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The influence of local E�B flow shear on a relatively wide, constant-�, magnetic island embedded
in a large-aspect-ratio, low-�, circular cross-section tokamak plasma is examined, using a slab
approximation to model the magnetic geometry. It is found that there are three separate solution
branches characterized by low, intermediate, and high values of the shear. Flow shear is found to
have a stabilizing effect on island solutions lying on the low and high shear branches, via a nonlinear
modification of the ion polarization term in the Rutherford island width evolution equation, but to
have a destabilizing effect on solutions lying on the intermediate shear branch. Moreover, the effect
is independent of the sign of the shear. The modification of island stability by local E�B flow shear
is found to peak when the magnitude of the shear is approximately vi /Ls, where vi is the ion thermal
velocity, and Ls the magnetic shear length. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3126964�

I. INTRODUCTION

A conventional magnetic confinement device is designed
to trap a thermonuclear plasma on a set of toroidally nested
magnetic flux surfaces.1 Heat and particles flow around these
surfaces relatively rapidly, due to the free streaming of
charged particles along magnetic field lines, but are only able
to diffuse across them relatively slowly, assuming that the
particle gyroradii are much smaller than the minor radius of
the device. A tokamak is a particularly successful type of
magnetic confinement device which is toroidally axisymmet-
ric, and whose magnetic field is dominated by an approxi-
mately uniform toroidal component.2,3

Tokamak plasmas are subject to a number of macro-
scopic instabilities which limit their effectiveness.3,4 Among
these, tearing modes5,6 are comparatively slowly growing in-
stabilities which eventually saturate,7,8 in the process recon-
necting magnetic flux surfaces to form magnetic islands.1

These are radially localized helical structures which are cen-
tered on so-called rational flux surfaces: i.e., magnetic flux
surfaces that satisfy k ·B=0, where k is the wave number of
the instability, and B the equilibrium magnetic field. Mag-
netic islands degrade plasma confinement because they en-
able heat and particles to flow rapidly along field-lines from
their inner to their outer radii, implying an almost complete
loss of confinement in the region lying between these radii.9

Tokamak plasmas are often heated by neutral beam in-
jection �NBI�,2 which can be either balanced, such very little
net toroidal momentum is injected into the plasma, or unbal-
anced, such that significant toroidal momentum is injected
into the plasma. The DIII-D tokamak’s10 NBI system was
recently reconfigured so as to enable either balanced or un-
balanced operation �previously, only unbalanced operation
had been possible�. It was subsequently discovered that
plasma discharges heated by unbalanced NBI tend to contain
narrower magnetic islands than otherwise similar discharges
heated by balanced NBI.11 Of course, the former type of

discharge is characterized by higher levels of plasma flow
and flow shear than the latter. However, according to stan-
dard theory,6 when considering the effect of plasma flow on
an individual magnetic island, the local flow can always be
transformed away by moving to a frame of reference which
corotates with the island. On the other hand, the flow shear
cannot be transformed away. Thus, a possible explanation for
the relatively narrow magnetic islands observed in DIII-D
discharges heated by unbalanced NBI is that they are stabi-
lized by the comparatively high levels of flow shear present
in such discharges. Of course, this explanation presupposes
that flow shear generally has a stabilizing effect on magnetic
islands.

In general, plasma flow �i.e., ion fluid flow� is made up
of a combination of E�B flow, diamagnetic flow, and par-
allel �to the equilibrium magnetic field� flow.12 It follows that
flow shear is also made up of E�B, diamagnetic, and par-
allel components. Now, the toroidal momentum injection as-
sociated with unbalanced NBI generates strong parallel flow
shear �since the parallel direction is predominately toroidal�,
and much weaker E�B shear �since the E�B direction
only has a small toroidal component�. On the other hand,
toroidal momentum injection does not directly generate dia-
magnetic flow shear. Of course, such shear may be produced
by the plasma heating associated with NBI, but this effect
should be more or less the same for balanced and unbalanced
injection, and is therefore neglected in the following.

