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Abstract
Magnetic islands are a ubiquitous feature of magnetically confined plasmas. They arise as the result of plasma
instabilities as well as externally imposed symmetry-breaking perturbations. In the core, effective suppression
techniques have been developed. Even thin islands, however, are observed to have nonlocal effects on the profiles of
rotation and current. This has stimulated interest in using magnetic islands to control plasma transport, particularly
in the edge. They are also of interest as a tool to improve our understanding of microscopic plasma dynamics.

PACS numbers: 52.35.Bj, 52.55.−s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A goal shared by most magnetic confinement concepts is to
realize a configuration consisting of simply nested magnetic
surfaces enveloping a closed field line, the magnetic axis [1, 2].
In practice, small departures from this ideal configuration
cause the flux surfaces to break into chains of magnetic islands,
where each island is a tube of flux with its own private magnetic
axis [3–5]. The primary significance of the islands is that heat
can flow rapidly across them by following the field lines [6–8].
As a result, magnetic islands represent a loss of confinement
volume [9–13]. In the edge of stellarators, however, they serve
a useful function by diverting the field so as to separate the hot
plasma in the confinement region from the material surfaces
[14–17].

The effect of magnetic islands depends strongly on their
proximity to each other. The overlap of neighbouring chains
of islands results in the destruction of the underlying flux
surfaces. In the region of overlap, the magnetic field lines
wander chaotically, giving rise to anomalous transport of
electron momentum (hyperresistivity) as well as heat [18, 19].
Due to the dependence of the plasma conductivity on electron
temperature, magnetic chaos affects the current profile through
enhanced thermal diffusion as well as through hyperresistivity.

The consequences of magnetic chaos depend on the
nature of the discharge as well as on the wavelength of
the magnetic islands. Disruptions caused by the overlap
of long-wavelength islands in the confinement region of
tokamaks are the most dramatic consequence. The flattening
of the temperature during sawtooth crashes is probably also
caused by magnetic chaos [20–22]. In reversed field pinches
(RFPs), by contrast, the interaction of islands of multiple

scales contributes to the sustainment of the field reversal [23–
25]. Reducing the island overlap, however, gives access
to regimes with qualitatively improved confinement [26–
28]. In spherical tokamaks, observations and modelling
show that thin, short wavelength islands contribute to the
turbulent transport of electron heat [29]. Lastly, in the edge of
tokamaks, closely spaced externally driven chains of islands
with moderate wavelengths are observed to cause anomalous
particle transport under conditions of low-collisionality [30–
32]. The simultaneous steepening of the electron temperature
pedestal, however, raises questions as to the presence of
magnetic chaos.

In tokamaks, the islands resulting from the growth of the
neoclassical tearing mode (NTM) have attracted a great deal of
attention due to the limitation they impose on plasma pressure.
This led to the development of RF current-drive techniques
for reducing the size of magnetic islands. [33–39]. As a
result, islands are no longer perceived as a direct threat to
tokamak confinement, except near the stability boundaries of
ideal modes [40–43]. Evidence has accumulated, however,
showing that even when they occupy only a small fraction
of the confinement volume, magnetic islands have significant
nonlocal effects, not only on the temperature profiles but also
on the profiles of the current [44–46] and the rotation velocity
[47–51]. This has fostered interest in using them as agents to
control transport and stability properties. In addition, islands
constitute a useful diagnostic tool for obtaining information on
the current and rotation profiles [52]. Lastly, they provide a
unique window into plasma dynamics at scales that are difficult
to observe directly.

In this paper, I present an overview of the experimental
and theoretical results concerning magnetic islands.
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2. Magnetic islands as equilibrium structures

I restrict attention to islands that are thin but sufficiently large
to affect the background profiles of the reference equilibrium:
in present-day experiments this corresponds to perturbation
amplitudes in the range 10−4 ! δB/B ! 10−3 [53–55].
The most direct approach to predicting the evolution of
such as islands is by using a general-purpose initial-value
magnetohydrodynamic (MHD) code [25, 40, 41, 56–60] or
codes using other fluid models such as the drift model [61–
68]. Hall-MHD [69] and neoclassical MHD [37, 70–74]. Due
to the high conductivity of fusion plasmas, however, islands
generally evolve very slowly compared with the Alfvén time.
Away from marginal stability, saturation requires a fraction
W/a of the skin time, where W is the island width and a is the
minor radius. Even after artificially increasing the resistivity,
long simulation times are required to describe saturation as well
as to address the question of the role of changes in the profiles.
This, together with the spatial resolution requirements, has
severely restricted the scope of the problems that can be treated
by direct numerical simulations. A more adapted approach is
to use the time and space-scale separation to advantage by
investigating islands from the point of view of the equilibrium
and transport of three-dimensional (3D) helical plasmas. I
elaborate on this approach below.

The analysis of 3D magnetostatic equilibria reveals a
fundamental reason for the occurrence of magnetic islands.
Specifically, it shows that in the absence of symmetry, an
equilibrium with simply nested flux surfaces (i.e. free of
magnetic islands) exhibits a current singularity on any flux
surface where the magnetic field lines close on themselves and
where the pressure gradient does not vanish. These current
singularities are clearly unphysical: in the presence of plasma
resistivity, they are resolved by magnetic reconnection and
the breakup of the resonant magnetic surfaces into island
chains. The size of the resulting island chains, however, is
a sensitive function of plasma rotation and of the history of the
discharge. I will summarize recent progress in understanding
the interrelationship between magnetic islands and plasma
rotation in sections 3 and 4.

To show the occurrence of current singularities in 3D
equilibria, consider the hydrostatic equilibrium condition
J × B = ∇p, where B is the magnetic field, J = ∇ ×
B/µ0 is the current and p is a scalar pressure. Separating
the components of the current in the directions parallel and
perpendicular to the magnetic field, we note that force balance
determines the perpendicular component of the current, J⊥, in
terms of the pressure gradient [75]:

J⊥ = B−1 b̂ × ∇p,

where B = |B| is the amplitude of the magnetic
field. Substituting the perpendicular current into the charge
conservation law, ∇ · J = 0, results in a magnetic differential
equation for the parallel component of the current, J‖:

B · ∇(J‖/B) = −∇ · J⊥.

It is convenient to use field-line coordinates defined by B =
∇χ × ∇(ζ − qθ), where θ and ζ are poloidal and toroidal
coordinates, respectively, χ is a poloidal flux function that

labels the simply nested, non-axisymmetric flux surfaces and
q = q(χ) is the safety factor that is a function of χ only
[75]. Note that B · ∇χ = 0. Furthermore, the equilibrium
equation implies that p = p(χ). Fourier expansion using
these coordinates yields the solution
[
J‖

B

]

m,n

= µ0p
′(χ)

〈B2〉
∑

m,n

Gm,n(χ)

q(χ) − m/n
+Ĵm,n δ(q(χ)−m/n),

(1)
where the m, n subscripts denote the Fourier indices of the
corresponding variables, the Gm,n are geometrical factors,
the Ĵm,n are integration constants, p′(χ) = dp/dχ and 〈·〉
represents the average over a flux surface,

〈B2〉 =
∮ ∮

dθ dζ
|B · ∇θ |

B2. (2)

The Gm,n are regular functions of χ . With the exception of
perfectly symmetric systems, they do not vanish at q(χ) =
m/n so that the parallel component of the current is singular
on every flux surface with a rational safety factor q. In
general, the equilibrium is dominated by a small number of
surfaces corresponding to n = 1, 2 and (more rarely) n = 3.
The corresponding q = m/n surfaces are called the resonant
surfaces.

As noted previously, in a resistive plasma the current
singularities bring about magnetic reconnection and the
breakup of the resonant magnetic surfaces into island chains.
The primary object of the island theory is to calculate the
effect of the island on confinement. The key parameters that
determine this effect are the width and either the rotation
frequency (in the case of intrinisic tearing modes) or the phase
(in the case of externally applied perturbations) of the resulting
islands. It is important to keep in mind, however, that the width
of an island is not merely a local property but that it measures
the amplitude of the ‘tearing’ component of the wavefunction
in the entire device [76]. In fact, rotating islands in the core
of tokamaks were first observed through oscillations of the
magnetic field at the edge, the so-called Mirnov oscillations [3].
Even in the absence of rotation, the growth of magnetic islands
driven by external resonant magnetic perturbations (RMPs),
the so-called ‘locked modes’, gives rise to clear signals on
external magnetic detectors, providing further evidence of
the global nature of the tearing wavefunction associated with
magnetic islands [53–55, 77–80].

2.1. Method of matched asymptotic expansions

Due to the singular nature of the perturbation, it is helpful to
divide the plasma into two sets of overlapping regions. The
first set comprises the resonant layers consisting of thin annuli
containing the resonant surfaces of interest. The second set
regroups the exterior regions and consists of the bulk of the
plasma volume from which thin annuli enclosing the resonant
surfaces have been excised. In principle, the asymptotic
matching between the solutions in the resonant layers and
the solutions in the exterior regions provides a complete
determination of the spatial dependence of the perturbation.

