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Turbulent transport due to drift waves is a critical issue for fusion physics across all magnetic
confinement geometries. Three-component fluid equations are used to find the eigenmodes and
eigenfrequencies of a nonuniform, magnetized plasma with a four dimensional fluctuation vector
composed of fluctuations of the electron density, the working gas ion density, the impurity density,
and the electrostatic plasma potential. This structure of the eigenmodes and eigenvectors is shown
for two collisionality regimes: �i� the collisional drift waves appropriate for the scrape-off-layer and
the edge plasma in limiter discharges and �ii� the trapped electron mode taken in the limit of a
Terry–Horton fluid description for the core plasma. From the eigenmodes and eigenvectors the part
of the density and potential fluctuations that are out-of-phase is computed. The quasilinear particle
fluxes are analyzed as a function of the power spectrum of the plasma potential fluctuations and the
gradient parameters characterizing the Ohmic, H, and internal transport barrier confinement modes.
A reversal in a direction of impurity flux is observed by changing the sign of the impurity density
gradient length. After reversal, the impurity flux is directed outward and it is a favorable for fusion
plasmas. © 2010 American Institute of Physics. �doi:10.1063/1.3459062�

I. INTRODUCTION

Impurity transport is an important issue for fusion plas-
mas. Impurity accumulation in the core may lead to detri-
mental radiated power losses from high Z impurities and fuel
dilution from both high and low Z impurities. Even so, im-
purities are unavoidable. They appear in the plasma due to
ablation of walls due to plasma heat flux, wall erosion due to
escaping fast ions, and intentional introduction to produce
edge localized radiation for a continuous heat exhaust. The
impurity elements are wide ranging and include both high
and low Z. Argon may be injected to facilitate heat exhaust.
The vacuum vessel walls may be sheathed in low Z elements
such as carbon and beryllium and high Z elements such as
tungsten. Different sections of the wall have different mate-
rial requirements so that both high and low Z elements will
be used. Indeed, there is already experimental evidence that
plasma performance will be affected by materials choice:
In JET enhanced performance with low effective charge
Zeff�2 was obtained by changing the facing components
from graphite to beryllium.1 Although such results are clearly
important in their own right, their optimum impact will come
only after they are understood, they must be understood in
terms of the underlying physics. It is crucial to understand
the ramifications of these material choices for ITER plasma2

and the transport of both high and low Z impurities using as
transparent an explanation as practical.

We study how the collisional and trapped electron drift
wave dynamics is modified by impurities and how the turbu-
lence transports the impurities in a background of hydro-
genic plasma with a density gradient. A system of fluid equa-
tions describing a generalized collisional drift wave
turbulence for the hydrodynamic density and the impurity

density is derived in the electrostatic approximation. The col-
lisional regime is considered so the equations give a gener-
alized form of the Hasegawa–Wakatani system of equations.3

The trapped electron mode is modeled with a generalized
form of the Terry–Horton system of equations which has a
similar mathematical structure and is applied inside the
separatrix.4

We show examples for a low Z impurity, boron, which is
fully stripped, B5+. Boron is one of the major impurities in
Alcator C-Mod tokamak.5 We characterize the level of the
impurity density nz with the Zeff and limit Zeff�1.5 since
higher Zeff is not an interesting regime because it dilutes the
hydrogenic fuel and prevents significant fusion power.

There are four space-time fields of interest, and the con-
straint of quasineutrality reduces the system to three free
fields which are taken as the electron density, the hydrogenic
ion density, and the impurity density. The condition of
quasineutrality then determines the electrostatic field ��x , t�
and replaces the Poisson equation. Alternatively, one may
view the three independent fields as the electrostatic poten-
tial and the two ion density fields, ni and nz, with the electron
density determined by the quasineutrality condition

ne�x,t� = ni�x,t� + Znz�x,t� . �1�

The dynamics of the three density fields are determined by
the Braginskii fluid equations in the approximation of low
ion temperatures and finite electron temperature. The low ion
temperature modeling simplifies the analysis considerably.
We assume the plasma pressure is sufficiently low that the
electrostatic approximation is valid.

The impurity is represented as a single field. This makes
the theory more transparent and has an experimental realiza-
tion. The theory best describes fully stripped ions, and its
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ramifications can be explored with these ions on any device.
Although the ion of interest may be different according to the
temperature and density achieved, there will be typically one
or more fully stripped ions to test this theory. We use com-
parison with recent Alcator C-Mod data to motivate the
calculation parameters and assure that our theory remains
within a consistent set of impurity profiles and plasma
parameters.

In Sec. II we introduce the structure of the drift wave
system of equations for one hydrogenic ion and one impurity
species using the familiar Hasegawa–Wakatani model with
cold ions and isothermal electrons to close the system of
fluid equations. The section gives the nonlinear system of
three partial differential equations from this analysis. In Sec.
III we introduce the trapped electron fluid component to for-
mulate the nonlinear and eigenvalue problem for the dissipa-
tive and collisionless models of the trapped electron instabil-
ity in the absence of electron temperature gradients. In Sec.
IV we present the linear analysis of the system of equations
deriving a matrix formulation. The dispersion relations are
calculated using the experimental data of Alcator C-Mod as
input parameters. Then we show some examples for fully
ionized boron with the plasma having an effect charge Zeff.
In Sec. V we present the quasilinear system of transport
equations which are derived from the eigenvectors. The qua-
silinear flux which is calculated from the Alcator C-Mod
parameters is also presented. In Sec. VI we analyze the varia-
tion of the impurity flux with increasing impurity density and
the impurity profiles that are obtained in the steady state. In
Sec. VII we present the conclusions and suggestions for fu-
ture work and experiments.

