in the ion diamagnetic direction, but is
smaller in magnitude than the local ion diamagnetic velocity,
i.e., 0;Vp

nc;−V!i.
22

IV. INTERMEDIATE POLOIDAL FLOW DAMPING
REGIME

A. Ordering scheme

The ordering scheme adopted in the so-called intermedi-
ate poloidal flow damping regime is

4060:v,*,+n,

4061:&,),!,+c,

4160:.,D,(, -̂#i, -̂$i,

4162:-̂#e.

This scheme implies that

%!i ≫ -#i 7 -.,-D,-(,!&s/qs"2-#i,-$i 7 !me/mi"-#e.

!104"

According to the above inequality, the ion poloidal flow
damping term is negligible to zeroth order in the primary
expansion, as are the other flow damping and transport
terms. On the other hand, the poloidal flow damping term is
dominant in the parallel plasma vorticity equation, !8", to
first order in the primary expansion. As before, the above
ordering scheme leads to Eqs. !27"–!30". However, Eq. !31"
is replaced by

Lc / 'qs

&s
(Ls. !105"

B. Zeroth order solution

To lowest order in the primary and secondary expansions
!i.e., to order 4060", Eqs. !6"–!10" yield

0 = #00,0 + *N0,0,"0,0$ , !106"

FIG. 2. !Color online" The polarization integral, Ip, calculated as a function
of the perpendicular diffusivity ratio, D /(, in the low toroidal flow damping
limit of the strong poloidal flow damping regime. The first, second, third,
fourth, and fifth curves !in order from the top to the bottom" correspond to
+c−+n=−1.0, =0.5, 0.0, 0.5, and 1.0, respectively. The calculations are
performed with *=1.0.
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0 = #00,0,N0,0$ , !107"

0 = #J0,0,"0,0$ , !108"

0 = #00,0,V0,0$ − !1 + *"+n#N0,0,"0,0$ , !109"

0 = $X
2"0,0 − 1, !110"

respectively.
Equations !13" and !110" again lead to Eq. !37". Like-

wise, Eqs. !14", !15", !106", and !107" reduce to Eqs.
!38"–!43". On the other hand, Eqs. !16", !38", !39", and !109"
give

V0,0 = V̄!8" , !111"

where

V̄!8 → 2" → 0. !112"

Finally, Eq. !108" implies that J̃0,0=0. Thus, assuming that
2J0,03=0, which turns out to be the case, we obtain

J0,0 = 0. !113"

To zeroth order in the primary expansion, and first order in
the secondary expansion !i.e., to order 4061", Eq. !8" gives

#J0,1,"0,0$ = − &$X#00,0 − N0,0,$X00,0$

− !1 + *"+c#N0,0,X$ , !114"

which implies that

J0,1 = !&/2"d8#M!M − L"$X2̃ − !1 + *"+cL+X+̃ + J̄!8" .

!115"

C. First order solution

To first order in the primary expansion, and zeroth order
in the secondary expansion !i.e., to order 4160", Eqs.
!6"–!10" yield

0 = #01,0 + *N1,0,"0,0$ + #00,0 + *N0,0,"1,0$ , !116"

0 = #01,0,N0,0$ + #00,0,N1,0$ + D$X
2N0,0, !117"

0 = #J1,0,"0,0$ + -̂#i$X)V0,0 − $X!00,0 − N0,0" + v* , !118"

0 = #01,0,V0,0$ + #00,0,V1,0$ − !1 + *"+n#N1,0,"0,0$

− !1 + *"+n#N0,0,"1,0$ + ($X
2V0,0

− -̂#i)V0,0 − $X!00,0 − N0,0" + v* − -̂$iV0,0, !119"

0 = $X
2"1,0, !120"

respectively. Moreover, Eqs. !120" and !116"–!119" give

"1,0 = 0, !121"

01,0 = − *N1,0, !122"

#N1,0,8$ =
D!X2d8L + L"

M + *L
, !123"

#J1,0,8$ = − -̂#i$X)V̄ + +X+!M − L" + v* , !124"

*#N1,0,V̄$ − sM#V1,0,8$ + !1 + *"+n#N1,0,8$

= − -̂#i)V̄ + +X+!M − L" + v* + ($X
2V̄ − -̂$iV̄ , !125"

respectively. In addition, the lowest order flux-surface aver-
age of Eq. !6" reduces to

!.J̄213 = − !1 + *"+n
−1-̂#e!L − 213" . !126"

Equation !126" implies that

J̄!8" = !1 + *"+n&-#e*e!1 − L/213" . !127"

As before, the flux-surface average of Eq. !123", combined
with the boundary condition !43", yields expression !64" out-
side the magnetic separatrix. Equation !125" reduces to