Pletzer et al [81] have used the method of matched
asymptotic expansions to calculate the growth rate of a tearing
mode in a torus. They demonstrated good agreement between
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the growth rates obtained with the asymptotic method and those
obtained with MARS, a full-torus, finite-element code that
solves the same problem without asymptotic matching. More
recently, Escande and Ottaviani [82] and Militello et al [83]
have demonstrated good agreement between the asymptotic
results for the saturation amplitudes of magnetic islands in a
slab and those obtained with a nonlinear initial-value code.
Most investigators, however, confine themselves to using
analytic or even heuristic models for either the layer or the
exterior solutions.

Within the resonant layers, the ideal MHD model is
inadequate and effects such as diamagnetic drifts, finite Larmor
radius and Landau damping need to be taken into account.
This is a formidable problem that is the subject of ongoing
research. The analysis is facilitated, however, by the fact that
the variation of the background parameters is negligible within
the layers, since q − m/n ) 1.

Outside the layers, by contrast, it is necessary to use
the complete, ideal, hydrostatic MHD model to describe the
distortion of the equilibrium [84–86]. In order to address
the effect of the island on the equilibrium profiles, however,
the MHD calculation must be supplemented by a transport
calculation [30, 47, 87–90]. The helical equilibrium outside
the layer is sensitive to the imposed geometry as well as
to the current and pressure profiles, so that its calculation
generally requires a numerical approach. The following
section describes the approaches to the description of the
plasma in the exterior region.

2.2. Exterior solution in axisymmetric systems

Even when the asymmetry of the coils and confinement vessel
is negligible, the plasma may nevertheless adopt an asymmetric
configuration as the result of an equilibrium bifurcation. In
the exterior region, it is then generally appropriate to linearize
the solution about an unperturbed equilibrium described by a
symmetric magnetic field B0. Matching the exterior solution
to the solution in the singular layer(s) requires knowledge of
the parallel component of the vector potential, denoted by
ψ̃ = B0 · Ã/B0. The quantity ψ̃ represents a magnetic flux,
and is proportional to the displacement of the flux surfaces.

The standard code for calculating a spontaneous
symmetry-breaking perturbation for low values of the
toroidal mode-number n is the venerable PEST-III [91],
which calculates both the tearing-parity and twisting-
parity (interchange) wavefunctions in tokamaks with an
axisymmetric boundary condition. A simplified picture of
PEST-III’s function is that for a given n and an equilibrium
with M singular surfaces, it calculates a matrix relating the
M amplitudes Ĵm,n of the delta functions in equation (1) to
the asymptotic amplitudes ψ̃m,n of the flux perturbation at
the M singular surfaces. We will refer to this matrix as the
matching matrix. Note that due to processes taking place in
the layer, the actual value of ψ̃m,n at the resonant surface may
differ from its asymptotic value extrapolated from the exterior
region. The amplitude of the singular current, on the other
hand, is proportional to the jump in the magnetic field across
the layer, Ĵm,n = ∇χ · [∇ψ̃]/|∇χ |, where [·] describes the
jump across the layer.

At the resonant surface, the parallel component of
the electrostatic field vanishes since k‖ = 0, so that

(E‖)m,n = −iωψ̃m,n, where ω is the mode frequency and E‖
is the parallel component of the electric field. Fixing n and
denoting the elements of the matching matrix by −iωYmm′ ,
there follows

Ĵm = −iω
∑

m′

Ymm′ψ̃m′ =
∑

m′

Ymm′E‖,m′ , (3)

so that the Ymm′ may be interpreted as an admittance matrix for
launching Alfvén waves from the resonant surfaces.

In the special case where the plasma contains only a
single resonant surface for the given toroidal mode-number
n, equation (3) reduces to

[ψ ′
m] = '′

mψ̃m, (4)

where [ψ ′
m] describes the jump in the derivative of the flux

perturbation across the singular layer and'′
m = −iωµ0Ymm is

the usual tearing stability parameter introduced by Furth et al
[84] (see also [75] for a textbook introduction to tearing modes)
Thus, in the single-resonance case, the Y matrix reduces to a
scalar proportional to the'′ parameter. An important property
of this parameter is that it grows without bounds as the plasma
approaches ideal marginal stability (as a result of rising β, for
example) [41, 92]. This is a manifestation of the approach of
an ideal equilibrium bifurcation. Chu et al have successfully
applied the PEST-III code to analyse the onset of tearing
modes, corresponding to a resistive equilibrium bifurcation,
in current ramp experiments on the DIII-D tokamak [93].

Another special case of interest is that of a cylindrical
plasma, where the coupling between the various poloidal
harmonics vanishes. In this case, the matching matrix takes
a diagonal form, with the diagonal elements given by Ymm =
i'′

m/ωµ0.
An alternative to the direct calculation of the matching

matrix is to extract it from initial-value simulations using
a resistive MHD code [94]. The idea of this approach is
that the matching matrix can subsequently be used with a
more realistic model for the dynamics inside the tearing
layer. For high-n modes, this method and PEST-III both have
difficulty converging, but the ballooning transformation makes
it possible to calculate the matching matrix by integrating a
one-dimensional equation along the field line [92].

An ongoing effort to replace PEST-III by a code that
allows for inhomogeneous boundary conditions, models
realistically the geometry of the coils and uses more
advanced numerical techniques is making steady progress.
The current embodiment of this effort, the Ideal Perturbed
Equilibrium Code (IPEC), calculates the ideal component of
the wavefunctions driven by RMPs, such as those caused
by field errors and control coils [95]. It thus plays
a role complementary to PEST-III, which calculates the
wavefunctions for homogeneous boundary conditions. The
complete specification of the perturbed equilibrium requires
both codes in addition to a model for the response of the
plasma in the resonant layers. Among other present-day
applications, IPEC serves to guide the design of error-field
correction coils [96].

For equilibria with weak shaping and large aspect ratio,
the code T7 provides a nimble but imprecise evaluation of
the matching matrix [97]. In addition to the matching matrix,
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this code also calculates the coupling coefficients between the
resonant surfaces and external perturbations, thereby allowing
the investigation of braking and mode penetration [98]. It thus
combines the functionality of PEST-III and IPEC, but only for
a very limited class of equilibria.

2.3. Exterior solution in stellarators

Unlike for tokamaks, in stellarators the reference state itself
contains current singularities, but their amplitude is minimized
by design. Equilibrium codes for stellarators separate into
those that assume simply nested magnetic surfaces, such as
VMEC [99] and those that allow for magnetic islands, such
as HINT and PIES [100, 101]. Simulations with the HINT
code have shown that the geometry of the exterior region
can lead to island healing [102]. Such a healing mechanism
is distinct from that predicted by the layer theory, the latter
depending only on the local value of the magnetic well at
the resonant surface [103–105]. Generally speaking, global
island codes serve to identify the qualitative effects of the
overall geometry. Their partial or complete omission of effects
that are important in the layer, however, such as convective
transport near the separatrices, polarization currents and the
role of viscosity on the phase of the island, prevents them
from predicting the observed island widths and can lead to
differences in their results [100]. Boozer and Nürenberg have
developed an alternative approach that provides opportunities
for including these effects by combining the VMEC nested-
surface equilibrium code with the CAS3D linear stability code
in order to determine the amplitudes Ĵm,n of the singular
currents [85, 86]. One may subsequently determine the
characteristics of the island by applying an appropriate model
describing the plasma in the singular layer.

2.4. Solution in the singular layer

For thin islands, the rapid variation of the current across the
island suggests the use of the flute ordering [2, 106],

∇‖ ∼ L−1 ) ∇⊥ ∼ W−1,

where L represents an equilibrium scale-length. The flute
ordering leads to a reduced description of the nonlinear
dynamics of short wavelength Alfvénic modes that is locally
accurate, in contrast with the reduced-MHD (RMHD) model
that provides a global but approximate description. In
particular, the flute-RMHD theory correctly represents the
effects of average normal curvature in the Mercier criterion,
and it applies in geometries where RMHD fails, such as RFPs
and spherical tokamaks.

Justifying the application of flute reduction to long-
wavelength islands requires some care due to the circumstance
that some quantities, such as ψ̃ for example, vary slowly across
the singular layer. Flute reduction thus requires distinguishing
three scale-lengths [106],

∇‖f̃ ) L−1f̃ ) |∇f̃ |, (5)

where f̃ is the resonant part of the perturbation experienced
by a field f . It follows from equation (5) and ∇ · B = 0 that
the magnetic field may be expressed as

B = B0R0 ∇ζ + ∇ζ × ∇χ . (6)

Here R0 is the major radius, B0 is the amplitude of the
background magnetic field, ζ is the toroidal angle and χ =
χ0 + ψ is the perturbed flux, where χ0 is the poloidal flux
corresponding to a reference state consisting of closed field
lines of helicity qs = m/n, and ψ is the helical flux which
describes the sheared part of the background magnetic field
as well as the magnetic perturbation. In order for the flute
ordering, equation (5), to apply nonlinearly as well as linearly,
it is necessary that B̃ · ∇f̃ ∼ B0 · ∇f̃ both be small, or that

B̃/B0 ∼ k‖W ) 1. (7)

The thin-island version of the flute ordering is consistent
with that used to derive the gyrokinetic equation, so that
gyrokinetic models may be used in the resonant layer region
[107–109]. Note that the flute ordering implies that the non-
resonant sidebands are smaller than the resonant harmonics
by a factor of k‖L. For long-wavelength modes (kθ rs ∼ 1,
where rs is the radius of the singular surface), the gradients
of the perturbations are approximately perpendicular to the
flux surfaces. In principle, this allows for a 1.5D treatment
of 2D [6, 110] as well as 3D problems [111–113]. Even
when they are focused on resonant layer processes, however,
numerical simulations are often carried out in 2D slab geometry
[61, 114–118].