II. DRIFT WAVES

The fluid model is used for mixed resistive drift wave
turbulence. It is based on evolution equations for the densi-
ties and parallel velocity of electrons. We consider the iso-
thermal equation of state to eliminate the temperature gradi-
ent driven modes. It is assumed that the magnetic field is
uniform and in the z-direction, B=B0êz. In the comparison
work we analytically add the ion temperature gradient and
impurity temperature gradient driving terms without the cor-
responding thermal field equations.

The Braginskii equations describe the evolution of fluid
moments. The equations of the evolution of densities are

�ns

�t
+ � · �nsvs� = 0, �2�

where ns and vs are the density and the fluid velocity for each
species s. Subscript s indicates species �e for electrons, i for
ions, and z for impurities�.

The evolution of fluid velocities is given by

nsms
dvs

dt
= nses�E + vs � B� − �ps − � · �s, �3�

where ps and �s are the pressure and the off-diagonal mo-
mentum stress tensor. The mass and charge of the particle are
ms and es for species s, respectively. Owing to the assump-

tion of low ion temperatures only a small ion viscosity is
kept from the ion momentum stress tensors.

Taking the outer product of B with Eq. �3� yields per-
pendicular components of drift velocity vs� as vs�=vE

+vs,�+vs,pol, where the three velocity fields are defined as
the E�B drift vE= �E�B� /B2, the diamagnetic drift
vs,�= �1 /esns��BÕB2���ps, and the polarization drift
vs,pol= �ms /es��B /B2�� �dvs� /dt�. The electron polarization
drift is negligible owing to the proportionality to the electron
mass. The compressibilities of the velocities are � ·vE=0,
� ·v�=0, and � ·vs,pol=−�ms /esB

2��d /dt��2�.
After a short transit in which the pellet or the gas puff is

ionized and the electrons stream over the magnetic surface,
we have quasineutrality and the dynamics which are de-
scribed by a reduced Eq. �2� as follows:

ni + Znz = ne,

dni

dt
+ �i

mi

eB2�4� = � · �mini

eB2

d

dt
� �� ,

�4�
dnz

dt
+ �z

mz

eB2�4� = � · � mznz

ZeB2

d

dt
� �� ,

dne

dt
+

�De

ky

�ne

�y
=

1

e
�� · J� .

The generalized Ohm’s law gives

J� = ���E� +
Te

ene

�ne

�z
� = ���−

��

�z
+

Te

ene

�ne

�z
� . �5�

We define the total derivative by the advective portion due to
vE, giving d /dt= �� /�t�+vE ·�. The second term on the lhs of
Eq. �4� has �i and �z which are the viscosities of ions and
impurities, respectively. The electron temperature is Te and �
is the electron resistivity. The resistivity �=1 /�� is taken as
a function of Te which is constant in this isothermal model.
The ion temperatures are assumed to be low enough that the
ion thermal terms such as the ion diamagnetic drift and ion
momentum stress tensor are negligible. The definition of ef-
fective charge Zeff that determines the resistivity � and the
impurity dilution of the hydrogenic fusion fuel component is

Zeff =
ni + Z2nz

ni + Znz
, 1 	 Zeff � Z . �6�

For boron �B� �Z=5�, the Zeff=1.2 limit corresponds to the
reasonably small concentration nz /ne=1�10−2.

III. TRAPPED ELECTRON MODE

A. Kinetic trapped electron mode theory

Plasma collisionality is low inside the separatrix so the
collisional drift wave evolves into the collisional trapped
electron mode.6 In the core plasma, low collisionality
transforms the instability in the collisionless trapped electron
mode �CTEM�. We model the toroidal magnetic field
variation as
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B = B0�1 −
r

R
cos 
� . �7�

Small aspect ratio �=r /R�1 is considered here, and the
fraction of trapped particles f t can then be reduced by

f t =
trapped electrons

total electrons

= �Bmax

Bmin
− 1�1/2

= �1 + �

1 − �
− 1�1/2

= 1 − fp, �8�

where fp is the fraction of passing electrons.
The trapped electron instability is derived from the drift-

kinetic equation for the nonadiabatic electron distribution
function hk,��E ,� ,r ,
� which satisfies


�v�
�

��
�1 − �2�

�he

��
+ i�� − �De

v2

ve
2 − k�v��he

= i	� − ��
1 + �e�v2

ve
2 −

3

2
��� , �9�

where 
�v�=
e�ve /v�3, �De
���2Ln /R�=2���n, �e

=d log Te /d log ne, ve= �2Te /me�1/2, and �=v� /v.
There are three driving terms for the out-of-phase part of

he,k,� that give the particle fluxes. The driving terms are
G1=R /Len, G2=R /LTe, and G3=2 cos 
 /R. The growth/
damping rate �k is a function of the G� which may be ex-
pressed as

�k = �
�=1

3 � d�k

dG�

G�� . �10�

The solution of the drift-kinetic equation Eq. �9� divides
into a low energy collisional part where

v
ve

� � 
e

k�ve�
3/2�1/4

�11�

and

he0�v� =
� − ���1 + �e�v2/ve

2 − 3/2��
� − �Dev

2/ve
2 + i�
e/���ve/v�3 . �12�

In the core of the plasma the effective collisionality 
�e

of the high energy electrons is small,


�e = 
eqR/��3/2ve� � 1, �13�

where we use the depth of the mirror well �B /B
2� in
Eq. �8�.