V̄!8" = − ' -̂#i

-̂#i + -̂$i
(v , !128"

inside the separatrix, assuming that N1,0=V1,0=0 in this re-
gion. The flux-surface average of Eq. !124", combined with
the boundary condition !112", gives

V̄!8" = − 2X23F!8" − v , !129"

outside the separatrix, where F!8"%M!8"−L!8". Assum-
ing that V̄!8" is continuous across the separatrix #because of
the perpendicular diffusion operator acting on V̄ in Eq. !125"
!Ref. 22"$, we obtain

F!8 → 1" → −
5

4
' -̂$i

-̂#i + -̂$i
(v . !130"

Likewise, the boundary conditions !42" and !43" give

F!8 → 2" → −
v

128
. !131"

Of course, F=0 inside the separatrix. The discontinuity in
F!8" across the separatrix is resolved in a thin boundary
layer of the type discussed in Sec. III D. Now, the flux-
surface average of Eq. !125" yields

0 =
d

d8
#2X23d8!2X23F"$ −

-̂#i

(
!2X23213 − 1"F −

-̂$i

(
213

,!2X23F + v" , !132"

outside the separatrix. Moreover, the flux-surface average of
X times Eq. !124" gives

2X#J1,0,8$3 = − d82X2G3 + 2G3 , !133"

where

G!8,/" = 9-̂#i#-̂$i/!-̂#i + -̂$i"$v − 1 9 8 9 1

− -̂#i!2X23 − +X+"F!8" 1 : 8 .
: !134"

Finally, Eq. !133" can be integrated in 8 to give
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,
−1

2

2X#J1,0,8$3d8 = ,
−1

2

2G3d8

= -̂#i6' -̂$i

-̂#i + -̂$i
(v,

−1

1

213d8

− ,
1

2

!2X23213 − 1"Fd87 , !135"

where use has been made of !131".

D. Determination of flow profiles

Making use of some of the definitions in Sec. III E, Eq.
!132" reduces to

0 =
d

dk
'A!k"

d#A!k"Y!k"$
dk

( −
4-̂#i

(
#A!k"B!k" − 1$Y!k"

−
4-̂$i

(
B!k"#A!k"Y!k" + v$ , !136"

where Y!k"%2kF!k", A!k"%2X23 / !2k"= !2 /5"E!1 /k", and
B!k"%2k213= !2 /5"K!1 /k". The above equation describes a
competition between cross flux-surface momentum transport
due to perpendicular ion viscosity !first term on the right-
hand side", ion poloidal flow damping !second term on the
right-hand side", and ion toroidal flow damping !third term
on the right-hand side". Equation !136" must be solved for
Y!k" in the region 1:k:2, subject to the boundary condi-
tions #see Eqs. !130" and !131"$

Y!k → 1" → −
5

2
' -̂$i

-̂#i + -̂$i
(v , !137"

Y!k → 2" → − v . !138"

This procedure fully specifies Y!k" #and, hence, F!k"$.
It follows from Eqs. !18", !19", !38"–!41", !64", !128",

and !129" that

V#i − V#i
nc

V!i
= 9#-̂$i/!-̂#i + -̂$i"$v 1 9 k 9 1

!#1 − cos2!//2"/k2$1/2 − A!k""Y!k" 1 : k ,
:

!139"

V$i − V$i
nc

!qs/&s"V!i
= 9− #-̂#i/!-̂#i + -̂$i"$v 1 9 k 9 1

− !A!k"Y!k" + v" 1 : k .
: !140"

Thus, in the intermediate poloidal flow damping regime there
is incomplete damping of both the ion poloidal flow and the
ion toroidal flow in the vicinity of the island chain. More-
over, in general, the ion poloidal flow is discontinuous across
the separatrix, whereas the ion toroidal flow is continuous.
Of course, the apparent discontinuity in V#i is resolved
within a boundary layer of the type described in Sec. III D.

E. Evaluation of cosine integral

The lowest order contribution to the cosine integral, Jc,
comes from J0,1. It follows from Eqs. !20", !64", !88", !115",
and !127" that the island chain’s Rutherford equation takes
the form

dw

dt
3 4!rs + 2m#'wv

w
(2

cos 0 + Ip!i' Ls

Ln
(2')i

rs
(2' rs

w
(3

+ Ib!1 + *"!i' &s

qs
(' Ls

Ln
(6!-#e*e" − 2'qs

&s
('Ls

Lc
(7

,' rs

w
( , !141"

where

Ip =
32
35

#F!F + 5/4"$k=1 + ,
1

2 2X23
213 ' 2X43213

2X232 − 1(
,#dkF!2X23F + 1" + 2X23F!dkF − 4k213/2X232"$dk ,

!142"

and Ib=1.58. As before, the first term on the right-hand side
of the above expression comes from the boundary layer on
the magnetic separatrix, whereas the second term comes
from the region immediately outside the separatrix. It can be
seen, by comparison with Eqs. !89"–!91", that in the inter-
mediate poloidal flow damping regime the ion polarization
term appearing in the Rutherford equation is smaller in mag-
nitude by a factor of order !&s /qs"2 than the corresponding
term obtained in the strong poloidal flow damping regime.
This is due to the absence of any neoclassical enhancement
of ion inertia in the intermediate damping regime. On the
other hand, the perturbed bootstrap current and mean mag-
netic curvature terms appearing in the Rutherford equation
are essentially the same in both regimes.