Now, there are three main mechanisms by which flow
shear can affect the stability of a magnetic island. First, the
shear in the global flow profile can modify the island’s tear-
ing stability index.13–15 This effect is easily calculated from
linear theory, and is generally found to be stabilizing for
sufficiently strong flow shear.13,14 Second, the shear in the
global flow profile can suppress the mutually destabilizing
interaction between the island and any other islands present
in the plasma which couple to it via toroidicity, pressure, or
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flux-surface shaping.16,17 This effect can also be calculated
from linear theory, and is obviously stabilizing. Third, the
shear in the local flow profile can directly modify the plasma
flow and current patterns in the immediate vicinity of the
island.18 This effect, which can only be calculated from non-
linear theory, is far less completely understood than the other
two. It is predominately associated with E�B flow shear,
since E�B flow generates an ion polarization current in the
vicinity of the island, whereas parallel flow does not drive
any such current. Hence, we shall concentrate on E�B flow
shear in this paper.

The aim of this article is to extend some recent analytical
work19 in order to examine the effect of local E�B flow
shear on magnetic island stability in a conventional large
aspect-ratio, low-�, circular cross-section tokamak plasma.
The analysis in question, which proceeds via a systematic
expansion in small quantities, is based on the so-called five-
field model of plasma dynamics,20–22 which is a generaliza-
tion of the well-known four-field model of Hazeltine et al.23

The five-field model is derived using a low-�, drift-MHD
ordering of plasma parameters.12 It incorporates diamagnetic
flows, ion gyroviscosity, fast parallel electron heat transport,
the shear-Alfvén wave, the ion sound wave, and the drift
wave.

In the following, for the sake of simplicity, we shall use
a slab approximation to model the magnetic geometry. We
shall also restrict our attention to comparatively wide mag-
netic islands �i.e., islands in the so-called subsonic, sonic, or
supersonic regimes identified in Ref. 19�.

II. ANALYSIS

A. Coordinates

Let us adopt the right-handed Cartesian coordinates x, y,
z. Suppose that there is no variation of quantities in
z-direction: i.e., � /�z�0. The system is assumed to be peri-
odic in the y-direction, with periodicity length 2� /k.
Roughly speaking, the x-direction represents the radial direc-
tion, the y-direction the poloidal direction, and the
z-direction the direction along the resonant magnetic field
line.

B. Asymptotic matching

Consider a quasineutral tokamak plasma consisting of
electrons and singly charged ions. The plasma is conve-
niently divided into an “inner region,” which comprises the
plasma in the immediate vicinity of the island, and an “outer
region,” which comprises the remainder of the plasma. Lin-
ear analysis is perfectly adequate in the outer region, whereas
nonlinear analysis is generally required in the inner region.6

As is well known, the five-field equations reduce to the much
simpler ideal-MHD equations in the outer region.5 Let us
assume that a conventional linear ideal-MHD solution has
been found in this region. The solution is characterized by a
single parameter, ��, defined as the jump in the logarithmic
derivative of the x-component of the perturbed magnetic
field across the inner region.5 This parameter, which is
known as the tearing stability index, measures the free en-

ergy available in the outer region to drive the tearing mode.
The mode is destabilized if ���0. It remains to obtain a
nonlinear solution of the five-field equations in the inner re-
gion, and then to asymptotically match this solution to the
aforementioned linear ideal-MHD solution at the boundary
between the inner and the outer regions.

C. Unperturbed plasma equilibrium

The unperturbed �i.e., in the absence of the island�
plasma equilibrium is assumed not to vary in the y-direction.
The inner region is confined to a relatively thin layer, cen-
tered on the rational surface. In this region, the unperturbed
equilibrium magnetic field takes the form

B = Bz� x

Ls
ey + ez� , �1�

where Bz is a uniform constant, and Ls the magnetic shear
length. Likewise, the unperturbed equilibrium electron num-
ber density is written

ne = ne0�1 +
x

Ln
� , �2�

where ne0 is a uniform constant, and Ln the density gradient
scale length. The unperturbed equilibrium electron tempera-
ture takes the form

Te = Te0�1 +
x

LT
� , �3�

where Te0 is a uniform constant, and LT the electron tem-
perature gradient scale length. The unperturbed equilibrium
E�B velocity is written

VEB = V0�1 +
x

LV
�ey , �4�

where V0 is a uniform constant, and LV the E�B velocity
gradient scale length. Finally, for the sake of simplicity, the
ion temperature is assumed to take the constant value Ti.