The high energy solution of the electron kinetic equa-
tion, Eq. �9�, gives fluctuating �fe,

�fe = fM
e

Te
	� −

1

�
� ds�

v�

��s��
� − ��e

� − �De + i
eff
� , �14�

where ��ds� /v�� is the bounce time period. For the trapped
particle instability we have the orbit integral which is discon-
tinuous integral as follows:

1

�
� ds�

v�

� = 0 �passing electrons�

� � �trapped electrons� �15�

due to phase mixing of � over the irrational toroidal field
lines.

B. Collisionless trapped electron mode
and dissipative trapped electron mode

The details of the trapped particle mode analysis are
given in Ref. 7. From Eqs. �14� and �15� we derive the pass-
ing �np and trapped particles densities,

�np =� d3v�fp = fp
nee�

Te
, �16�

�nt =� d3v�f t = f t
nee�

Te

1 −

� − ��e

� − �De + i
eff
� . �17�

There are two regimes of trapped electron modes: the colli-
sionless trapped electron mode �CTEM� and the dissipative
trapped electron mode �DTEM�. For the CTEM, that is 
eff

��De, we have

�ne

ne
=

nee�

Te
�1 + i�f t��� − ��e����� − �De���� . �18�

For the DTEM, that is 
eff� ���
�De, we have

�ne

ne
=

nee�

Te

1 + if t

� − ��e


eff
� . �19�

These formulas are used in the Terry–Horton model as ex-
plained in Ref. 8.

For the collisionless regime 
eff���e, the nonlinear dy-
namical equation for the passing electron mode is

�np =
enp

Te
�k,

where �np=np−np0 and is linear. The dissipative limit is

�nt

�t
+ vE · �nt = − 
eff�nt − nt0� �20�

given by nt0= f tne. The fluctuating trapped electron density
�nt is
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�− i� + 
eff��nt +
− iky�

B

dnt

dr
= 0. �21�

For the transition from the collisional regime to the hot
core plasma for ��De��
eff the dissipation is replaced with

eff→cD��De�, where the constant cD is chosen to be in
agreement with gyrokinetic codes.

The nonlinear fluid trapped electron mode is described
by

dni

dt
+ �i

mi

eB2�4� = � · �mini

eB2

d

dt
� �� ,

dnz

dt
+ �z

mz

eB2�4� = � · � mznz

ZeB2

d

dt
� �� ,

�22�

ne = − nefp
e�

Te
+ Z�nz + nt0,

d�nt

dt
+

�De

ky

��nt

�y
= − 
eff�nt.

IV. LINEAR EIGENMODES ANALYSIS

A. Matrix equations for fluctuations

Linearization and Fourier decomposition of equations in
the previous section, assuming a modal dependence of the
type exp i�k ·r−�t�, lead to a dispersion relation. In the lin-
earized system, the unstable modes are the only remaining
modes after the system evolves for a finite time. They are
characterized by a real frequency �k and a growth rate �k:
�=�k+ i�k.

Now we define the eigenmodes and eigenvectors of the
linearized dynamical equations. In a linearization process of
Eq. �4�, we look for spectral solutions of the form of
exp�ik ·x− i�t� and derive the following 4�4 matrixes
MCDW�k ,�� for the field vector XT= ��ni /ne ,�nz /ne ,
��ne /ne ,e� /Te�, thus one can express the set of Eq. �4� by

MCDW�k,��X��ni

ne
,
�nz

ne
,
�ne

ne
,
e�

Te
� = 0 . �23�

The matrix MCDW�k ,�� of the set of Eq. �4� is defined as
follows:

MCDW��,k� = �
1 Z − 1 0

− i� 0 0 − i��i − i�� + i�ik�
2 �k�

2 �s,i
2

0 − i� 0 − i��z − i�� + i�zk�
2 �k�

2 �s,z
2

0 0 − i� + k�
2D� + i�De i��e − k�

2D�

� . �24�

The matrix MCDW�k� contains the three drift wave frequen-
cies and the curvature drift frequency which are

��i = ky
Te

eB

1

ne

dni

dx
,

��z = ky
Te

ZeB

1

ne

dnz

dx
,

�25�

��e = − ky
Te

eB

1

ne

dne

dx
,

�De = ky
2Te

eBR
cos 
 .

From Eq. �25� and the charge neutrality condition we derive

��e + ��i + Z2��z = 0. �26�

In summary we have the system parameters

�s,i
2 =

miTe

e2B2 , �s,z
2 =

mzTe

Ze2B2 ,

�27�

D� =
��Te

nee
2 , �� =

nee
2

me
e
.