F. Evaluation of sine integral

The lowest order contribution to the sine integral, Js,
comes from J1,0. It follows from Eqs. !64", !92", and !135"
that

Js = −8 -̂#i6' -̂$i

-̂#i + -̂$i
(v,

0

1

C!k"dk

− ,
1

2

#A!k"B!k" − 1$Y!k"dk7 , !143"

where C!k"%2k213= !2 /5"kK!k".

G. Low toroidal flow damping limit

In the low toroidal flow damping limit, 6'-̂$i'(,
(2 / -̂#i'6−1, Eqs. !136"–!138" yield55

Y!k" 0 −
1

A!k"61 − ' -̂#i

-̂#i + -̂$i
(e−!k−1"/617v , !144"

where 61= !( /4-̂$i"1/271. It follows from Eq. !143" that55

Js 0 − 8-̂#iu9,
0

1

C!k"dk + ,
1

2 6A!k"B!k" − 1
A!k" 7dk:

= − 5.51-̂#iu , !145"

where
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u = ' -̂$i

-̂$i + -̂#i
(v . !146"

Hence, from !24", the phase velocity parameter of a freely
rotating island chain is v f 00. In other words, a freely rotat-
ing island chain does not propagate relative to the local equi-
librium ion fluid, i.e., it propagates at the neoclassical phase
velocity. According to Eq. !142",55

Ip 0 u!u − 1"625

3
− 8,

1

2 k

2X23' 2X43213
2X232 − 1(dk7

= 1.38u!u − 1" . !147"

Thus, for a freely rotating island chain, with v=v f 00, the
polarization integral is zero. It follows that the ion polariza-
tion current has a negligible effect on the stability of a freely
rotating island chain. On the other hand, for a locked island
chain, with v=vl #see Eq. !25"$, the above expression re-
duces to

Ip 0 1.38ul!ul − 1" , !148"

where

ul = − ' -̂$i

-̂$i + -̂#i
(Vp

nc

V!i
. !149"

Note that Ip:0 when 0:ul:1. We conclude that the ion
polarization current has a stabilizing effect on a locked island
chain provided the chain’s neoclassical phase velocity lies in
the range 0;Vp

nc;−!1+ -̂#i / -̂$i"V!i, and has a destabilizing
effect otherwise.

H. Intermediate toroidal flow damping limit

In the intermediate toroidal flow damping limit,
6'(2 / -̂#i'-̂$i'-̂#i'6−1, Eqs. !136"–!138" yield55

Y!k" 0 −
-̂$i

-̂#i
6 B!k"

A!k"B!k" − 1+ -̂$i/-̂#i
7v . !150"

It follows from Eq. !143" that55

Js 0 − 0.617-̂#i
1/4-̂$i

3/4v . !151"

This again implies that v f 00, i.e., a freely rotating island
chain propagates at the neoclassical phase velocity. Accord-
ing to Eq. !142",55

Ip 0 0.617' -̂$i

-̂#i
(3/4

v!v/4 −1 " . !152"

Hence, we conclude that the ion polarization current has a
negligible effect on the stability of a freely rotating island
chain. On the other hand, the polarization current has a sta-
bilizing effect on a locked island chain provided the chain’s
neoclassical phase velocity lies in the range 0;Vp

nc;−4V!i,
and has a destabilizing effect otherwise.

I. High toroidal flow damping limit

In the high toroidal flow damping limit, 6'(, -̂#i'-̂$i
'6−1, Eqs. !136"–!138" yield55

Y!k" 0 −
1

A!k"'1 −
-̂#i

-̂$i
61 −

1
A!k"B!k"7(v . !153"

It follows from Eq. !143" that55

Js 0 − 5.51-̂#iv . !154"

As before, this implies that v f 00, i.e., a freely rotating is-
land chain propagates at the neoclassical phase velocity. Ac-
cording to Eq. !142",55

Ip 0 1.38v!v − 1" . !155"

Hence, we conclude that the ion polarization current has a
negligible effect on the stability of a freely rotating island
chain. Moreover, the polarization current has a stabilizing
effect on a locked island chain provided the chain’s neoclas-
sical phase velocity lies in the range 0;Vp

nc;−V!i, and has
a destabilizing effect otherwise.