D. Tearing perturbation

Suppose that the plasma equilibrium is perturbed by a
tearing instability which is periodic in the y-direction with
wave number k. Note that k ·B=0 at x=0. Hence, the ratio-
nal surface lies at x=0. The instability is assumed to saturate
to produce a thin �relative to the width of the plasma in the
x-direction� magnetic island. The magnetic island is wholly
contained within the inner region. Let the width of the island
in the x-direction satisfy

w � Ls, Ln, LT, LV, k−1. �5�

Finally, suppose that the island propagates in the y-direction
at some steady phase velocity Vp.

052502-2 R. Fitzpatrick and F. L. Waelbroeck Phys. Plasmas 16, 052502 �2009�

Downloaded 01 Jun 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



E. Plasma parameters

At this stage, it is helpful to define the following funda-
mental plasma parameters. First, the electron beta,

� =
�0ne0Te0

Bz
2 , �6�

which is assumed to be much less than unity. Second, the ion
sound radius,

	s =
�Te0/mi

eBz/mi
, �7�

which is assumed to be much less than the width of the inner
region, and, therefore, much smaller than Ls, Ln, LT, LV, or
k−1. Here, e is the magnitude of the electron charge. Finally,
the electron diamagnetic velocity,

V� =
Te0

eBzLn
, �8�

which is assumed to be much less than the compressional
Alfvén velocity.

It is also helpful to define the following dimensionless
parameters. First, the ion to electron temperature ratio,


 =
Ti

Te0
. �9�

Second, the ion sound parameter,

� = �1 + 

Ln

Ls

w

	s
, �10�

which determines whether the island is in the subsonic,
sonic, or supersonic regimes identified in Ref. 19. In fact, the
subsonic regime corresponds to ��1, the sonic regime to
�	O�1�, and the supersonic regime to Ln /Ls���1. Fi-
nally, the local E�B flow shear parameter,


 = 
 w

V�

dVEBy

dx



x=0
=

V0

V�

w

LV
. �11�

F. Orderings

Our analysis is based on the following ordering scheme:

Ln � Ls, �12�

� � �Ln

Ls
�2�w

	s
�2

, �13�

	s � w . �14�

The first two orderings are fairly standard in a large aspect
ratio, low-�, tokamak plasma, while the third implies that the
island is relatively wide, so that it lies in the so-called sub-
sonic, sonic, or supersonic regimes identified in Ref. 19, as
opposed to the hypersonic regime. Furthermore, it is a fun-
damental assumption in our analysis that any perpendicular
transport terms appearing in the five-field equations, such as
resistivity and ion viscosity, are very much smaller than the
leading terms in these equations.

G. Magnetic flux function

Let �=AzLs / �Bzw
2�, where Az is the z-component of the

magnetic vector potential. It is easily demonstrated that � is
a magnetic flux function: i.e., B ·��=0. Moreover, ordering
�13� ensures that the well-known constant-� approximation5

is valid, so that

��X,�� = − X2/2 + cos � , �15�

where X=x /w and �=ky. The above magnetic flux function
maps out a magnetic island, centered on x=0. The O-point
lies at x=0, �=0, and �= +1, whereas the X-point lies at x
=0, �=�, and �=−1. The region lying inside the magnetic
separatrix �which is situated at �=−1� corresponds to +1
���−1, whereas the region lying outside the separatrix
corresponds to −1���−�. Finally, the full island width in
the x-direction is 4w. Note that our fundamental assumption
that any perpendicular transport terms appearing in the five-
field equations are extremely small precludes the type of
viscosity-induced distortions of magnetic island structure
considered in Ref. 24.

H. Flux-surface average operator

The flux-surface average operator is defined as the an-
nihilator of B ·�A for any A�x ,��: i.e., �B ·�A��0. It is eas-
ily shown that

�f�s,�,��� =
 f�s,�,��
�2�− � + cos ��

d�

2�
�16�

outside the magnetic separatrix, and

�f�s,�,��� = �
−�0

�0 f�s,�,�� + f�− s,�,��
2�2�− � + cos ��

d�

2�
�17�

inside the separatrix, where s=sgn�X�, and �0=cos−1���.