Similarly, the trapped electron drift eigenvalue problem
of Eq. �22� is given by the matrix which is given by

MTEM��,k� = �
1 Z − 1 − fp

− i� 0 0 − i��i − i�� + i�ik�
2 �k�

2 �s,i
2

0 − i� 0 − i��z − i�� + i�zk�
2 �k�

2 �s,z
2

0 0 − i� + 
eff + i�De i��ef t

� , �28�
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and the field vector is XT= ��ni /�ne ,�nz /�ne ,�net /�ne ,
�e� /Te�. Thus one can express the set of Eq. �22� by

MTEM�k,��X��ni

ne
,
�nz

ne
,
�net

ne
,
e�

Te
� = 0 . �29�

B. Dispersion relations

Measured H-mode B5+ profiles from Alcator C-Mod are
shown in Fig. 1. This particular impurity density profile is
peaked near r /a=0.6 and is hollow near the core r /a=0.2.
Measurements at two different locations are used for the
transport analysis r /a=0.2 and r /a=0.6. The impurity den-
sity gradient length, which is defined as Lnz

−1=−�nz /nz, is
negative at r /a=0.2, Lnz=−0.18 m�0, i.e., hollow impurity
density profile. At the flattop of the profile, r /a=0.6,
the impurity gradient length is positive and very large,
Lnz=1.43 m�0, i.e., peaked impurity density profile. Vis-
cosities of ions and impurities, �i and �z, respectively, are
�i=3.55�10−4 m2 /s and �z=1.1�10−3 m2 /s. The analysis

is applied to the two different normalized radii, r /a=0.2 and
r /a=0.6. All relevant plasma parameters can be found in
Table I.

The dispersion relations of the collisional drift wave
model and the trapped electron model which are calculated
from the determinant of Eqs. �24� and �28�, respectively, are
shown in Fig. 2. The dispersion relations are calculated using
the determinant of the matrix MCDW and MTEM, which gives
a cubic polynomial equation. The trapped electron modes are
characterized by peaking of the frequency for ky 
350 m−1

and an exponential decrease for higher ky values. In compari-
son to TEM, the collisional drift wave modes are character-
ized by slower peaking of the frequency for ky 
600 m−1

and slower exponential decrease. The curves of growth rate
indicate that unstable modes exist in the trapped electron
mode while the collisional drift wave is weakly unstable.
Note that H-mode electron density profile of Alcator C-Mod
experiment is closely flat, therefore, the collisional drift
wave whose energy source is a density gradient is mostly
stable. Thus, we have a lower and higher frequency mode of
oscillations. The higher frequency mode is unstable for
ky =900 m−1 shown in Fig. 2. Figure 2 shows the trapped
electron mode has a maximum growth rate at ky =350 m−1,
where the frequency �=7�104 rad /s.

V. EIGENVECTORS AND QUASILINEAR FLUXES

The eigenvalues and the eigenvectors of the linear
modes of the impure plasma can be calculated from the ma-
trices in Eqs. �24� and �28�. The eigenvectors of the impurity
drift wave matrix give the polarization of the fluctuations
that determine the relative strength and direction of the im-
purity and hydrogenic ion transport. There is now an extra
degree of freedom for the hydrogenic ion density owing to
the motion of the impurity ions.

The full matrix M�k ,�� given by Eq. �24�, is decom-
posed into M�k ,��=A�k�− i�B�k�. Here, the matrix A�k�
and B�k� are defined as follows:

A�k� = �
1 Z − 1 0

0 0 0 i��i + �ik�
4 �s,i

2

0 0 0 i��z + �zk�
4 �s,z

2

0 0 k�
2D� i��e − k�

2D�

� , �30�

B�k� = �
0 0 0 0

1 0 0 k�
2 �s,i

2

0 1 0 k�
2 �s,z

2

0 0 1 0
� . �31�

In terms of the A and B matrices the system linear fluctua-
tion equations becomes

A�k�X = − i�B�k�X . �32�

Carrying out the solution of the eigenvalue problem of
Eq. �32� gives the eigenvectors X� for each root ��, which is
equivalent to the solution of the dispersion relation
D�� ,kx ,ky ,k��=det M=0. Now we factor out the value of

FIG. 1. �Color online� The density profiles and inverse density gradient
scale lengths of boron B5+ during an H-mode of the Alcator C-Mod toka-
mak. �a� Measurement of B5+ density profile �solid circles� and the inverse
gradient scale length Lnz

−1 of B5+ density. �b� The measurement of electron
density profile �solid circles� and the data fit �solid line�. Typical error bars
are indicated �Ref. 12�.
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the X4 component which is e�k /Te and write the eigenvector

as the independent X= �e�k /Te�X̂. Then the components of X̂
are

X̂ = �
�ni

ne
/
e�

Te

�nz

ne
/
e�

Te

�ne

ne
/
e�

Te

1

� . �33�

Physically, the X̂ vector describes the “polarization” of den-
sity waves related to the electrostatic potential wave of
plasma oscillations. Now the quasilinear particle fluxes are
given by

�i = Re�
k

iky�k
�

B
�ni = − ne

Te

eB�
k

ky�e�k�2

Te
2 Im X̂1�k� ,

�z = Re�
k

iky�k
�

B
�nz = − ne

Te

eB�
k

ky�e�k�2

Te
2 Im X̂2�k� , �34�

�e = Re�
k

iky�k
�

B
�ne = − ne

Te

eB�
k

ky�e�k�2

Te
2 Im X̂3�k� .

We have analytically and numerically verified that the first
row of Ai,jXj =0 gives that �e=�i+Z�z. The flux formulas in
Eq. �34� are ambipolar with �i+Z�z=�e. The quasilinear for-
mulation in Eq. �34� is valid when there are overlapping
resonances in the Hamiltonian motion of the test particles.9,10

The conditions are given in Ref. 8. In the nonlinear state the

fastest growing modes couple to the damped eigenmodes
driving them up to the level required for the power flow from
the unstable waves to balance the damping from the stable
modes.