V. WEAK POLOIDAL FLOW DAMPING REGIME

A. Ordering scheme

The ordering scheme adopted in the so-called weak po-
loidal flow damping regime is

4060:v,*,+n,

4061:&,),!,+c,

4160:.,D,(, -̂$i,

4161:-̂#i,

4162:-̂#e.

This scheme implies that

%!i ≫ -.,-D,-(,-#i,-$i 7 !&s/qs"2-#i,!me/mi"-#e. !156"

According to the above inequality, the ion poloidal flow
damping term is negligible to zeroth order in the primary
expansion, as are the other flow damping and transport
terms. Moreover, the poloidal flow damping term is negli-
gible in the parallel equation of motion !9" to first order in
the primary expansion. The above ordering scheme leads to
Eqs. !27"–!30" and Eq. !105".

B. Zeroth order solution

To lowest order in the primary and secondary expansions
!i.e., to order 4060", Eqs. !6"–!10" reduce to exactly the same
expressions as those obtained in the intermediate flow damp-
ing regime !see Sec. IV B".

C. First order solution

To first order in the primary expansion, and zeroth order
in the secondary expansion !i.e., to order 4160", Eqs.
!6"–!10" yield

0 = #01,0 + *N1,0,"0,0$ + #00,0 + *N0,0,"1,0$ , !157"

0 = #01,0,N0,0$ + #00,0,N1,0$ + D$X
2N0,0, !158"
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0 = #J1,0,"0,0$ , !159"

0 = #01,0,V0,0$ + #00,0,V1,0$ − !1 + *"+n#N1,0,"0,0$

− !1 + *"+n#N0,0,"1,0$ + ($X
2V0,0 − -̂$iV0,0, !160"

0 = $X
2"1,0, !161"

respectively. Moreover, Eqs. !161" and !157"–!160" give

"1,0 = 0, !162"

01,0 = − *N1,0, !163"

#N1,0,8$ =
D!X2d8L + L"

M + *L
, !164"

#J1,0,8$ = 0, !165"

*#N1,0,V̄$ − sM#V1,0,8$ + !1 + *"+n#N1,0,8$

= ($X
2V̄ − -̂$iV̄ , !166"

respectively. In addition, the lowest order flux-surface aver-
age of Eq. !6" reduces to Eq. !126".

As before, Eq. !126" implies Eq. !127". Moreover, the
flux-surface average of Eq. !164", combined with the bound-
ary condition !43", yields expression !64" outside the mag-
netic separatrix. Equation !164" also gives Eq. !65" outside
the separatrix. Now, the flux-surface average of Eq. !166"
reduces to

d

d8
'2X23

dV̄

d8
( −

-̂$i

(
213V̄ = 0. !167"

The above equation must be solved in the region −1:8

:2, subject to the boundary conditions that V̄!8" be well-
behaved as 8→−1, and that #see Eq. !112"$

V̄!8 → 2" → 0. !168"

However, the solution is obvious, i.e.,

V̄!8" = 0. !169"

Finally, Eq. !165" implies that

J1,0 = 0. !170"

To first order in both the primary and secondary expansions
!i.e., to order 4161", Eqs. !8", !163", and !169", give

#J1,1,8$ = − !1 + *"+c#N1,0,X$ − $XG , !171"

where

G = !1 + *"&#N1,0, +X+M$ − *&!M − L"#+X+$8N1,0,8$

− &()+X+3d8
2 !M − L" + 3+X+d8!M − L"*

+ -̂#i)+X+!M − L" + v* . !172"

The flux-surface average of Eq. !171" yields

0 = d8)2+X+G3 + !1 + *"+c2+X+#N1,0,8$3* , !173"

outside the separatrix, whereas the flux-surface average of X
times this equation gives

2X#J1,1,8$3 = − d8)2X2G3 + !1/2"!1 + *"+c2X2#N1,0,8$3*

+ 2G3 . !174"

Now, it can be demonstrated that

2+X+ jG3 = &!1 + j"−1)!1 + *"M − j*!M − L"*

,d82+X+ j+1#N1,0,8$3 + &!1 + *"d8M2+X+ j+1

,#N1,0,8$3 + &j*!M − L"2+X+ j−1#N1,0,8$3

− &()2+X+ j+33d8
2 !M − L" + 32+X+ j+13d8!M − L"*

+ -̂#i)2+X+ j+13!M − L" + v2+X+ j3* , !175"

outside the separatrix, and

2+X+ jG3 = -̂#iv2+X+ j3 , !176"

inside the separatrix.
Equation !173" can be integrated in 8 to give

0 =
d

d8
62X43d8!M − L" −

1
2

D

(
2X2̃X2̃3d8L7

−
1
2

D

(
2X2̃X2̃3)!1 + 2*"d8M − *d8L*

d8L

M + *L

− !1 + *"
+c

&

D

(
2+X+̃X2̃3

d8L

M + *L
−

-̂#i

&(
)2X23!M − L" + v* ,

!177"

outside the separatrix, where use has been made of Eqs. !42",
!64", !65", and !175".