The theory of the resonant layer divides into the linear
and nonlinear regimes depending on the relative width of
the island and the tearing layer. The rest of this section
briefly describes each regime and its relevance to experiments.
These descriptions are intended to serve as an introduction
to the more detailed description of the principal experimental
manifestations of these two regimes, which are given in
sections 3 and 4, respectively.

2.4.1. Linear regime. In the linear regime, it is important
to distinguish the case of intrinsic tearing modes from that
of modes driven by RMPs. For intrinsic tearing modes, the
dispersion relation determines the frequency of the mode,
whereas for driven tearing modes, the applied perturbation
determines the frequency.

For intrinsic tearing modes, the balance between the
pressure gradient and the electric field on the resonant surface
implies that the mode frequency is such as to match the
perpendicular velocity of the electron fluid. It follows that
for the collision frequencies characterizing present and future
fusion experiments, the layer width for intrinsic tearing modes
exhibits different scales characterizing the response of the
electrons and the ions. The narrowest width, set by the electron
dynamics, is smaller than the ion Larmor radius, so that
experimentally observable intrinsic tearing modes are always
in the nonlinear regime.

For driven tearing modes, by contrast, the electrons and
ions are both streaming rapidly past the perturbations. This
has the effect of greatly broadening the layer width, so that
linear theory has a much wider domain of applicability. In
fact, the description of these modes requires the consideration
of quasilinear effects, since the forces they exert on the plasma
change the background profiles. For example, the J̃ ×B̃ force
exerts a torque that changes the profile of the plasma rotation.
Note that inertial effects are locally important for driven modes,
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but that force-balance nevertheless, applies globally across the
layer.

Section 3 describes the shielding of RMPs by rotating
plasmas [119], the braking of plasma rotation and the failure
of shielding manifested by mode penetration [76]. The theory
accounting for these observations has enjoyed remarkable
success despite being limited until recently to a low-beta MHD
model.

2.4.2. Nonlinear regime. When the island width exceeds
the linear tearing layer width for the electrons or ions, the
dissipative terms become sub-dominant for the corresponding
species of particles. This may occur either as a result of the
growth of an intrinsic tearing mode or as a result of the onset
of a locked mode, as described in section 3.

The case when the island width exceeds the layer widths
of both species describes relaxed islands such as NTMs
[120–125], snakes [126, 127] and the islands created in the
edge of stellarators [128–130]. In the relaxed regime, force
balance is satisfied locally. That is, the island represents a
3D equilibrium (although this equilibrium is generally not
hydrostatic). The island modifies the equilibrium profiles,
giving rise to flattening and sometimes local peaking of the
profiles around the O-point. Section 4 will describe the relaxed,
fully nonlinear regime.

3. Response of the plasma to RMPs

RMPs have a Fourier component that has the same winding
ratio as the magnetic field on one or more magnetic surfaces
lying within the plasma. They are a common occurrence in
fusion experiments, resulting from internal MHD events such
as sawteeth, fishbones and edge localized modes (ELMs), as
well as from errors in the alignment of magnetic field coils and
deliberately imposed plasma distortions. Due to their resonant
nature, they have surprisingly large, nonlocal effects on plasma
confinement. There is consequently a great deal of interest in
using RMPs produced by external coils to control the plasma.
This section surveys some of the relevant results. A detailed
presentation of the MHD theory of RMPs can be found in a
landmark paper by Fitzpatrick [76].

When the plasma is rotating, RMPs induce shielding
currents that severely inhibit magnetic reconnection and limit
the islands to very small widths [76, 119, 131, 132]. In addition
to their role in shielding, the currents also allow the plasma to
flow through the islands by Ohmic diffusion, thereby allowing
the rotation of the plasma to continue despite the presence
of an island. The resonant layer, nevertheless, constitutes
an impediment to the flow that manifests itself as a braking
force on the plasma rotation. An alternative interpretation for
the braking is that kinetic energy must flow into the layer in
order to replace the Ohmic power dissipated by the screening
currents [131].

In the plasma frame, it is natural to interpret the
perturbation as an Alfvén wave. At high frequency the
wave exhibits near each rational surface a pair of resonances
corresponding to k‖ = ±ω/VA, where VA is the Alfvén
velocity. If the rotation frequency is reduced, the resonances
overlap and then merge but the reconnected flux remains small
until the frequency becomes comparable to the growth rate
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Figure 1. Variation of the screening factor S = ψ̃/ψ̃full with the
plasma frequency for a cold-ion drift model. The parameters of the
calculations are such that the ion-sound Larmor radius ρs is equal to
the tearing layer thickness. The three curves correspond to values of
the resistivity η = 10−3, 10−4 and 10−5 (lowest curve).

of the tearing mode. At the resonance, momentum carried
by the Alfvén wave may be transferred to the plasma through
the action of the electromagnetic force FEM = 〈J̃ × B̃〉, in
a quasilinear process. Section 3.1 begins by describing the
linear response.

3.1. Screening

The matching procedure described in section 2.1 yields the
equation governing the plasma response,

'′ψ̃ + B̃ext
θ (rs) = '(ω)ψ̃, (8)

where the mode numbers are omitted for clarity. Here ω is the
perturbation frequency in the plasma frame (the frame where
the electric field vanishes). If the perturbation is fixed in the
lab frame, ω = −ωE where ωE is the E × B frequency.
Each side of equation (8) describes the jump in the total B̃θ

across the layer, the left-hand side representing the result of
the exterior calculation and the right-hand side representing
the result of the interior calculation. The term proportional to
'′ is the contribution of the tearing wavefunction. The Bext

θ (rs)
term represents the contribution that is driven directly by the
external perturbation (i.e. the RMP). The calculation of this
term is one of the functions of the IPEC.

In the absence of rotation, the island grows to a saturated
state corresponding to continuous B̃θ . The reconnected flux in
the saturated state is ψ̃full = −B̃ext

θ (rs)/'
′. The matching

condition, equation (8), may thus be expressed as ψ̃ =
S(ω)ψ̃full, where S(ω) is a screening factor given by

S(ω) = [1 −'(ω)/'′]−1.

Note that S is generally complex. For rotation frequencies
larger than the growth rate of the tearing mode, '(ω) + '′

so that |S| ) 1. Figure 1 shows a sketch of the screening
factor for a cold-ion, ‘two-fluid’ model of the plasma. The
dominant features of this graph are the sharp resonances
corresponding to rotation such that the ions (ω = 0) and
electrons (ω = ω∗e) are at rest, thereby enabling reconnection
to proceed [119, 133, 134]. Note that for the sake of readability,
figure 1 shows screening curves corresponding to values of η
much larger than encountered in fusion experiments.
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The rotation frequency is itself determined by the balance
between the quasilinear electromagnetic braking force exerted
by the perturbation, FEM = 〈J̃ × B̃〉, and the viscous force
exerted by the plasma. Section 3.2 next shows that the
evolution of the frequency exhibits discontinuous transitions
for critical values of either the perturbation amplitude or the
momentum source in the plasma.

3.2. Resonant braking

Due to the rotation of the plasma, a phase-lag appears between
the island and the current in the resonant layer. This phase-lag
causes the perturbation to exert an electromagnetic (J × B)
force on the plasma. The net electromagnetic force acting
on the plasma in the resonant layer is perpendicular to the
unperturbed B(rs) and tangent to the flux surface. The
corresponding stress (force per unit area) is

FEM = −(kθ'
′/µ0) |ψ̃full|2 -[S(ω(rs))],

where µ0 is the vacuum permeability, kθ is the poloidal
wavevector and - represents the imaginary part. The
electromagnetic force is opposed by a viscous force Fv

representing the diffusive flow of momentum into the layer.
The perpendicular component of the corresponding stress
is [76]

Fv = µ

kθ

(
B

Bθ

)2

[δω′(rs + 0) − δω′(rs − 0)].

Here µ is the viscosity coefficient, δω(r) represents the change
in the profile of the rotation frequency caused by the RMP
and the primes denote radial derivation. The factor (B/Bθ )

2

accounts for the neoclassical damping of the poloidal rotation.
Integrating the momentum equation across the layer in steady-
state conditions yields the force balance condition, FEM = Fv.

The solution of the force balance equation may be pictured
geometrically by graphing the forces as a function of the
plasma rotation frequency at the resonant surface. It is
convenient to normalize the forces to |ψ̃full|2. The graph
of the normalized electromagnetic force is then independent
of the amplitude of the RMP and depends only on the
properties of the equilibrium. Figure 2 shows the normalized
electromagnetic force predicted by the MHD model. For
simplicity we may make the approximation that the viscosity
is independent of the rotation velocity of the plasma. With
this approximation, the viscous force is proportional to the
change in the rotation velocity at the resonant surface and is
thus represented by a straight line (labeled Fv) in figure 2.
The intersection of this line with the abscissa specifies ω0,
the rotation frequency at the resonant surface in the absence
of RMP. Its intersection with the electromagnetic force curve
(point A) specifies ωA, the rotation frequency at the resonant
surface in the presence of the RMP. The reduction of the
rotation frequency fromω0 toωA is a manifestation of resonant
braking by the RMP. Section 3.3 considers the effect of varying
the momentum source acting on the plasma.