The nonlinear waves will saturate when the finite kx

part of the spectrum grows up to have the rms values of
�ni /ni
Z�nz /ne
�� / �kx

2Ln
2�0.5. The spectrum has an isotro-

pic part at higher k� and a zonal flow and density flattening
part at low ky values. There are coherent vortices that come
and go in the turbulence and are especially strong in the limit
of small parallel diffusivity 
� � ��k�. The turbulent wave-
number spectrum that enters Eq. �34� is modeled as11

� e�k

Te
�2

=
I0

�1 + k�
2 �s

2�2 , �35�

where I0 is the constant value determined by the rms fluc-
tuations.

For higher ky�s modes the wave frequency �k can
change direction from the electron to the ion diamagnetic
drift direction. With this change, the net impurity particle
flux can also change direction. To determine the magnitude
and direction of the hydrogen and impurity flux we need
eigenvectors determined by Eq. �34�.

Figure 3 gives the phase shifts in radians of hydrogenic
ion, impurity, and electron densities from the electrostatic
potential fluctuations �k as a function of poloidal wave num-
ber ky. The phase shifts of the collisional drift wave system
and the trapped electron mode are computed from the matri-
ces of Eqs. �24� and �28�, respectively. Figures 3�a� and 3�b�
show the phase shifts of the collisional drift wave model at
r /a=0.2 and r /a=0.6, respectively. Figure 3�c� shows the
phase shifts of the trapped electron mode at r /a=0.6. There

TABLE I. Typical Alcator C-Mod tokamak plasma parameters.

r /a=0.2 r /a=0.6

Major radius R=0.67 m R=0.67 m

Minor radius a=0.22 m a=0.22 m

Magnetic field B=5.4 T B=5.4 T

q-value q
1.16 q
1.84

Electron temperature Te=1258.8 eV Te=626.2 eV

Electron density ne=2.23�1020 m−3 ne=2.21�1020 m−3

Impurity density nz=8.02�1017 m−3 nz=9.5�1017 m−3

Parallel wavenumber
k� =

0.5

qR

 0.6433 m−1

0.41 m−1

Electron velocity
ve = � Te

me
�1/2

= 1.49 � 107 m s−1

1.05�107 m s−1

Sound velocity
cs = �Te

mi
�1/2

= 3.47 � 105 m s−1

2.45�105 m s−1

Ion gyroradius �s=cs /�ci=6.71�10−4 m 4.73�10−4 m

Electron parallel diffusion
D� =

ve

k�

= 2.31 � 107 m2 s−1

2.59�107 m2 s−1

Parallel diffusion rate 
� =k�
2D� =9.57�106 rad s−1 4.25�106 rad s−1

Electron density gradient length Lne=6.6�103 m Lne=1.32 m

Impurity density gradient length Lnz=−0.18 m Lnz=1.43 m

Trapped fraction f t=�2r /R=0.36 f t=�2r /R=0.62
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is no significant phase shift between electron density and the
potential in the collisional drift wave model at r /a=0.2 �Fig.
3�a��. In other words, the adiabaticity of electron motion is
high enough to give the Boltzmann response. In the core, the
electron temperature is higher than that in the edge plasma.
The high temperature yields high electron velocity ve which
gives the Boltzmann response. Therefore, the electron quasi-
linear flux is small. At the normalized radius r /a=0.6 and
with the collisional drift wave model which is shown in Fig.
3�b�, the phase shifts between ion density fluctuations and
the electrostatic potential fluctuations are significant. The
large particle flux occurs at the r /a=0.6 �Fig. 3�b��. The
phase shifts come from the electron-ion collisions. In the
edge plasma, the electron temperature is low. Therefore, the
Boltzmann response is no longer effective. The phase shifts
of the trapped electron mode show a different character from
the ones of the collisional drift wave �Fig. 3�c��. The phase
shifts between the ion density fluctuations and the electro-
static potential fluctuations start from � /2. The large phase
shifts give the large particle fluxes for given fluctuation in-
tensity ��k�2.

Figure 4 shows the quasilinear flux of the impurity
�boron� for the normalized radius of r /a=0.2 �hollow boron
density profile Lnz=−0.18 m� and r /a=0.6 �flat boron den-
sity profile Lnz=1.43 m�. Figures 4�a� and 4�b� show the
quasilinear flux of the collisional drift wave model at
r /a=0.2 and r /a=0.6, respectively. Figure 4�c� shows the
quasilinear flux of the trapped electron mode at r /a=0.6.
The quasilinear fluxes are calculated for 0.1 m−1�ky

�1000 m−1. The magnitude of the particle flux is different
between the positions of r /a=0.2 �Fig. 4�a�� and r /a=0.6
�Fig. 4�b��. The flux of r /a=0.6 �Fig. 4�b�� is ten times larger
than the one of r /a=0.2. The intensity of the particle flux is
linked with the phase shifts which were shown in Fig. 3.
Figure 4�c� shows the quasilinear flux of the trapped electron
mode case. The phase shifts of the particles are strong for

low wavenumbers � /2 as shown in Fig. 3. Similarly, the
particle flux of trapped electron mode is strong in the low
wave numbers �ky =1–3 m−1� as shown in Fig. 4�c�. Another
remark is a dependence in the direction of the impurity flux
�z. The quasilinear fluxes of impurity densities at r /a=0.2

FIG. 2. �Color online� Real frequency �r and the growth rate � of the
system of �solid lines� collisional and �dotted lines� trapped electron drift
waves at r /a=0.6.