Finally, Eq. !174" can be integrated in 8 to give

,
−1

2

2X#J1,1,8$3d8 = ,
−1

2

2G3d8 = -̂#i,
−1

2

!M − L + v213"d8 ,

!178"

where use has been made of Eqs. !42", !64", !65", !175", and
!176".

D. Separatrix boundary layer

The flux-surface functions M!8" and L!8" are both zero
inside, and nonzero just outside, the magnetic separatrix. As
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before, the apparent discontinuities in these two functions are
resolved in a thin boundary layer on the separatrix of !un-
normalized" width )i. Inside the layer, Eq. !177" reduces to

0 0
d2

dy2'M − L −
1
2

D

(
L(

−
1
2

D

(
dy)!1 + 2*"M − *L*

dyL

M + *L
, !179"

where y= !8−1" / !)i /w", and dy %d /dy. Let us assume that
M = !1−v0"L within the layer, where v0 is a constant. It
follows that

0 =
d

dy
'L

dL

dy
( − 6v0!v0 − 1− *#1 + D/($"

!v0 − 1− *"!v0 + D/2("7'dL

dy
(2

.

!180"

Integrating across the layer from just inside the separatrix
!i.e., y→−2, where L=0" to just outside the separatrix #i.e.,
y→2, where dyL/O!)i /w"'1, since d8L/O!1"$, we ob-
tain

8v0!v0 − 1− *#1 + D/($"
!v0 − 1− *"!v0 + D/2("8,−2

2 'dL

dy
(2

dy ' 1. !181"

Now, the integral in the above expression is positive definite,
and also much larger than unity. Thus, the only way in which
Eq. !181" can be satisfied is if

v0!v0 − 1− *#1 + D/($" 0 0, !182"

which implies that

v0 = 0. !183"

Here, we have chosen the root of the quadratic Eq. !182"
which corresponds to the obvious physical solution v0=0
when D /(=0.58

E. Determination of flow profiles

Making use of the definitions in Sec. III E, Eq. !177"
reduces to

0 =
d

dk
6 2X43

4k
dkM + '1 +

1
2

D

(
( 2X43213

2X232 7 +
1
2

D

(

,' 2X43213
2X232 − 1( #!1 + 2*"2X23dkM + *4k213/2X23$

2X23M + *

+ !1 + *"
+c

&

D

(
' 2+X+33213

2X23
− 1( 4k

2X23M + *

−
-̂#i

&(
4k#2X23M + v − 1$ . !184"

The above equation describes a competition between cross
flux-surface momentum transport due to perpendicular ion
viscosity !first term on the right-hand side", ion poloidal flow
damping !last term on the right-hand side", and coupling to
drift waves !all terms proportional to D /(". Note that the
origin of the drift-wave coupling in the equations that deter-
mine M!k" is different in the strong and weak poloidal flow
damping regimes. In the former regime, the coupling comes
from the #0 ,V$ and #N ,"$ terms in the parallel plasma
equation of motion !10", as well as the !1+*"+c#N ,X$ term
in the parallel plasma vorticity equation !9". In the latter
regime, the coupling comes from the &$X#0−N ,$X0$ and
!1+*"+c#N ,X$ terms in the parallel plasma vorticity equa-
tion. Equation !184" must be solved for M!k" in the region
1:k:2, subject to the boundary conditions #see Eq. !42"
and Sec. V D$

M!k → 1" →
5

4
, !185"

M!k → 2" →
1 − v

2k
. !186"

This procedure fully specifies M!k".
It follows from Eqs. !18", !19", !38"–!41", !64", and

!169" that, to lowest order,

V#i − V#i
nc

V!i
= 9v 0 9 k 9 1

2#k2 − cos2!//2"$1/2!M − 1/2X23" + v 1 : k ,
: !187"

V$i − V$i
nc

!qs/&s"V!i
= 0. !188"

Thus, in the weak poloidal flow damping regime there is
complete damping of the ion toroidal flow in the vicinity of
the island chain. Moreover, the ion poloidal flow, which is
not completely damped, is continuous across the magnetic
separatrix !since v0=0".