3.3. Mode penetration

Changing the differential frequency between the plasma and
the RMP (either by rotating the RMP or by varying the torque

Figure 2. Sketch of the normalized forces showing the graphical
solution for the island propagation velocity and the critical
thresholds for mode penetration and island unlocking when the
momentum input is changed. The parallel straight lines represent
the viscous force and the curved line represents the normalized
electromagnetic force.

exerted by the neutral beam injection (NBI) system) affects the
graph by translating the viscous force line parallel to itself. A
key feature of the curve describing the electromagnetic force
is that it displays a minimum as a function of the rotation
velocity. As a result, the balance between the viscous and
electromagnetic forces exhibits a tangent bifurcation as the
amplitude of the momentum input decreases (moving from
point A to B in figure 2). As the system goes through
the bifurcation, its state changes abruptly from point B to
C, corresponding to negligible plasma rotation. After the
bifurcation, the island grows rapidly up to its full width, as
shown in figure 3. The full width of the relaxed island is
generally somewhat larger than the vacuum width due to the
phenomenon of resonant field amplification [42, 55, 135].

The fully reconnected island is called a locked mode and
the bifurcation described above is known as mode penetration,
or alternatively as a locked-mode onset [76, 79]. We avoid the
practice of referring to mode penetration as ‘mode-locking’,
however, preferring to reserve the latter term for the process
whereby a rotating island produced by an intrinsic tearing mode
ceases to rotate due to its interaction with external perturbations
or with a resistive wall. Figures 2 and 3 show that mode
penetration exhibits hysteresis. That is, if one increases the
momentum input after the bifurcation, the reverse bifurcation
does not occur until point D where the momentum input
is considerably higher than that corresponding to the mode
penetration. During the reverse bifurcation, the island is torn
away from the RMP by the plasma flow and starts to rotate.
Once its phase varies with respect to that of the RMP, the
average drive provided by the RMP becomes stabilizing and the
island heals (the average drive is due to the modulation of the
island velocity as it rotates past the RMP). Note that in the fully
reconnected state described by the segment between C and D,
nonlinear effects will generally modify the electromagnetic
force curve. The qualitative behaviour, however, is similar to
that predicted by the quasilinear theory.

Instead of changing the momentum input or rotating
the RMP, it is generally easier in experiments to change
the strength of the applied perturbation. The variation
of the viscous force curves with perturbation amplitude is
rather difficult to evaluate, however, due to neoclassical
toroidal viscosity (NTV), a drag force caused by the magnetic
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the NBI system). The lower curve represents the reconnected flux in
a screened island and the upper curve represents the reconnected
flux after mode penetration. The transitions clearly display
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refers to the corresponding points in the force diagram (figure 2).
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Figure 4. Sketch of the electromagnetic and viscous forces for the
drift model. Mode penetration fixes the rotation velocity at ω . ω∗e.
The dashed lines show three viscous force curves corresponding to
tangent bifurcations. Inspection of figure 1 shows that screening is
maintained for the left-most bifurcation.

perturbation that acts on the entire plasma rather than only
on the resonant layer. As a result of this drag force, both the
slope and the intercept of the viscous force curves vary with ψ̃ .
Analysis of braking observations on JET and NSTX indicates
that NTV dominates the overall braking process [47, 90], but
its contribution to the local force balance at the resonant surface
is negligible.

3.4. Effects of drifts and low collisionality

Due to the high temperature of fusion plasmas, deviations
from MHD theory are important especially in internal transport
barriers and in the edge pedestal where diamagnetic drifts
are large. Including drifts in the theory leads to multiple
resonances at the electron, ion and electric drift velocities
[119, 133]. The torque, however, only changes sign at the
electron drift frequency. To understand this, recall that ω
represents the RMP frequency in the E × B frame. When
ω = ω∗e the electrons are at rest with respect to the RMP,
allowing reconnection to proceed. It follows that mode
penetration occurs at ω = ω∗e and resonant ‘braking’ acts
to reduce ω − ω∗e. Examination of figures 1 and 4 shows
that although there can be a bifurcation with a discontinuous
reduction of the differential rotation near the ion resonance,
the rotation in the final state and the narrowness of the ion
resonance are such that the screening remains strong.

The effect of diamagnetic drifts on mode penetration
thresholds has been explored in experiments using the
‘dynamic ergodic divertor’ (DED) on the TEXTOR tokamak
[132, 136–138]. In these experiments, the penetration
threshold was measured for different RMP frequencies as well
as for different values of the beam-power fraction (Pco-NBI −
Pctr-NBI)/(Pco-NBI+Pctr-NBI)describing the distribution between
co- and counter-injected NBI power. The results, reproduced
in figure 5, show that the penetration threshold reaches a
minimum for a value of the beam input corresponding to
E × B rotation in the direction of the ion diamagnetic drift
(co-injection). This is consistent with theoretical expectations,
since driving the plasma rotation in the co-current direction
has the effect of reducing the differential velocity between the
electrons and the perturbation, facilitating mode penetration.
Similarly, rotating the RMP at 1 kHz in the counter direction
reduces its differential velocity with respect to the electrons.
As a result, for counter-rotation of the DED fields the minimum
current for mode penetration occurs at much lower values of
the beam fraction, as shown in figure 5.

Co-rotation of the DED fields, by contrast, increases the
differential rotation such that the penetration was not observed
even at the highest value of the coil current. Since the
relative rotation of the DED with respect to the electrons was
always in the direction of the ion drift velocity, increasing
the DED current produces an electric field that acts to brake
the electrons and simultaneously enhances the co-rotation of
the ions. The experimental results are in agreement with
numerical simulations using the drift model in cylindrical
geometry [67, 139].

An interesting feature of the results is that the minimum
mode-penetration current is positive in the experiment, unlike
the slab theory where the threshold amplitude vanishes for
ω = ω∗e. This finite mode-penetration threshold may reflect
the stabilizing influence of favourable average curvature.

3.5. Implications for future devices

Mode penetration imposes challenging requirements on the
design of the error-field control coils for future devices,
including ITER. Avoidance of low-density locked modes
(LDLMs) requires minimizing the amplitude of the magnetic
perturbations that are resonant in the core. The tolerances for
error fields become more stringent during operation near the
no-wall stability limit due to the amplification of the braking
force in this regime [54, 140, 141].

A recently developed technique for the mitigation of
ELMs relies on the application of moderate wavelength (n = 3
or 4) magnetic perturbations tailored so as to maximize the
amplitude of the edge-resonant harmonics. Such magnetic
perturbations act to degrade the H-mode pedestal and thereby
diminish or completely eliminate ELMs [142, 143]. An
intriguing feature of the observations is the steepening of the
electron temperature pedestal during the application of the
RMP. This feature is opposite to the flattening of the profile
that one expects in the presence of magnetic chaos. Another
peculiarity of the ELM suppression experiments is the absence
of locked-mode spin-up following the turn-off of the current
in the RMP coils. Similar results were obtained in TEXTOR,
where locked modes induced with the DED remained locked
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Figure 5. Penetration threshold measured in TEXTOR using the DED and a continuously tunable NBI beam-power fraction. The
right-hand figure shows the rotation at the q = 2 surface as a function of the NBI fraction. The left-hand figure shows the critical DED
current for mode penetration as a function of the power fraction. The filled symbols show data collected with the DED counter-rotating at
1 kHz and the open symbols show data for a static DED. For co-rotating DED, mode penetration was not observed up to the largest available
value of IDED. Reproduced with permission from [138].

until termination of the NBI [136]. In TEXTOR, however,
the absence of spin-up is probably due to uncompensated
residual errors. In COMPASS-D H modes, by contrast, islands
were observed to spin-up reliably in n = 1 locked-mode
experiments [144].

A possible explanation for the effects of edge-RMPs
is that the very strong diamagnetic flows in the pedestal
screen the perturbation, locally preserving good flux surfaces
[134]. Overlapping of the electrostatic convection cells that
are associated with the screening process causes convective
fluxes that may substitute for magnetic chaos to produce
enhanced particle transport [145, 146]. Note that a pumpout
is also observed in the low mode-number ELM-mitigation
experiments on JET [147, 148].

The next section describes the interaction between the
profiles and a magnetic island in the case of penetrated RMP
as well as for spontaneous tearing modes such as the NTM.

4. Transport in magnetic islands

The primary question regarding relaxed magnetic islands is
their effect on the profiles of density, temperature, current and
rotation velocity. The changes in the profiles determine the
effect of the island on overall confinement, and they determine
whether the island grows or decays. Our understanding of
the effect of the profiles on the island amplitude informs the
methods used for avoiding islands as well as for suppressing
them with RF current-drive and heating.