I. Modified plasma equilibrium

As is demonstrated in Ref. 19, in the presence of a
subsonic/sonic/supersonic magnetic island, the various equi-
librium profiles take the form

Ln

ne0

�ne

�x
= XL , �18�

LT

Te0

�Te

�x
= XL , �19�

Viy

V�

= X�M + 
L� , �20�

VEBy

V�

= XM , �21�

Vey

V�

= X�M − L� , �22�

where Viy, VEBy, and Vey are the y-components of the ion
fluid, E�B, and electron fluid velocities, respectively, in the
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island rest frame. Moreover, L and M are both flux-surface
functions: i.e., L=L�s ,�� and M =M�s ,��.

J. Profile functions

It is clear from Eqs. �18�–�22� that the modified equilib-
rium profiles are determined by the two profile functions
L�s ,�� and M�s ,��. Indeed, the first function specifies the
density and electron temperature profiles, while the second
determines the E�B velocity profile. According to Ref. 19,
in the subsonic/sonic/supersonic magnetic island regime, the
first profile function takes the form

L�s,�� = �0, � � − 1,

s/�X2� , � � − 1.
� �23�

It follows that the density and electron temperature profiles
are completely flattened inside the island separatrix �i.e., for
��−1�. The apparent discontinuity in L�s ,�� across the is-
land separatrix is resolved by a thin boundary layer of thick-
ness 	s�w.25 Reference 19 also derives the following differ-
ential equation satisfied by the second profile function,

0 =
d

d�
�d�M + 
L�

d�
�X4� + �� �M�L − M�
/2�L�

M�L − M� + �2 ��X2̃X2̃��
− ��M�M� + 
�L� + M��/2�L�

M�L − M� + �2 ��X2̃X2̃� , �24�

with ��d /d�, and Ã�A− �A� / �1�. Here,

� =
����/�0� + ���e/ne0�

���i/ne0mi�
, �25�

where ��, ��e, and ��i are the parallel resistivity, perpen-
dicular electron heat conductivity, and perpendicular ion vis-
cosity, respectively. Note that � is the ratio of the effective
perpendicular particle diffusivity to the perpendicular ion
momentum diffusivity.

K. Boundary conditions

Within the separatrix, Eq. �24� simplifies considerably to
give

0 =
d

d�
�dM

d�
�X4�� . �26�

The only solution to this equation which is well-behaved at
the island O-point is

M = m0, �27�

where m0 is a constant.
Far from the island, Eq. �24� is subject to the boundary

condition

M��1,� → − �� → −
sv��

�− 2�
+ 
 , �28�

where v�� are constants, and use has been made of Eqs. �11�
and �21�. Incidentally, the above boundary condition ensures
that the island is subject to zero net electromagnetic torque
�due, for instance, to interaction with a resistive wall or an
error field�.26

It is helpful to define

v� = �v�+ + v�−�/2. �29�

This parameter determines the effective island phase veloc-
ity, Vp, relative to the unperturbed E�B velocity at the ra-
tional surface, V0, according to the relation

Vp = V0 + v�V�. �30�

Here, V� is the �magnitude of the� electron diamagnetic ve-
locity. �The ion diamagnetic velocity is 
V��. Thus, v�=−1,
0, 
 corresponds to the island propagating with the unper-
turbed local electron, E�B, or ion fluid, respectively.

L. Momentum conservation

Equation �24� ensures the conservation of the ion mo-
mentum flux from magnetic flux surface to magnetic flux
surface. In general, the form of this equation is complicated
because, in addition to the standard viscous ion momentum
flux, there are also momentum fluxes associated with Rey-
nolds stresses and ion gyroviscous stresses. However, there
are two limits in which the ion momentum flux becomes
relatively simple.