F. Evaluation of cosine integral

The lowest order contribution to the cosine integral, Jc,
comes from J0,1. It follows from Eqs. !20", !64", !88", !115",
!127", and !183" that the Rutherford equation takes the form
!141", where
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Ip = ,
1

2 2X23
213 ' 2X43213

2X232 − 1(
,#dkM!2X23M − 1" + 2X23M!dkM + 4k213/2X232"$dk ,

!189"

and Ib=1.58. Note the absence of any contribution from the
boundary layer on the separatrix to the above expression #cf.,
Eqs. !90" and !142"$. As before, there is no neoclassical en-
hancement of ion inertia in the weak poloidal flow damping
regime, so the ion polarization term appearing in the Ruth-
erford equation is smaller in magnitude by a factor of order
!&s /qs"2 than the corresponding term obtained in the strong
poloidal flow damping regime. However, the perturbed boot-
strap current and mean magnetic curvature terms appearing
in the Rutherford equation are essentially the same in both
regimes.

G. Evaluation of sine integral

The lowest order contribution to the sine integral, Js,
comes from J1,1. It follows from Eqs. !64", !92", and !178"
that

Js = − 16-̂#i'v,
0

1

k213dk + ,
1

2

k#M − 1/2X23 + v213$dk( .

!190"

H. Low poloidal flow damping limit

In the low poloidal flow damping limit, 6'-̂#i /&('1,
the solution to Eqs. !184"–!186" is somewhat simplified. In-
deed, far from the separatrix, in the region 1'k, these equa-
tions yield

M!k" 0
1 − v + !v − v f"e−2!-̂#i/&("1/2k

2k
, !191"

where v f is an arbitrary constant. Closer to the separatrix, in
the region 1:k' !-̂#i /&("−1/2, Eq. !184" reduces to

0 0
d

dk
6 2X43

4k
dkM + '1 +

1
2

D

(
( 2X43213

2X232 7 +
1
2

D

(

,' 2X43213
2X232 − 1( #!1 + 2*"2X23dkM + *4k213/2X23$

2X23M + *

+ !1 + *"
+c

&

D

(
' 2+X+33213

2X23
− 1( 4k

2X23M + *
. !192"

The above equation must be solved in the region 1:k:2,
subject to the boundary conditions

M!k → 1" →
5

4
, !193"

M!k → 2" →
1 − v f

2k
. !194"

This procedure fully specifies both M!k" and the constant v f.
Now, according to Eqs. !190" and !191",

Js 0 − 4!-̂#i&("1/2!v − v f" + O!-̂#i" . !195"

Hence, v f is the characteristic phase velocity parameter for a
freely rotating island chain. Now, the polarization integral,
Ip, specified in Eq. !189", converges for k' !-̂#i /&("−1/2, and
can thus be evaluated using the solution to Eq. !192". It
follows that Ip depends on the free phase velocity parameter,
v f, but not on the actual phase velocity parameter, v. We thus
conclude that the contribution of the ion polarization current
to the Rutherford equation is the same for both a freely ro-
tating and a locked island chain.

Figure 3 shows the phase velocity parameter, v f, of a
freely rotating island chain plotted as a function of D /( for
various different values of +c /&. It can be seen that v f
is approximately proportional to D /(, being positive for
0:+c /&>1, and negative for +c /&<1. In other words, cou-
pling to drift waves !parameterized by D /(" causes a freely
rotating island chain to propagate in the electron diamagnetic
direction, relative to the local unperturbed ion fluid, when the
mean magnetic curvature is relatively small, and in the ion
diamagnetic direction when the curvature is relatively large.
Figure 4 shows the polarization integral, Ip, plotted as a func-
tion of D /( for various different values of +c /&. It can be
seen that Ip is also roughly proportional to D /(. Moreover,
Ip is negative when 0:+c /&>1.75, and positive when
+c /&<1.75. It follows that coupling to drift waves allows
the ion polarization current to have a stabilizing effect on
either a freely rotating or a locked island chain when the
curvature is relatively small, and a destabilizing effect when
the curvature is relatively large.

FIG. 3. !Color online" The phase velocity parameter, v f, for a freely rotating
island chain, calculated as a function of the perpendicular diffusivity ratio,
D /(, in the low poloidal flow damping limit of the weak poloidal flow
damping regime. The first, second, third, fourth, and fifth curves !in order
from the top to the bottom" correspond to +c /&=0.0, 0.5, 1.0, 1.5, and 2.0,
respectively. The calculations are performed with *=1.0.
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I. High poloidal flow damping limit

In the high toroidal flow damping limit, 1'-̂#i /&(
'6−1, the solution to Eqs. !184"–!186" is very considerably
simplified. In fact, it is easily demonstrated that

M!k" 0
1 − v
2X23

+
5

4
ve−!6-̂#i/&("1/2!k−1". !196"

Hence, Eq. !190" yields

Js 0 − 16-̂#iv6,
0

1

k213dk + ,
1

2

k'213 −
1

2X23(dk7
−18

3
5!-̂#i&("1/2v = − 5.51-̂#iv − 5.13!-̂#i&("1/2v .