FIG. 3. �Color online� Phase shifts in radians with between hydrogenic ion,
impurity, and electron densities and the electrostatic potential fluctuations �
as a function of ky. �a� r /a=0.2, �b� r /a=0.6, and �c� r /a=0.6 of trapped
electron mode.
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show negative value which indicates that they are inward
flux. Let us note that the inward flux of the impurity density
tends to accumulate impurities in the core plasma. In the
hollow impurity density profiles at r /a=0.2, the direction of
the flux reverses to be in the outward direction which is

favorable to fusion plasma since it expels the impurities from
the core plasma.

The radial profiles of the fully striped B5+ ion density is
known from charge exchange recombination spectroscopy
for several time periods and are described in detail in Ref.
12. The internal transport barrier �ITB� for these discharges
has peaked particle profiles. This particular ITB discharge
does not display a significant change in the temperature pro-
files because of increased radiation although there is a clear
improvement in the energy confinement. The temperature
does not increase its peaking because of compensating in-
creases in plasma radiation due to peaked impurities and fu-
eling ion peaking. The analysis of sawtooth data on the soft
x-ray emission has shown that there is a significant delay in
the propagation of the heat pulse which occurs at the saw-
tooth crash across the barrier region.13 Note also that if the
temperature response is only in the ion channel, then the
strong electron-ion coupling in these shots will hold down a
temperature response. Figure 5 shows the measured density
profile for the fully stripped boron impurity which is mono-
tonically decreasing from 2�1012 cm−3 in the core to neg-
ligible at the scrape-off-layer �SOL�. Also shown is the lower
density peaked profile of the hydrogen-like B4+ ions. This
density peaks at �=0.8, where n�B4+�
2�1011 cm−3. The
ratio of the inferred value of �vz /Dz� is shown and inward
with value approximately −3 m−1 while the gyro-Bohm es-
timate of the vgB /DgB
5 m−1.

For contact between the theory and the data we show
that the model predicts the Gaussian-like profile that is hol-
low for the H-mode with its peak near the maximum of the
ionization source of the impurity. We note that for low ion-
ization states such as B4+ the dnz /dr�0 while for fully
stripped B5+ the gradient is dnz /dr�0. For this regime, the
convection part of the impurity flux is outward V�0. For the
later phase ITB regime driven by the ion cyclotron resonance
frequency heating we find that the theory predicts the ob-
served peaked profile from a small negative or inward con-
vection velocity. The convection velocity is small and sensi-

FIG. 4. �Color online� Quasilinear fluxes of boron �B� for �a� hollow impu-
rity density profile Lnz=−0.18, �b� peaked impurity density profile
Lnz=1.43, and �c� peaked impurity density profile case of trapped electron
mode. The unit of the flux is ions / �m2 s−1�.

FIG. 5. �Color online� Simulation of B5+ density �solid line� and B4+ density
�dashed-dotted line� compared with the measured B5+ density ���. v /D
�dashed line� required in the simulation is plotted on the right axis.
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tive to the details of the system parameters and gradient scale
lengths. Models for the peaked and hollow impurity profiles
are derived and when fit to the B5+ data give the ratio of the
V /D values. The collisionality regime and the gradients con-
sidered here are taken from the Alcator C-Mod data for shot
No. 1070831028 provided by the Alcator C-Mod team. �See
Appendix A for this discussion.�

There is a reversal of the fluxes of impurities under some
conditions. Obviously, reversal of a flux of impurities is of
critical importance. Figure 6 shows the quasilinear fluxes �s

versus impurity density scale length Lnz with a frame �a�
showing the case for flat H-mode-like electron density
profile �Lne=6.6�103 m at r /a=0.2� and �b� showing the
case for peaked electron density profile �Lne=1.32 m at
r /a=0.6�. The region around Lnz=0 has the impurity gradi-
ent passing through infinity. We see the important change in
the direction of the sign of the impurity flux going through
this region. Positive impurity density gradient scale lengths

indicate that impurity density is a peaked profile. In the
peaked impurity density profile, the impurity flux is directed
inward which leads to impurity accumulation in the core
plasma. Similarly, the negative impurity density gradient
scale lengths indicate that impurity density is a hollow pro-
file. A hollow impurity density profile leads to a reversal in
the direction of the impurity flux, creating an outward flow
that is favorable for the fusion plasma since it expels impu-
rities from the core plasma.

Another remark concerns the reversal of fluxes of the
electrons and ions. For the large density gradients Lne=6.6
�103 m, the reversal of the fluxes of the electrons and ions
accompanies the reversal of the flux of the impurities, as
shown in Fig. 6�a�. When the impurity scale length is nega-
tive, Lnz�0, the fluxes of the electron and ions are directed
inward while the impurity scale length is positive, Lnz�0,
the fluxes of the electron and ions are directed outward.
However, for low density gradients Lne=1.32 m, the direc-
tion of the fluxes of the electrons and the ions do not change,
i.e., the fluxes are always in inward direction, as shown in
Fig. 6�b�. In this case, the flux of the electrons and ions are
not affected by the impurities.