Far from the island �i.e., �X��1�, the Reynolds stresses
and ion gyroviscous stresses �which all depend on L�� are
negligible, and the ion momentum flux becomes predomi-
nately viscous. In this limit, the normalized ion momentum
flux �in the x-direction� is written

�i� = 
 w

V�

dViy

dx



X→��

= M��1,� → − �� + 
L��1,� → �� = 
 , �31�

where use has been made of Eqs. �20�, �23�, and �28�.
Inside the island separatrix, the Reynolds stresses and

ion gyroviscous stresses are zero �since L�=0�, and the ion
momentum flux is purely viscous. Thus, the normalized ion
momentum flux across the rational surface �which lies en-
tirely within the island separatrix� is

�i0 = 
 w

V�

dVyi

dx



X=0
= m0, �32�

where use has been made of Eqs. �20�, �23�, and �27�.
Now, a fundamental assumption in all of our analysis is

that we are searching for a steady-state island solution. We
expect such a solution to possess a fully relaxed ion velocity
profile characterized by

�i− = �i0 = �i+, �33�

since if this is not the case then ion momentum will gradu-
ally accumulate in the island region, causing the ion velocity
profile to evolve in time. Thus, we conclude from Eqs. �31�
and �32� that

m0 = 
 . �34�

In other words, in a steady-state solution, the E�B velocity
shear inside the island separatrix matches the local unper-
turbed �by the island� equilibrium E�B velocity shear. In-
cidentally, the constraint �33� rules out the obviously unre-
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laxed E�B velocity profiles considered in Ref. 27.18

M. Rutherford equation

Asymptotic matching between the solutions in the inner
and outer regions yields the Rutherford island width evolu-
tion equation,6

dw

dt
� ��	s + Jp�� Ls

Ln
�2�	s

w
�3

, �35�

where �� is the linear tearing stability index,5 and

Jp = 2�
1

−�

��M�M + 
L�/2�+���X2̃X2̃�d� . �36�

Here, F+�����F�1,��+F�−1,��� /2, assuming that F
�F�s ,��. The first term on the right-hand side of Eq. �35�
parameterizes the contribution to the free energy available to
drive the growth of the magnetic island which originates
from the outer region, whereas the second parametrizes the
corresponding contribution which originates from the inner
region. The latter is usually ascribed to the ion polarization
current.28 It follows that local E�B flow shear can affect
island stability by modifying either the linear tearing stability
index, or the nonlinear ion polarization term, in the Ruther-
ford equation. This article is focused on the latter mecha-
nism.

N. Parity

Equation �24� is invariant under the parity transforma-
tion s→−s, M→−M. Thus, it follows from Eqs. �28�, �29�,
and �36� that 
→−
, v�→v�, and Jp→Jp under such a
transformation. We conclude that the island phase velocity
�relative to the unperturbed E�B velocity at the rational
surface� and ion polarization contribution to the Rutherford

equation only depend on the magnitude of the local E�B
flow shear parameter, 
, and are independent of its sign: i.e.,
v� and Jp are functions of �
�. Of course, the island phase
velocity and the ion polarization contribution are both com-
pletely independent of the local E�B velocity, V0 �see Eq.
�4��, which transforms away in the island rest frame.

III. RESULTS

A. Introduction

The full details of how the island phase velocity param-
eter, v�, and the ion polarization parameter, Jp, are calculated
as functions of the sound wave parameter, �, and the local
E�B flow shear parameter, 
, are given in Appendix. In
discussing our results, it is convenient to make a distinction
between the low flow shear limit, �
���, the intermediate
flow shear limit, �
�	O���, and the high flow shear limit,
�
���.

B. Low flow shear

The typical behavior in the low flow shear limit, �
�
��, is illustrated in Figs. 1 and 2.

It can be seen from Fig. 1 that in the subsonic regime,
��1, the island phase velocity matches the local ion fluid
velocity �i.e., v��
�, whereas in the supersonic regime, �
�1, the phase velocity is close to the local E�B fluid ve-
locity �i.e., v��0�, and, finally, in the sonic regime, �
	O�1�, it lies somewhere between these two velocities.19

Furthermore, it is clear from Fig. 2 that the ion polarization
term in the Rutherford equation is stabilizing �i.e., Jp�0�.
The magnitude of this term peaks in the sonic regime, and is
comparatively small in the subsonic and supersonic
regimes.19

According to Fig. 1, relatively low amounts of local E
�B flow shear cause the island phase velocity to shift

FIG. 1. �Color online� The island phase velocity parameter, v�, calculated as
a function of the sound wave parameter, �, for 
=1.0, �=1.0, and �=10−3.
The red �triangle�, green �square�, and blue �circle� curves correspond to
�
�=0.0, 0.1, and 0.2, respectively.