!197"

Thus, the characteristic phase velocity of a freely rotating
island chain is v f 00, i.e., a freely rotating chain propagates
at the neoclassical phase velocity. According to Eq. !189",
the polarization integral takes the form

Ip 0 v!v − 1"625

3
− 8,

1

2 k

2X23' 2X43213
2X232 − 1(dk7

= 1.38v!v − 1" . !198"

For a freely rotating island chain, with v=v f 00, this expres-
sion reduces to Ip00. It follows that the ion polarization
current has a negligible effect on the stability of a freely
rotating island chain. On the other hand, for a locked island
chain, with v=vl, where vl is given in Eq. !25", Eq. !198"
implies that the ion polarization current has a stabilizing
effect when 0:vl:1, and a destabilizing effect otherwise,
i.e., the polarization current is stabilizing provided the

locked chain’s neoclassical phase velocity lies in the range
0;Vp

nc;−V!i.

VI. SUMMARY

We have developed a drift-MHD fluid model of an iso-
lated, steady-state, helical magnetic island chain, embedded
in the pedestal of a large aspect ratio, low-!, circular cross
section, H-mode tokamak plasma, in the presence of an ex-
ternally generated, multiharmonic, static magnetic perturba-
tion !such as might occur in a typical RMP experiment". The
starting point for the model is a set of single helicity, re-
duced, drift-MHD, fluid equations. These equations can be
regarded as an extension of the well-known four-field equa-
tions of Hazeltine et al.50 that takes into account neoclassical
poloidal and toroidal flow damping, as well as the perturbed
bootstrap current. The equations are solved analytically in a
number of distinct ordering regimes by means of a system-
atic expansion in small quantities. For the case of a freely
rotating island chain, the main aims of the calculation are to
determine the chain’s phase velocity, and the magnitude and
sign of the ion polarization term in its Rutherford radial
width evolution equation. For the case of a locked island
chain, the main aims are to determine the magnitude and sign
of the polarization term.

The selected ordering regimes are designed to illustrate
the effect of various different levels of poloidal flow damp-
ing on the island chain, while still ensuring that the
constant-" approximation holds, and that the lowest order
ion flow is tied to perturbed magnetic flux surfaces. The
regimes also exploit the peculiar properties of the pedestal of
a large aspect ratio, low-!, H-mode tokamak plasma during
an RMP experiment, including the relatively small density
scale length, and the presence of significant toroidal flow
damping generated by the nonresonant harmonics of the ex-
ternal magnetic perturbation.

The so-called strong poloidal flow damping regime !see
Sec. III" is characterized by

-#i 7 !&s/qs"2-#i 7 %!i 7 -(,-$i, !199"

where &s /qs is the ratio of the poloidal to the toroidal
magnetic-field strength, -#i the ion poloidal flow damping
rate, %!i the ion diamagnetic frequency, -( the rate of radial
momentum transport across the island region due to perpen-
dicular ion viscosity, and -$i the ion toroidal flow damping
rate. All quantities are evaluated at the rational surface. Ac-
cording to the above ordering scheme, ion poloidal flow
damping is dominant in both the parallel plasma vorticity
equation and the parallel plasma equation of motion. This
turns out to be necessary condition for obtaining a neoclas-
sical enhancement of ion inertia. Ion poloidal flow damping
also dominates perpendicular ion viscosity and ion toroidal
flow damping in both equations.

The intermediate poloidal flow damping regime !see
Sec. IV" is characterized by

%!i 7 -#i 7 -(,-$i,!&s/qs"2-#i. !200"

According to the above ordering scheme, ion poloidal flow
damping is small compared to the leading order terms in

FIG. 4. !Color online" The polarization integral, Ip, calculated as a function
of the perpendicular diffusivity ratio, D /(, in the low poloidal flow damping
limit of the weak poloidal flow damping regime. The first, second, third,
fourth, and fifth curves !in order from the bottom to the top" correspond to
+c /&=0.0, 0.5, 1.0, 1.5, and 2.0, respectively. The calculations are per-
formed with *=1.0.
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both the parallel plasma vorticity equation and the parallel
plasma equation of motion, but dominates perpendicular ion
viscosity and ion toroidal flow damping in the former equa-
tion, and is the same size as these effects in the latter. There
is no neoclassical enhancement of ion inertia in this regime.

Finally, the weak poloidal flow damping regime !see
Sec. V" is characterized by

%!i 7 -#i,-(,-$i 7 !&s/qs"2-#i. !201"

According to the above ordering scheme, ion poloidal flow
damping is small compared to the leading order terms in
both the parallel plasma vorticity equation and the parallel
plasma equation of motion, is the same size as perpendicular
ion viscosity and ion toroidal flow damping in the former
equation, but is negligible compared to these effects in the
latter. Again, there is no neoclassical enhancement of ion
inertia in this regime.