4.1. The constant-ψ approximation

To evaluate equilibria with islands, the first obstacle is
the interdependence of the profiles and the island width.
Fortunately, in many cases of interest the variation of the
current across the island is small compared with its background
value, J‖ − J‖0(χs) ) J‖0(χs), where J‖0(χs) is the parallel
component of the current in the absence of island and χs is
the resonant surface. As a result, the variation across the layer

of the resonant Fourier component of the helical flux, ψ̃m,n,
is small. The approximation that consists in neglecting this
variation, known as the ‘constant-ψ̃’ approximation, greatly
facilitates the analysis and interpretation of observations.
It implies that just two parameters specify the magnetic
geometry: the amplitude ψ̃m,n and phase φ of the resonant
perturbation (for a rotating island, dφ/dt = ωt). In particular,
the island width completely determines the shape of the island.
The helical flux takes the form

ψ = B0x
2/2Ls + ψ̃m,n cos(mθ − nζ − φ), (9)

where x is the distance from the resonant surface, Ls =
B0/J‖0(χs) is the shear length and B0 is the background field.
Equation (9) implies that the width of the island is

W = 4
√
ψ̃m,nLs/B0.

For intrinsic reconnecting instabilities (as opposed
to RMP-driven tearing), a necessary condition for the
applicability of the constant-ψ̃ approximation takes the form
[149–151]

'′W ) 1. (10)

When the system approaches marginal ideal stability, such as
for the m = 1 internal kink mode or for the resistive wall
mode,'′ becomes large and this condition is violated. In such
cases, the constant-ψ̃ approximation fails and it is necessary to
solve the Grad–Shafranov equation in order to determine the
island geometry. The island evolution involves a competition
between the rate of reconnection, which determines the growth
of the island width, and the rate of current diffusion. When
condition (10) is satisfied, by contrast, current diffusion is
faster than reconnection and the current profile is able to relax.
The relaxation of the current implies that not only ψ̃ but also
∂ψ̃/∂t is approximately constant across the island.

For larger islands, the flux becomes frozen-in. A critical
island width appears such that the separatrix collapses into a
current ribbon at the X-point, signalling the onset of Sweet–
Parker reconnection [149, 151].
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4.2. The generalized Rutherford equations

The constant-ψ̃ approximation leads to the following simple
expression of the matching condition between the resonant
layer and the exterior solution:

'′
m,nψ̃m,n =

∫
dx

∮
dθ
π

J exp[i(mθ − nζ − φ)], (11)

where '′
m,n is the matching parameter from the exterior

solution. The helical current in equation (11) includes the
perturbed inductive, bootstrap, polarization, Pfirsch–Schlüter
and the beam- and RF-driven currents. A solution method is
now apparent: the first step consists of solving the transport
problem in the geometry specified by equation (9). The
second step consists of using the result of the transport
calculation to evaluate the integral in equation (11). Separating
the contributions to the current from the time derivatives
of ψ̃m,n and φ leads to the evolution equations for the
components, respectively, in phase and in phase-quadrature
with the reconnected flux,

dW

dt
= r2

s

τR
['′ + '(W,ω)]; (12)

d2φ

dt2
= Ft(W,ω). (13)

The above two equations generalize the results of Rutherford
[6]. The two functions'(W,ω) and Ft represent, respectively,
the free energy available for reconnection and the acceleration
of the island caused by any imbalance of lateral forces acting
on the island. The determination of these two functions is
the central task of the singular-layer theory. The rest of this
section describes some of the recent progress in our knowledge
of the contributions to these two functions originating from
the pressure-driven (Pfirsch–Schlüter and bootstrap) currents,
the inductive currents and the inertia-driven (polarization)
currents.

4.3. Heat transport in magnetic islands

The contributions of the Pfirsch–Schlüter [103, 111–113]
and neoclassical currents [152, 153] to the island evolution
have long been well understood in the limit of large
islands in which the temperature profile is fully flattened.
The increasing resolution in the observations of electron
temperature profiles, however, have stimulated theoretical
research on the characteristic width for temperature flattening.
The effects of a magnetic island on the profiles of temperature
are governed by the competition between parallel transport
and perpendicular transport. The role of this competition in
magnetic islands is analogous to that in the scrape-off layer.
The controlling parameter is the connection length with respect
to the magnetic axis of the island. This is the length that
one must travel along a field line in order to encircle the
magnetic axis of the island completely. Near the separatrix,
the connection length becomes very large, reflecting the fact
that the magnetic field near the X-lines is nearly parallel to the
magnetic axis of the flux tube. For sufficiently long connection
lengths, the parallel fluxes are no longer effective in relaxing
the profiles along the field line. Equilibrium gradients may
then develop within the flux surfaces.

Near the O-point of the island, the connection length
Lc ∼ Ls/kθW where Ls is the magnetic shear length. It
follows that as the island grows, there is a characteristic width
above which the parallel transport dominates and the gradients
become perpendicular to the flux surfaces. In the collisional
regime, the equation describing the transport near the island
is [6]

κ‖∇2
‖T + κ⊥∇2

⊥T = 0.

The resulting critical width is [7]

Wc ∼
(
κ‖

κ⊥

Ls

kθ

)1/4

.

In the collisionless regime, quasilinear theory provides
estimates of profile flattening for very narrow islands [154].
More recent investigations have used the drift-kinetic equation
to estimate the threshold for flattening [155, 156]. Note,
however, that even in the collisional regime, the competition
between turbulent transport and parallel streaming is the
subject of ongoing research [157].

For W + Wc, the profiles inside the separatrix are flat in
the absence of sources or inward pinches. Profile flattening
is indeed routinely observed in experiments [158, 129], but
there are also challenging observations of profile peaking
inside large islands [159]. Profile peaking manifests itself in
the observations of snakes in the core where the constant-ψ̃
approximation fails [126, 127], as well as for q = 3 islands
closer to the edge. Shaing has proposed an explanation for
the observations based on the improvement to the confinement
resulting from plasma flow around the island [160–162].

4.4. Island saturation

An important aspect of the temperature flattening that has
recently received attention is its influence on the saturation
amplitude of tearing modes. As a result of the dependence of
the conductivity on temperature, η ∼ T

−3/2
e , the inductive

current Jind = η−1∂ψ0/∂t , which is generally responsible
for the saturation of tearing modes, depends on whether
temperature flattening has occurred [163]. A recent series of
works has provided analytic expressions for the contribution
of the inductive current to the Rutherford equation first using
a reduced model in slab geometry [82, 83], subsequently
extending the result to cylindrical geometry [164, 165], to the
full MHD model (for application to RFPs) [166], and to a
slab model describing NTMs [167]. The stabilizing effect
of the induction current depends on second-order corrections
to the magnetic flux in the island, however, and the effects
of noninductive contributions to the flux have never been
examined at this order. Furthermore, as pointed out by
Hastie et al [163], for islands sufficiently large to flatten the
temperature profile, global transport leads to a reduction of the
core temperature δTe(χ < χs) . WT ′

e0(χs), where χs labels
the resonant surface, that affects the external matching matrix
and in particular, the'′ parameter. The quantification of these
effects is a necessary step to explain experimentally observed
saturation amplitudes. In particular, the recent observations
of a dependence of the saturation amplitude on the velocity
shear [168, 169] may be caused by the effect of the latter on
the inductive current.
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4.5. Island propagation and the polarization current

Another contribution to the island evolution integrals (12)–(13)
that has received recent attention is that of the polarization
current. The original calculations by Smolyakov [170] and
Wilson et al [171], contained two errors. These calculations
first omitted the dominant contribution to the polarization
current (thereby obtaining an incorrect sign for the result) and,
second, they obtained a qualitatively incorrect value for the
island rotation frequency. The two errors compensated each
other when these calculations were applied to the interpretation
of the observations of NTMs, thereby allowing the theory to
enjoy qualitative success [120–125]. The discovery in [172]
of the first of these errors, together with widespread concern
over the β-limiting role of the NTM, stimulated a number of
investigations of the basic properties of magnetic islands. The
results of these investigations apply to rotating as well as locked
islands, and to islands located in the core as well as in the edge.
I summarize these results in this section.

The polarization current results from the acceleration of
the plasma as it flows along the Laval nozzle formed by the
flux surfaces outside the separatrix. The vector product of the
acceleration and the magnetic field gives rise to a well-known
ion drift with non-vanishing divergence. A parallel current
must accompany this drift to maintain quasi-neutrality. This
parallel current mediates the effect of the plasma flows on the
island evolution [173–175].

In order to determine the distribution of the polarization
current, it is necessary to know the velocity of the plasma
flow with respect to the island. Since the ions and electrons
experience opposite diamagnetic drifts, they cannot both be at
rest with respect to the island. One finds that the velocity of
the island depends on the degree of profile flattening inside the
separatrix [176]. The discussion is facilitated if we express
all velocities in a frame where the background electric field
vanishes.

The key elements of the analysis are the frozen-in and
the no-slip conditions. The frozen-in condition expresses the
fact that the separatrix traps the electron fluid whenever the
island is sufficiently wide. This condition applies when the
skin time for magnetic diffusion across the island exceeds
the time taken by the electron fluid to drift across the
island due to diamagnetic effects. The expression of this
condition in terms of the island width is W > ρs

√
C, where

C = (Ls/Ln)
2(νe/ω∗e)(me/mi) < 1 is a measure of the

collisionality (the bound C < 1 corresponds to the semi-
collisional regime that describes most fusion experiments)
[177]. Note that the frozen-in condition is generally violated
in suppressed island, allowing the plasma to stream through
the island. The second condition, the no-slip condition,
expresses the fact that the much greater viscosity of the ion
fluid compared with the electron fluid results in the continuity
of the ion velocity across the separatrix. This second condition
is satisfied in suppressed as well as in relaxed islands.