FIG. 2. �Color online� The ion polarization parameter, Jp, calculated as a
function of the sound wave parameter, �, for 
=1.0, �=1.0, and �=10−3.
The red �triangle�, green �square�, and blue �circle� curves correspond to
�
�=0.0, 0.1, and 0.2, respectively.
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slightly in the electron diamagnetic direction �i.e., it makes
v� more negative�. Moreover, it can be seen from Fig. 2 that
low local E�B flow shear has a stabilizing effect on the
island �i.e., it makes Jp more negative�. The magnitude of
this stabilizing effect clearly peaks in the sonic regime.

C. Low to moderate flow shear

The typical behavior in the low to moderate flow shear
limit, 0� �
���, is illustrated in Figs. 3 and 4.

According to Fig. 3, as the local E�B flow shear in-
creases from a relatively low value, it generates an increas-
ingly large phase velocity shift, toward the electron diamag-
netic direction, in island solutions lying on the low flow
shear branch. Eventually, when �
��0.85�, the direction of
island propagation in the local E�B frame �at the rational
surface� switches from the ion to the electron diamagnetic
direction �i.e., v� becomes negative�. Finally, the low flow
shear solution branch ceases to exist when �
���.

It can be seen from Fig. 4 that islands on the low flow
shear solution branch become more stable �i.e., Jp becomes
more negative� as the local E�B flow shear increases. This
flow shear stabilization effect peaks just before the switch in
direction of island propagation in the local E�B frame. Fur-
thermore, the effect increases monotonically with increasing
�, and so is smallest in the supersonic regime, and largest in
the subsonic regime.

D. High flow shear

The typical behavior in the high flow shear limit, �
�
��, is illustrated in Figs. 5 and 6.

It can be seen from Fig. 5 that at high levels of local
E�B flow shear there exists a branch of island solutions
which propagate in the ion diamagnetic direction relative to

the local ion fluid frame �i.e., which have v��
�. Moreover,
the island phase velocity shifts in the electron diamagnetic
direction as the local E�B flow shear increases in magni-
tude, although the shift becomes increasingly small as �
�
→�, and is never sufficient to reverse the direction of island
propagation in the local ion fluid frame �i.e., v� always re-
mains greater than 
�. Finally, the high flow shear solution

FIG. 3. �Color online� The island phase velocity parameter, v�, calculated as
a function of the local E�B flow shear parameter, 
, for 
=1.0, �=1.0, and
�=10−2. The red �open triangle�, green �open square�, blue �open circle�,
yellow �solid triangle�, and cyan �solid square� curves correspond to �
=2.0, 1.5, 1.0, 0.75, and 0.5, respectively.

FIG. 4. �Color online� The ion polarization parameter, Jp, calculated as a
function of the local E�B flow shear parameter, 
, for 
=1.0, �=1.0, and
�=10−2. The red �open triangle�, green �open square�, blue �open circle�,
yellow �solid triangle�, and cyan �solid square� curves correspond to �
=2.0, 1.5, 1.0, 0.75, and 0.5, respectively.

FIG. 5. �Color online� The island phase velocity parameter, v�, calculated as
a function of the local E�B flow shear parameter, 
, for 
=1.0, �=1.0, and
�=10−2. The red �open triangle�, green �open square�, blue �open circle�,
yellow �solid triangle�, and cyan �solid square� curves correspond to �
=2.0, 1.5, 1.0, 0.5, and 0.0, respectively.
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branch ceases to exist below some critical flow shear which
decreases with decreasing �.

According to Fig. 6, local E�B flow shear stabilizes
�i.e., Jp�0� islands lying on the high flow shear solution
branch. This effect is largest in the subsonic regime, and
smallest in the supersonic regime. Furthermore, it decreases
with increasing flow shear, but remains finite in the limit
�
�→�.