In the strong poloidal flow damping regime, the radial
electric field profile in the vicinity of the island is determined
by a competition between perpendicular ion viscosity, ion
toroidal flow damping, and coupling to drift waves !see Sec.
III E". Moreover, the ion poloidal velocity in the island re-
gion is fully relaxed to its neoclassical value, whereas the ion
toroidal velocity is incompletely relaxed. In the intermediate
poloidal flow damping regime, the radial electric field profile
in the vicinity of the island is determined by a competition
between perpendicular ion viscosity, ion poloidal flow damp-
ing, and ion toroidal flow damping !see Sec. IV D". Further-
more, neither the ion poloidal velocity nor the ion toroidal
velocity in the island region are completely relaxed to their
respective neoclassical values. Finally, in the weak poloidal
flow damping regime, the radial electric field profile in the
vicinity of the island is determined by a competition between
perpendicular ion viscosity, ion poloidal flow damping, and
coupling to drift waves !see Sec. V E". Moreover, the ion
toroidal velocity in the island region is fully relaxed to its
neoclassical value, whereas the ion poloidal velocity is in-
completely relaxed.

In the strong poloidal flow damping regime, two limits
are found, depending on the relative strengths of the ion
toroidal flow damping rate, -$i, and the perpendicular ion
momentum diffusion rate, -(. The low toroidal flow damping
limit corresponds to -$i'-( !see Sec. III H". In this limit,
coupling to drift waves causes a freely rotating island chain
to propagate strongly in the electron diamagnetic direction,
relative to the unperturbed local ion fluid. Drift-wave cou-
pling also causes the neoclassically enhanced ion polariza-
tion current to have a strong stabilizing effect on both a
freely rotating and a locked island chain. The high toroidal
flow damping limit corresponds to -$i7-( !see Sec. IV". In
this limit, a freely rotating island chain only propagates
weakly in the electron diamagnetic direction, relative to the
unperturbed local ion fluid, and the neoclassically enhanced
ion polarization current only has a weak stabilizing effect on
the chain. For the case of a locked island chain, the ion
polarization current is stabilizing when the chain’s neoclas-
sical phase velocity !i.e., the fixed value toward which ion
poloidal and toroidal flow damping relax the phase velocity"
is in the ion diamagnetic direction, but is smaller in magni-

tude than the local ion diamagnetic velocity, otherwise it is
destabilizing.

In the intermediate poloidal flow damping regime, three
limits are found, depending on the relative strengths of the
ion poloidal flow damping rate, -#i, the ion toroidal flow
damping rate, -$i, and the perpendicular ion momentum dif-
fusion rate, -(. The low toroidal flow damping limit corre-
sponds to -$i'-(, -(

2 / !&-#i", where &= !&s /qs"2 !see Sec.
IV G". The intermediate toroidal flow damping limit corre-
sponds to -(

2 / !&-#i"'-$i'&-#i !see Sec. IV H". Finally,
the strong toroidal flow damping limit corresponds to -(,
&-#i'-$i !see Sec. V". In all three regimes, a freely rotating
island chain propagates at its neoclassical phase velocity
!i.e., it is effectively convected by the unperturbed local ion
fluid", and the ion polarization current has a negligible effect
on the chain’s stability. For the case of a locked island chain,
the ion polarization current is stabilizing when the neoclas-
sical phase velocity is in the ion diamagnetic direction, but is
smaller in magnitude than a critical value which is of order
the local ion diamagnetic velocity !but is different in the
three different limits", otherwise it is destabilizing.

In the weak poloidal flow damping regime, two limits
are found, depending on the relative strengths of the ion
poloidal flow damping rate, -#i, and the perpendicular ion
momentum diffusion rate, -(. The low poloidal flow damp-
ing limit corresponds to -#i'-( !see Sec. V H". In this limit,
coupling to drift waves causes a freely rotating island chain
to propagate in the electron diamagnetic direction, relative to
the unperturbed local ion fluid, when the magnetic curvature
is relatively small, and in the ion diamagnetic direction when
the curvature is relatively large. Drift-wave coupling also
causes the ion polarization current to have a stabilizing effect
on both a freely rotating and a locked island chain when the
curvature is relatively small, and a destabilizing effect when
the curvature is relatively large. The high poloidal flow
damping limit corresponds to -#i7-( !see Sec. VI". In this
limit, a freely rotating island chain propagates at its neoclas-
sical phase velocity, and the ion polarization current has a
negligible effect on the chain’s stability. For the case of a
locked island chain, the ion polarization current is stabilizing
when the chain’s neoclassical phase velocity is in the ion
diamagnetic direction, but is smaller in magnitude than the
local ion diamagnetic velocity, otherwise it is destabilizing.
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