The frozen-in and no-slip conditions lead to the following
expression for the island velocity u:

u = vin
De + vout

Di − vin
Di, (14)

where the vDs are the diamagnetic drifts, the index s = i, e
labels the species and the superscripts indicate on which side

vDi =1+ηi
out

v
*e =1outu

vDi
in

v
*e
in

vEvE

0 f 1

Figure 6. Graphical solution for the island propagation velocity in
terms of the profile flattening factor f .

of the separatrix the quantity is measured. The jump condition
expressed by equation (14) is illustrated in figure 6. To avoid
unnecessarily burdening the notation, we will assume that the
island is sufficiently wide that the electron temperature is fully
flattened inside the separatrix. We further assume that the
degree of flattening of the ion temperature is equal to that of
the density. The diamagnetic velocities are then

vin
Ds = f vout

Ds ,

where f is a flattening factor varying between 0 and 1 that
describes the ratio of the density gradient at the O-point
of the island to the density gradient in the reference state.
Substituting the diamagnetic drifts into the equation for the
island velocity yields

u = f vout
∗e + (1 − f )vout

∗i ,

The preceding analysis shows that islands that are sufficiently
thin for the density and ion temperature gradient to be
maintained (f = 1) propagate at the electron diamagnetic drift
velocity. Note that electrons outside the separatrix, however,
are propagating at 1+ηe times the diamagnetic velocity, where
ηs is the ratio of the background density scale-length and the
temperature scale-length of species s. In the opposite limit
of large islands in which the ion pressure is fully flattened
(f = 0), the island propagates at the ion pressure drift velocity,
or −(1 + ηi)τω∗e where τ = Ti/Te is the temperature ratio.
That is, the ions outside the separatrix are at rest with respect
to the island.

The above discussion leaves unanswered the question of
the characteristic width for density flattening, Wflatg. This
question is controversial and estimates have differed by more
than an order of magnitude, from the semi-collisional boundary
Wflatg ∼ ρs

√
C [117] to the drift-acoustic width Wflatg ∼

ρsLs/Ln at which the drift-wave couples with ion-acoustic
waves [62, 64, 115]. Numerical results for C < 1, however,
suggest that the coupling of the island to drift waves can
flatten the profiles even in the absence of ion-acoustic waves,
for k‖cs ) ω∗. An estimate consistent with the available
theoretical results is Wflatg ∼ ρs max(1, C1/2). This estimate
is qualitatively consistent with observations in LHD (figure 9)
showing that the electric field inside the m = n = 1 island
drops to zero for W " 1 cm [128, 130]. It is also qualitatively
consistent with other observations in the same experiment
showing a clear increase in the iso-density width with collision
frequency and a decrease with β [129].

Experiments that use RMPs to successively lock and
release magnetic islands provide another source of data on
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Figure 7. Dependence of the island propagation velocity u and of
the contribution of the polarization current to the Rutherford
equation, 'pol, on the island width. Note that 'pol is scaled to the
cube of the island width. The labelled points along the curve refer to
the values of W for which the velocity profiles are shown in figure 8.

profile flattening. During the locked phase, the island grows
as the result of the additional drive provided by the RMP. Since
the reconnection time is much slower than the momentum
confinement time, removal of the RMP causes the island to
spin up to its natural velocity while temporarily retaining the
larger size it acquired during the locked phase. Observations
in COMPASS-C show that the rotation frequency of the
island after the locked phase is reduced by 20% of the
diamagnetic frequency, providing evidence of the increased
density flattening associated with the larger size of the
island [77].

Lastly, measurements of the rotation velocity of NTMs
in DIII-D have found that the islands were rotating in the ion
direction, consistent with ion pressure flattening [178]. These
data are also consistent with the observations of a threshold for
the excitation of the NTM, given the stabilizing effect of the
polarization current for islands rotating in the ion direction.

Since islands of width W " Wflatg are approximately
co-rotating with the ions, it is natural to expect the polarization
drift to become small for these islands. Surprisingly, numerical
simulations in the collisional regime, C + 1, show that this is
not the case [118]. Figure 7 shows the results of simulations of
the unforced propagation of an island. The simulations are for a
plasma with cold ions. The figure shows the dependence of the
propagation velocity u and of the parameter 'pol representing
the contribution of the polarization current to the Rutherford
equation for the evolution of the island width. Note that in
figure 7, 'pol is scaled with the cube of the island width
to facilitate comparison with analytic estimates that predict
'pol = apol u

2/W 3, where apol is a coefficient that depends
on the profile of the ion velocity across the island. The

numerically obtained apol exhibits a pronounced resonance
when the island width is such that the drift-wave couples
strongly to ion-acoustic waves. The corresponding resonance
condition is ω∗ = k‖cs, or W = ρsLs/Ln. Analysis of the
diffusion of momentum in an island with fully flattened profile
shows that the resonance manifests itself as a singularity of
the Reynolds stress appearing in the diffusion equation [179].
This resonance is robustly stabilizing and may determine the
effective threshold for the onset of NTMs.

Figure 8 shows a series of profiles for various
characteristic island widths marked in figure 7. The upper
plots in figure 8 show the profiles of the velocity of ions
(solid curves) and electrons (dashed curves) in a section of
the island traversing the O-point, while the lower plots show
the profiles of the density across both the X-point (solid curves)
and O-point (dashed curves). The width of the island is
indicated by the vertical grey band. At the O-point (x = 0),
the island velocity (horizontal dashed line) always matches
the electron velocity. This is a manifestation of the frozen-
in condition. It follows that the island velocity matches the
diamagnetic frequency at the O-point, the latter being reduced
by the flattening of the density evident in the profiles shown in
the bottom figures. The ion velocity is identical to the electric
drift velocity in these cold-ion simulations. Its value remains
much smaller than the electron drift velocity at all widths.
Note that for small widths the ion velocity is very different
from that of the island, indicating a rapid streaming of the ions
through the separatrix. As the island exceeds the ion-sound
Larmor radius, there is a tendency for the ions to be entrained
by the island: this is noticeable in figure 8(c) showing the case
ρs/W = 0.1.

It is interesting to compare the profiles of figure 8 with
the profiles of the electric field measured in the m/n = 1/1
island in the edge of the LHD stellarator shown in figure 9. The
width of this island is controlled by external coils and can be
varied between 0% and 20% of the minor radius. As a result of
the finite ion temperature in LHD, the profile flattening inside
the island gives rise to a jump in the ion drift velocity across
the separatrix. To satisfy the no-slip condition, this jump is
compensated by a discontinuity in the electric field. Note that
mode penetration has already occurred at the lowest nonzero
value of the current in figure 9. The 1/1 island in LHD is
technically a locked mode, but the velocity shear outside the
island is small so that the viscous forces acting on the island
are unlikely to play an important role.

4.6. Interaction of turbulence and magnetic islands

Recent investigations have examined the interaction between
turbulence and magnetic islands. Itoh et al have investigated
the conditions under which turbulent fluctuations can
overcome the stability threshold for the NTM [180, 181].
Their theory offers an explanation for the frequent occurrence
of NTMs in the absence of a macroscopic triggering event.
McDevitt and Diamond have calculated the evolution of the
drift-wave population density in the presence of a tearing
mode using the wave-kinetic equation to model the turbulence.
They concluded that the turbulence gives rise to a negative
viscosity that acts as a pump on the resonant long-wavelength
mode [182]. The negative viscosity combined with the
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coupling of the tearing mode to zonal flows results in
asymptotic oscillations of the wavefunction.

Ishizawa et al have carried out numerical simulations
of the evolution of the double-tearing mode in the presence
of electromagnetic turbulence. They found that in a first
stage, the zonal flows driven by the turbulence stabilize the
linearly unstable double-tearing mode. In a second stage,
however, long-wavelength magnetic fluctuations exert a drag
that suppresses the zonal flows, leading to the rapid growth
of the double-tearing mode [68]. Lastly, Militello et al
have shown that turbulence reduces the propagation velocity
of the island [183]. Its effect is destabilizing for thin

islands but becomes stabilizing, primarily due to the reduced
propagation velocity, for islands greater than a few times
the Larmor radius. Note that simulations of the interaction
of turbulence with magnetic islands generally use transport
coefficients of magnitude comparable to the anomalous
transport coefficients in experiments. The appropriateness
of using such macroscopic transport coefficients for narrow
structures like magnetic islands is a subject of current
research [184]. The investigation of this subject requires the
use of 3D simulations [68, 185], since in 2D the flattening of the
gradients by the island tends to stabilize the microinstabilities
driving the turbulence [183].

5. Discussion

Magnetic islands play an important role in all magnetic
confinement devices including RFPs, stellarators and
tokamaks. Avoidance of tearing modes by control of the
discharge conditions and control of the islands themselves has
progressed to the extent that they no longer present a substantial
threat to the confinement of fusion plasmas away from the
ideal stability limits. As a result, the focus of research has
shifted to using islands as the agents of plasma control systems.
Examples include the use of islands for driving current in
the core, [46] for mitigating ELMs [142] and for controlling
transport in the edge of stellarators [158].