VI. THEORETICAL ESTIMATIONS

Impurity density nz influences the turbulent transport. In
this section, an estimation of the dependence of impurity
density on quasilinear flux is discussed.

Let us consider the pure plasma nz=0 and ni=ne as an
initial condition. Impurities will be gradually injected up to
ne=Znz. Figure 7 shows the quasilinear flux as a function of
impurity density nz for �a� peaked impurity density profile
�Lnz=0.18 m�0� and �b� hollow impurity density profile
�Lnz=−0.18 m�0�. In the state of low impurity density
�nz�1017�, the ion and electron fluxes are �i
�e
−3
�1016 ions /m2 s−1. The calculations of the quasilinear flux
are performed with Eq. �34� for wavenumbers of kx and ky up
to 2000 m−1.

Figure 8 compares the quasilinear flux of boron and ar-
gon as a function of impurity density nz. The impurity den-
sity gradient Lnz is fixed as Lnz=0.18 m for peaked impurity
density profile and Lnz=−0.18 m for the hollow impurity
density profile. The results indicate that the quasilinear flux
of the heavy impurity is smaller than the flux of the light
impurity.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work on impurity transport in toroidal plasmas we
have derived and solved two systems of drift wave turbu-
lence equations for the three-component plasma with hydro-
genic ions and a single species of impurity ions. We have
formulated the problem in a way that makes it clear how to
generalize the system to that for multiple impurity species.
We applied the model to the boron impurity data from the
Alcator C-Mod experiments.

In the SOL we generalize the familiar Hasegawa–
Wakatani model with cold ions and isothermal electrons to
acquire the eigenmodes in the three-component plasma sys-
tem. The nonlinear system for the collisional drift wave is

FIG. 6. �Color online� Quasilinear fluxes of boron �B� as dependence of
impurity density length Lnz for �a� Lne=6.6�103 m and �b� Lne=1.32 m.
The unit of the flux is ions / �m−2 s−1�.

072512-9 Fluid models of impurity transport… Phys. Plasmas 17, 072512 �2010�

Downloaded 01 Jun 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



given in Eq. �4� and the linear and quasilinear solutions have
been discussed. The results show that the larger particle flux
occurs at r /a=0.6 comparing to r /a=0.2 of Alcator C-Mod
experiments. The analysis indicates that there are no signifi-
cant phase shifts between the density and the electrostatic
potential at r /a=0.2 while the large phase shifts exist at
r /a=0.6. The phase shifts are linked with the particle fluxes,
i.e., when the phase shifts are large, the particle flux is large,
and when the phase shift is small, the particle flux is small.

Inside the SOL or separatrix the relevant turbulence is
the trapped electron mode and we use the Horton et al.14

�1980� formulation of the basic Kadomtsev–Pogutse7 �1970�
model to formulate this turbulence. We simplify the analysis
by neglecting all temperature gradients and derive a math-
ematical structure similar to that of the collisional drift
waves with the trapped electron density having nonlinear
dynamical equation while the passing electrons behave adia-
batically. The results of quasilinear flux analysis indicate that
the low wavenumbers are dominant for the particle fluxes.
This is caused by the large phase shifts in the low wave

numbers. The comparison of the results of the trapped elec-
tron mode and the collisional drift case indicates that the
trapped electron mode has higher frequency and turbulence
intensity than those of the collisional drift wave. The strong
turbulence gives rise to coherent structures.

The results show that freeing up of the hydrogenic den-
sity from the constraint that it is exactly equal to the electron
density in the two-component plasma allows the dynamics of
the impurities species to increase the richness of the turbu-
lence. A significant concentration of high Z impurities alters
the turbulence properties and turbulent transport. Similarly, a
light concentration of low Z impurities behave like passive
tracers. In other results, a hollow impurity density profile
leads to a reversal in the direction of the impurity flux, cre-
ating an outward flow that is favorable for the fusion plasma
since it expels impurities from the core plasma. This work
may lead to new strategies for controlling impurity transport.

Further work needs to be done to expand nonlinear study
and to determine how the coherent structures and zonal flows
impact the quasilinear predictions for the transport of fluxes.

FIG. 7. �Color online� Quasilinear flux as a function of nz. �a� Peaked
impurity density profile Lnz=0.18 m�0 and �b� hollow impurity density
profile Lnz=−0.18 m�0.

FIG. 8. �Color online� Comparison of quasilinear flux of boron ��B� and
argon ��Ar� as a function of nz. �a� peaking profile Lnz=0.18 m�0 and �b�
hollow profile Lnz=−0.18 m�0.

072512-10 Futatani et al. Phys. Plasmas 17, 072512 �2010�

Downloaded 01 Jun 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Coherent structures are outside the domain of applicability of
the quasilinear theory. For transport modeling, however, the
quasilinear fluxes with conventional models or data for the
wave amplitudes and the spectral index of the turbulence
may provide useful formulation for integrated systems mod-
eling of fusion power systems. The eigenmodes diagonalize
the complex linear matrices and thus are critically important
for determining the relative amounts of transport in the hy-
drogenic and impurity fluxes. The nonlinear interactions of
the growing eigenmodes with the damped eigenmodes deter-
mine the spectral densities as modeled with a simple param-
etrization. In Appendix B we give the formulation of the
dynamical equations describing the interaction of the eigen-
modes. The formulation maybe used to write low order mod-
els of the dynamics which often gives insight to the nonlin-
ear dynamics of the partial differential equations.
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APPENDIX A: ATOMIC PROCESSES
OF THE IMPURITIES

The source of B5+ is from the ionization of B4+ which
couples to n5=nz=5 to n4=nz=4 through the ionization rate
neS4�Te� and recombination rate ne�5�Te�. To solve the trans-
port problem with the source and the sink, we write

�n5

�t
+ vE · �n5 = ne�S4n4 − �5n5� , �A1�

�n4

�t
+ vE · �n4 = ne�S3n3 − �4n4 − S4n4 + �5n5� . �A2�

There is a large energy gap between the binding energy of
n�B4+� and n�B5+� so that the coupling to the lower states of
ionization can be neglected.