E. Intermediate flow shear

We have seen that there is a low flow shear branch of
island solutions which disappears when �
� exceeds � �see
Figs. 3 and 4�, and a high flow shear branch that ceases to
exist when �
� falls below some critical value which is some-
what larger than � �see Figs. 5 and 6�. It turns out that there
is an intermediate flow shear branch of island solutions
which connects the low and high flow shear branches. This is
illustrated in Figs. 7 and 8. It can be seen that there is a
discontinuous bifurcation between the low and intermediate
flow shear branches of island solutions when �
���,
whereas the intermediate and high flow shear solution
branches merge smoothly at some critical value of �
� which
exceeds �. Island solutions on the intermediate flow shear
branch propagate in the ion diamagnetic direction in the lo-
cal E�B frame �i.e., v��0�, and are, for the most part,
destabilized by local E�B flow shear �i.e., Jp�0�.

IV. CONCLUSIONS

We have examined the influence of local E�B flow
shear on a relatively wide, constant-�, magnetic island em-
bedded in a large aspect-ratio, low-�, circular cross-section
tokamak plasma, using a slab approximation to model the
magnetic geometry. We find that there are three separate so-

lution branches characterized by low, intermediate, and high
values of the shear. Flow shear is found to have a stabilizing
effect on island solutions lying on the low and high shear
branches, via a nonlinear modification of the ion polarization
term in the Rutherford island width evolution equation, but
to have a generally destabilizing effect on solutions lying on
the intermediate shear branch. Moreover, the effect is inde-
pendent of the sign of the shear. The modification of island

FIG. 6. �Color online� The ion polarization parameter, Jp, calculated as a
function of the local E�B flow shear parameter, 
, for 
=1.0, �=1.0, and
�=10−2. The red �open triangle�, green �open square�, blue �open circle�,
yellow �solid triangle�, and cyan �solid square� curves correspond to �
=2.0, 1.5, 1.0, 0.5, and 0.0, respectively.

FIG. 7. �Color online� The island phase velocity parameter, v�, calculated as
a function of the local E�B flow shear parameter, 
, for �=2.0, 
=1.0,
�=1.0, and �=10−2. The red �left�, blue �middle�, and green �right� curves
correspond to the weak, intermediate, and strong flow shear regimes,
respectively.

FIG. 8. �Color online� The ion polarization parameter, Jp, calculated as a
function of the local E�B flow shear parameter, 
, for �=2.0, 
=1.0, �
=1.0, and �=10−2. The red �left�, blue �middle�, and green �right� curves
correspond to the weak, intermediate, and strong flow shear regimes,
respectively.
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stability by local E�B flow shear peaks when the magnitude
of the shear is approximately vi /Ls, where vi=�Ti0 /mi is the
ion thermal velocity, and Ls the magnetic shear length. �This
criterion corresponds to �
�	�.�

Our main conclusion, that local E�B velocity shear
generally has a stabilizing effect on magnetic islands, is in
accordance with the results of numerical simulations per-
formed by Ofman and Morrison,29 and Chen et al.30 Interest-
ingly, Chandra et al.17 recently performed other simulations
which suggest that local parallel velocity shear may have a
destabilizing effect on magnetic islands. This result suggests
that it may be worthwhile to extend the analysis presented
here in order to take parallel velocity shear into account.
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APPENDIX A: CALCULATION DETAILS

1. Flux-surface functions

It is helpful to define the flux-surface label k
=��1−�� /2. It follows that k=0 at the island O-point, k=1
at the X-point, and k→� as �X�→�. It is also helpful to
define the complete elliptic integrals

E�l� = �
0

�/2

�1 − l2 sin2 ��1/2d� , �A1�

K�l� = �
0

�/2

�1 − l2 sin2 ��−1/2d� . �A2�

It is easily demonstrated that E�0�=K�0�=� /2, E�1�=1, and
K→� as k→1. Furthermore,