The extraordinary resolution provided by modern
diagnostic systems provides unprecedented opportunities for
testing and improving our knowledge of the physics of
magnetic islands. In particular, the detailed measurements
of the profiles of temperature, density and velocity inside a
variety of islands is challenging theory and breaking down
conventional barriers between the study of macroscopic and
microscopic plasma dynamics. For example, improved
understanding of the interaction between magnetic islands
and turbulence may make it possible to use long-wavelength
magnetic fluctuation data to acquire information on turbulent
dynamics.

12
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Theory has played an important role in developing our
present abilities with regard to magnetic islands. In addition to
predicting pressure-driven healing in stellarators [103] and the
growth of NTMs in tokamaks [152], theoretical understanding
has guided the development of techniques for using RF
current drive to suppress islands [186]. Although analytic
results and simulations have proven to be useful guides for
interpreting experiments and providing qualitative predictions,
many challenges must be overcome before we can achieve
quantitative prediction capabilities. The renewed interest in the
development of computational tools for predicting the effects
of external coils on 3D waveforms [95] is encouraging in view
of the limitations affecting initial-value codes. In the near term,
however, the progress demonstrated by initial-value codes with
regard to the performance of two-fluid time steppers [58, 69]
and anisotropic heat transport [187, 188] is likely to place them
at the forefront of advances in our understanding of island
physics.

Acknowledgments

Research funded by the US Department of Energy
under contracts # DE-FG03-96ER-54346 and DE-FC02-
04ER54785.

References

[1] Spitzer L. 1958 Phys. Fluids 1 253
[2] Hazeltine R.D. and Meiss J.D. 1985 Phys. Rep. 121 1
[3] Mirnov S.V. and Semenov I.B. 1971 At. Energy. 30 14
[4] Hosea J.C., Jobes F.C., Hickok R.L. and Dellis A.N. 1973

Phys. Rev. Lett. 30 839
[5] Matsuda S. and Yoshikawa M. 1975 Japan. J. Appl. Phys.

14 87
[6] Rutherford P.H. 1973 Phys. Fluids 16 1903
[7] Fitzpatrick R. 1995 Phys. Plasmas 2 825
[8] Spakman G.W. et al and the TEXTOR Team 2008

Nucl. Fusion 48 115005 (10pp)
[9] Chang Z. et al 1994 Nucl. Fusion 34 1309

[10] Yu Q. 2006 Phys. Plasmas 13 062310
[11] Tokar M.Z. and Gupta A. 2007 Phys. Rev. Lett. 99 225001
[12] Holzl M., Günter S. and ASDEX Upgrade Team 2008

Phys. Plasmas 15 072514
[13] Strumberger E., Günter S., Schwarz E. and Tichmann C.

2008 New J. Phys. 10 023017
[14] McCormick K. et al 2003 J. Nucl. Mater. 313–316 1131
[15] Grigull P. et al 2003 J. Nucl. Mater. 313–316 1287
[16] Morisaki T. et al 2005 J. Nucl. Mater. 337–339 154
[17] Reiman A., Zarnstorff M., Monticello D., Weller A.,

Geiger J. and the W7-AS Team 2007 Nucl. Fusion 47 572
[18] Rosenbluth M.N., Sagdeev R.Z., Taylor J.B. and

Zaslavsky G.M. 1966 Nucl. Fusion 6 297
[19] Rechester A.B. and Rosenbluth M.N. 1978 Phys. Rev. Lett.

40 38
[20] Lichtenberg A., Itoh K., Itoh S.-I. and Fukuyama A. 1992

Nucl. Fusion 32 495
[21] Breslau J.A., Jardin S.C. and Park W. 2007 Phys. Plasmas

14 056105
[22] Igochine V., Dumbrajs O., Zohm H. and the ASDEX

Upgrade Team 2008 Nucl. Fusion 48 062001
[23] Cappello S. and Biskamp D. 1996 Nucl. Fusion 36 571
[24] Ho Y.L. and Craddock G.G. 1991 Phys. Fluids B 3 721
[25] Sovinec C.R., Gianakon T.A., Held E.D., Kruger S.E.,

Schnack D.D. and N. Team 2003 Phys. Plasmas 10 1727
[26] Sarff J.S., Hokin S.A., Ji H., Prager S.C. and Sovinec C.R.

1994 Phys. Rev. Lett. 72 3670

[27] Martin P. et al 2003 Nucl. Fusion 43 1855
[28] Frassinetti L., Alfier A., Pasqualotto R., Bonomo F. and

Innocente P. 2008 Nucl. Fusion 48 045007
[29] Wong K.L., Kaye S., Mikkelsen D.R., Krommes J.A., Hill K.,

Bell R. and LeBlanc B. 2008 Phys. Plasmas 15 056108
[30] Tokar M., Evans T., Gupta A., Kalupin D., Nicolai A.,

Singh R. and Unterberg B. 2008 Nucl. Fusion 48 024006
[31] Evans T.E. et al 2006 Phys. Plasmas 13 056121
[32] Joseph I. et al 2008 Nucl. Fusion 48 045009
[33] Zohm H. 1997 Phys. Plasmas 4 3433
[34] Gantenbein G., Zohm H., Giruzzi G., Günter S., Leuterer F.,

Maraschek M., Meskat J., Yu Q., ASDEX Upgrade Team
and ECRH-Group (AUG) 2000 Phys. Rev. Lett. 85 1242

[35] Petty C.C., La Haye R.J., Luce T.C., Humphreys D.A.,
Hyatt A.W., Lohr J., Prater R., Strait E.J. and Wade M.R.
2004 Nucl. Fusion 44 243

[36] Isayama A., Oyama N., Urano H., Suzuki T., Takechi M.,
Hayashi N., Nagasaki K., Kamada Y., Ide S., Ozeki T. and
the JT-60 team 2007 Nucl. Fusion 47 773

[37] Yu Q., Zhang X.D. and Günter S. 2004 Phys. Plasmas
11 1960

[38] Humphreys D.A., Ferron J.R., La Haye R J, Luce T.C.,
Petty C.C., Prater R. and Welander A.S. 2006
Phys. Plasmas 13 056113

[39] Westerhof E. et al 2007 Nucl. Fusion 47 85
[40] Brennan D.P. et al 2003 Phys. Plasmas 10 1643
[41] Brennan D.P., Strait E.J., Turnbull A.D., Chu M.S.,

La Haye R.J., Luce T.C., Taylor T.S., Kruger S. and
Pletzer A. 2002 Phys. Plasmas 9 2998

[42] Pustovitov V. 2005 Nucl. Fusion 45 245
[43] La Haye R.J., Politzer P.A. and Brennan D.P. 2008

Nucl. Fusion 48 015005
[44] Luce T. et al 2003 Nucl. Fusion 43 321
[45] Wade M.R. et al 2005 Nucl. Fusion 45 407
[46] Chu M.S., Chan V.S., Politzer P.A., Brennan D.P., Choi M.,

Lao L.L., John H.E.S. and Turnbull A.D. 2006
Phys. Plasmas 13 114501

[47] Lazzaro E. et al and M.S.C. to the EFDA-JET work
programme 2002 Phys. Plasmas 9 3906

[48] La Haye R.J., Rettig C.L., Groebner R.J., Hyatt A.W. and
Scoville J.T. 1994 Phys. Plasmas 1 373

[49] La Haye R.J., Groebner R.J., Hyatt A.W. and Scoville J.T.
1993 Nucl. Fusion 33 349

[50] Solomon W.M., Kaye S.M., Bell R.E., LeBlanc B.P.,
Menard J.E., Rewoldt G., Wang W., Levinton F.M., Yuh H.
and Sabbagh S.A. 2008 Phys. Rev. Lett. 101 065004

[51] Ebrahimi F., Mirnov V.V. and Prager S.C. 2008
Phys. Plasmas 15 055701

[52] Lazarus E.A. et al 2006 Plasma Phys. Control. Fusion 48 L65
[53] Morris A.W., Carolan P.G., Fitzpatrick R., Hender T.C. and

Todd T.N. 1992 Phys. Fluids B 4 413
[54] La Haye R.J., Hyatt A.W. and Scoville J.T. 1992

Nucl. Fusion 32 2119
[55] La Haye R.J., Fitzpatrick R., Hender T.C., Morris A.W.,

Scoville J.T. and Todd T.N. 1992 Phys. Fluids B 4 2098
[56] Aydemir A.Y., Wiley J.C. and Ross D.W. 1989 Phys. Fluids

B 1 774
[57] Lütjens H., Luciani J.-F. and Garbet X. 2001 Phys. Plasmas

8 4267
[58] Strauss H., Sugiyama L., Fu G., Park W. and Breslau J. 2004

Nucl. Fusion 44 1008
[59] Maget P., Huysmans G.T.A., Garbet X., Ottaviani M.,

Lütjens H. and Luciani J.-F. 2007 Phys. Plasmas
14 052509

[60] Lütjens H. and Luciani J.-F. 2008 J. Computat. Phys.
227 6944

[61] Biskamp D. 1979 Nucl. Fusion 19 777
[62] Biskamp D. 1978 Nucl. Fusion 18 1059
[63] Monticello D.A. and White R.B. 1980 Phys. Fluids