Averaging Eqs. �A1� and �A2� over the turbulence gives

�n5

�t
+

1

r

�

�r
�r�5� = ne�S4n4 − �5n5� , �A3�

�n4

�t
+

1

r

�

�r
�r�4� = ne�S3n3 − �4n4 − S4n4� . �A4�

Since S4n4 is large compared with �5n5 in the region
Te�100 eV we find that the steady flux is

�5�r� = −
1

r
�

r

a

dr�r�nen4S4. �A5�

For r less that the radius of the scrape-off-layer rSOL, the
integral becomes a constant.

From Eq. �A5� we calculate the flux �5. When �5 is
positive or negative, it indicates that the n5 profile is time
evolving. For a steady state, the flux is �5=0. With
V5= �r /r1�V and a constant diffusion coefficient D and pinch
velocity V we show that the B5+ profile is peaked for inward
V�0 with

n5�r� = n5�0�exp�−
�V�r2

2r1D
� �A6�

and is hollow for V�0 with

n5�r� = n5�0�exp�−
�V��a2 − r2�

2r1D
� �A7�

for simple boundary condition. Here, r1 is a characteristic
radius inside the ionization layer.

The transport dynamics analysis has been studied with
the ionization source term nenB4+��ve� that peaks near the
ionization energy Te=340 eV region of B4+ source. With the
source term included we are able to estimate D and V
separately and find that typical values are 0.1 m2 s−1 and
V	100 m s−1.

APPENDIX B: SPECTRAL EXPANSION
OF THE NONLINEAR FIELDS

Owing to the complex dependence of dynamics on the
linear equations of matrix, this is not the standard form of
Hamiltonian systems. So we introduce the left yi

�= �i� and the
right x j = �j� eigenvectors of the auxiliary matrix M=B−1A.
The left eigenvectors are taken from

yi
�M = �iyi

� �B1�

and the right eigenvectors are taken from

Mx j = � jx j . �B2�

Then postmultiply �B1� by x j and subtracting from premul-
tiply �B2� by yi

� leads to

�� j − �i�yi
�x j = 0 �B3�

from which we claim �i � j�=yi
�x j =0 for nondegenerate

�i�� j eigenvalues of the two problems, Eqs. �B1� and �B2�.
Now we can normalize �i � i�=1 and proceed as in quantum
mechanical perturbation theorem.

We now expand the turbulent fluctuation in terms of the
eigenvectors of the linear system. The advantage of the
eigenmode expansion over that of Fourier modes is that the
linear coupling is taken into account exactly. The evolution
of the expansion coefficient Ck,i�t� is due entirely to the non-
linear interactions. Conceptually, the formulation is that of
the early plasma turbulence work of Galeev and Sagdeev.15,16

The vector field X�t� is expressed as the sum over a set
of kx ,ky ,kz modes and for each k mode, there is a sum over
the three distinct eigenmodes, j=1,2 ,3. We define the time
dependent expansion coefficients that
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X�t� = �
j,k

Ck,j�t�X je
ik·x−i�k,jt + c.c., �B4�

where the dynamics dCk,j /dt is due to the nonlinear terms in
Eqs. �4� and �22�.

Substituting into Eq. �B4� we find

�
k,j

��Ck,j + i
dCk,j

dt
�BXk,je

ik·x−i�jt

= �
k,j

A�k�Ck,jXj + �
k�,j�

�
k�,j�

N�Xk�,Xk��Ck�,j�Ck�,j�.

�B5�

Now multiplying through Eq. �B5� by B−1 and contract-
ing, or projecting, the equation onto the left eigenvector
Yl,k�= �l ,k�� yields as

� i�Yl,k��Xl,k�
dCl,k

dt

= �
m,k1,n,k2

�Yl,k�N�Xm,k1
,Xn,k2

�Cm,k1
�t�Cn,k2

�t�

�exp�i��k − �k1
− �k2

�t� . �B6�

We normalize the diagonal terms of such that �Yl,k� �Xl,k�
=�l,k. Then we arrive at the nonlinear dynamical equation as
given as

i
dCl,k

dt
= �

k�+k�=k,l,m,n

�Yl,k�N�Xm,k1
,Xn,k2

�Cm,k1
�t�Cl,k2

�t�

�exp�i��k − �k1
− �k2

�t� . �B7�

Equation �B7� is of the same form that occurs in quan-
tum mechanics for the phonon-phonon interactions with a
summation of the k-space lattice and a second summation
over in state j. In the plasma problem the matrices are not

Hamiltonian. The interactions come in resonant k-vector
triads but contain the additional complexity of each triad
having three degrees of freedom for the interaction within
each triad.
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