�1� = �K�k�/� , k � 1,

K�1/k�/k� , k � 1,
� �A3�

�X2� = ��4/����k2 − 1�K�k� + E�k�� , k � 1,

�4/��kE�1/k� , k � 1,
� �A4�

�X4� = �
�16/3����3k4 − 5k2 + 2�K�k� + 2�2k2 − 1�E�k�� ,

k � 1,

�16/3��k3�2�2 − 1/k2�E�1/k� − �1 − 1/k2�K�1/k�� ,

k � 1.
�

�A5�

Finally, we can write

A�k� =
�X4�
4k

, �A6�

B�k� =
�X2̃X2̃�

4k
=

�X4� − �X2�2/�1�
4k

. �A7�

It is readily shown that A�k�→k3 as k→0, and A�1�=B�1�
=8 /3�, plus A�k�→k2, B�k�→k−2 as k→�.

2. Definitions

Let

L�s = 1,k� � L�k� =
�

4

1

k E�1/k�
�A8�

for k�1, and

M�s,k� � �M0�k� , k � 1,

M+�k� , k � 1, s = 1,

M−�k� , k � 1, s = − 1.
� �A9�

3. Inside separatrix

Inside the separatrix �i.e., 0�k�1�, Eq. �24� reduces to

d

dk
�dM0

dk
A�k�� = 0. �A10�

The only solution which is well behaved as k→0, and is
consistent with a steady-state island solution �see Sec. II L�,
is

M0 = 
 . �A11�

This solution corresponds to viscously relaxed circulation
around island flux surfaces within the separatrix.

4. Separatrix

In the immediate vicinity of the separatrix, we can re-
solve the discontinuity in the profile function L�k� by writing

L�y� �
�

4
�1 − e−y� �A12�

for y�0, where y= �k−1� /�, and �		s /w�1. To lowest
order in �, Eq. �24� reduces to

0 =
d

dy
�d�M� � 
L�

dy
� �� �M���L − M��
/2�L�

M���L − M�� + �2 ��
� ��M��M�� + ��L� + M�� �
/2�L�

M���L − M�� + �2 � , �A13�

where ��d /dy. Potential singularities are avoided by letting

1

M���L − M�� + �2 →
M���L − M�� + �2

�M���L − M�� + �2�2 + �2 ,

�A14�
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where ��1. The boundary conditions are

M��y = 0� = 
 , �A15�

M�� �y → �� = 0. �A16�

Equations �A13�–�A16� can be solved to give the parameters

m� � M��y → �� . �A17�

Clearly, m+ represents the value of the profile function
M�s ,k� immediately outside the separatrix, in the region x
�0, whereas m− represents the corresponding value in the
region x�0. In general, m+�m−�
. Thus, the profile func-
tion M�s ,k� is discontinuous across the island separatrix �k
=1�. Note, however, that this discontinuity is entirely driven
by the corresponding discontinuity in the profile function
L�s ,k�.

5. Outside separatrix

Outside the separatrix �i.e., k�1�, Eq. �24� reduces to

0 =
d

dk
�d�M� � 
L�

dk
A�k�

� �� �M���L − M��
/2�L�

M���L − M�� + �2 �B�k��
� ��M��M�� + ��L� + M�� �
/2�L�

M���L − M�� + �2 �B�k� , �A18�

where ��d /dk, and L�k� is specified in Eq. �A8�. Potential
singularities are again avoided via the regularization proce-
dure outlined in Eq. �A14�. The boundary conditions are

M��0� = m�, �A19�

M���� = 
 . �A20�

Equations �A18�–�A20� can be solved to give the profile
functions M��k� for k�1, as well as the parameters

v�� = � lim
k→�

2k�M� − 
� . �A21�

6. Phase velocity parameter

The island phase velocity parameter, v�, is obtained
from

v� = �v�+ + v�−�/2. �A22�

7. Ion polarization parameter

The ion polarization parameter, Jp, is given by

Jp = � 16

3�
��m+�m+ + 
�/4� − 
2�

+ � 16

3�
��m−�m− − 
�/4� − 
2�

+ �
1

�

2k�M+��M+ + 
L� + M+�M+� + 
L���B�k�dk

+ �
1

�

2k�M−��M− − 
L� + M−�M−� − 
L���B�k�dk ,

�A23�

where ��d /dk, and L�k� is specified in Eq. �A8�.
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