23 366
[64] Hicks H.R., Carreras B.A. and Holmes J.A. 1984

Phys. Fluids 27 909

13

http://dx.doi.org/10.1063/1.864681
http://dx.doi.org/10.1063/1.1705883
http://dx.doi.org/10.1016/0370-1573(85)90083-3
http://dx.doi.org/10.1007/BF01788386
http://dx.doi.org/10.1103/PhysRevLett.30.839
http://dx.doi.org/10.1143/JJAP.14.87
http://dx.doi.org/10.1063/1.1694232
http://dx.doi.org/10.1063/1.871434
http://dx.doi.org/10.1088/0029-5515/48/11/115005
http://dx.doi.org/10.1088/0029-5515/34/10/I03
http://dx.doi.org/10.1063/1.2206788
http://dx.doi.org/10.1103/PhysRevLett.99.225001
http://dx.doi.org/10.1063/1.2959138
http://dx.doi.org/10.1088/1367-2630/10/2/023017
http://dx.doi.org/10.1016/S0022-3115(02)01506-4
http://dx.doi.org/10.1016/S0022-3115(02)01499-X
http://dx.doi.org/10.1016/j.jnucmat.2004.10.165
http://dx.doi.org/10.1088/0029-5515/47/7/008
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1088/0029-5515/32/3/I12
http://dx.doi.org/10.1063/1.2695868
http://dx.doi.org/10.1088/0029-5515/48/6/062001
http://dx.doi.org/10.1088/0029-5515/36/5/I05
http://dx.doi.org/10.1063/1.859868
http://dx.doi.org/10.1063/1.1560920
http://dx.doi.org/10.1103/PhysRevLett.72.3670
http://dx.doi.org/10.1088/0029-5515/43/12/028
http://dx.doi.org/10.1088/0029-5515/48/4/045007
http://dx.doi.org/10.1063/1.2839295
http://dx.doi.org/10.1088/0029-5515/48/2/024006
http://dx.doi.org/10.1063/1.2177657
http://dx.doi.org/10.1088/0029-5515/48/4/045009
http://dx.doi.org/10.1063/1.872487
http://dx.doi.org/10.1103/PhysRevLett.85.1242
http://dx.doi.org/10.1088/0029-5515/44/2/004
http://dx.doi.org/10.1088/0029-5515/47/8/007
http://dx.doi.org/10.1063/1.1710521
http://dx.doi.org/10.1063/1.2173606
http://dx.doi.org/10.1088/0029-5515/47/2/003
http://dx.doi.org/10.1063/1.1555830
http://dx.doi.org/10.1063/1.1481504
http://dx.doi.org/10.1088/0029-5515/45/4/004
http://dx.doi.org/10.1088/0029-5515/48/1/015005
http://dx.doi.org/10.1088/0029-5515/43/5/304
http://dx.doi.org/10.1088/0029-5515/45/6/001
http://dx.doi.org/10.1063/1.2372790
http://dx.doi.org/10.1063/1.1499495
http://dx.doi.org/10.1063/1.870925
http://dx.doi.org/10.1088/0029-5515/33/2/I13
http://dx.doi.org/10.1103/PhysRevLett.101.065004
http://dx.doi.org/10.1063/1.2838247
http://dx.doi.org/10.1088/0741-3335/48/8/L01
http://dx.doi.org/10.1063/1.860291
http://dx.doi.org/10.1088/0029-5515/32/12/I03
http://dx.doi.org/10.1063/1.860017
http://dx.doi.org/10.1063/1.859142
http://dx.doi.org/10.1063/1.1399056
http://dx.doi.org/10.1088/0029-5515/44/9/010
http://dx.doi.org/10.1063/1.2733677
http://dx.doi.org/10.1016/j.jcp.2008.04.003
http://dx.doi.org/10.1063/1.862995


Nucl. Fusion 49 (2009) 104025 F.L. Waelbroeck

[65] Finn J.M. 1998 Phys. Plasmas 5 3595
[66] Yu Q., Günter S. and Scott B.D. 2003 Phys. Plasmas 10 797
[67] Yu Q., Günter S., Kikuchi Y. and Finken K. 2008

Nucl. Fusion 48 024007
[68] Ishizawa A. and Nakajima N. 2007 Phys. Plasmas 14 040702
[69] Murphy N.A. and Sovinec C.R. 2008 Phys. Plasmas

15 042313
[70] Yu Q. and Günter S. 1998 Plasma Phy. Control. Fusion

40 1989
[71] Yu Q., Günter S., Lackner K., Gude A. and Maraschek M.

2000 Nucl. Fusion 40 2031
[72] Sugiyama L.E. and Park W. 2000 Phys. Plasmas 7 4644
[73] Chandra D., Sen A., Kaw P., Bora M. and Kruger S. 2005

Nucl. Fusion 45 524
[74] Yu Q. and Günter S. 2008 Nucl. Fusion 48 065004
[75] Hazeltine R.D. and Meiss J.D. 2003 Plasma Confinement

(New York: Dover)
[76] Fitzpatrick R. 1993 Nucl. Fusion 33 1049
[77] Hender T.C. et al 1992 Nucl. Fusion 32 2091
[78] Reiman A.H. and Monticello D.A. 1992 Nucl. Fusion

32 1341
[79] Fishpool G.M. and Haynes P.S. 1994 Nucl. Fusion 34 109
[80] Buttery R.J. et al and J. Team, C.-D.R. Team and D.-D. Team

1999 Nucl. Fusion 39 1827
[81] Pletzer A., Bondeson A. and Dewar R.L. 1994 J. Comput.

Phys. 115 530
[82] Escande D.F. and Ottaviani M. 2004 Phys. Lett. A 323 278
[83] Militello F. and Porcelli F. 2004 Phys. Plasmas 11 L13
[84] Furth H.P., Rutherford P.H. and Selberg H. 1973 Phys. Fluids

16 1054
[85] Boozer A.H. 1999 Phys. Plasmas 6 831
[86] Nuhrenberg C. and Boozer A.H. 2003 Phys. Plasmas 10 2840
[87] Chu M. et al 2007 Nucl. Fusion 47 434
[88] Tokar M.Z., Evans T.E., Singh R. and Unterberg B. 2008

Phys. Plasmas 15 072515
[89] Cole A.J., Hegna C.C. and Callen J.D. 2008 Phys. Plasmas

15 056102
[90] Zhu W. et al 2006 Phys. Rev. Lett. 96 225002
[91] Grimm R.C., Dewar R.L., Manickam J., Jardin S.C.,

Glasser A.H. and Chance S.M. 1983 Resistive instabilities
in tokamak geometry Plasma Physics and Controlled
Nuclear Fusion Research 1982 vol 3 (Vienna: IAEA)
pp 35–47

[92] Waelbroeck F.L. 1999 Phys. Plasmas 6 1208
[93] Chu M.S., La Haye R.J., Austin M.E., Lao L.L.,

Lazarus E.A., Pletzer A., Ren C., Strait E.J., Taylor T.S.
and Waelbroeck F.L. 2002 Phys. Plasmas 9 4584

[94] Connor J.W., Cowley S.C., Hastie R.J., Hender T.C., Hood A.
and Martin T.J. 1988 Phys. Fluids 31 577

[95] Park J.-K., Boozer A.H. and Glasser A.H. 2007
Phys. Plasmas 14 052110

[96] Park J.-K., Boozer A.H., Menard J.E. and Schaffer M.J. 2008
Nucl. Fusion 48 045006

[97] Fitzpatrick R., Hastie R., Martin T. and Roach C. 1993
Nucl. Fusion 33 1533

[98] Fitzpatrick R. and Hender T.C. 1994 Phys. Plasmas 1 3337
[99] Hirshman S.P. and Betancourt O. 1991 J. Comput. Phys.

96 99
[100] Nakamura Y., Suzuki Y., Yamagishi O., Kondo K.,

Nakajima N., Hayashi T., Monticello D. and Reiman A.
2004 Nucl. Fusion 44 387

[101] Reiman A. and Greenside H. 1986 Comput. Phys. Commun.
43 157

[102] Narihara K. et al 2001 Phys. Rev. Lett. 87 135002
[103] Cary J.R. and Kotschenreuther M. 1985 Phys. Fluids

28 1392
[104] Hegna C.C. and Bhattacharjee A. 1989 Phys. Fluids B 1 392
[105] Bhattacharjee A., Hayashi T., Hegna C.C., Nakajima N. and

Sato T. 1995 Phys. Plasmas 2 883
[106] Drake J.F. and Antonsen T.M. 1984 Phys. Fluids 27 898
[107] Connor J.W. and Wilson H.R. 1995 Phys. Plasmas 2 4575
[108] Sydora R.D. 2001 Phys. Plasmas 8 1929

[109] Wan W. Chen Y. and Parker S.E. 2005 Phys. Plasmas
12 012311

[110] Waelbroeck F.L. 1989 Phys. Fluids B 1 2372
[111] Kotschenreuther M., Hazeltine R.D. and Morrison P.J. 1985

Phys. Fluids 28 294
[112] Hegna C.C. and Callen J.D. 1994 Phys. Plasmas 1 2308
[113] Hegna C.C. 1999 Phys. Plasmas 6 3980
[114] Scott B.D. and Hassam A.B. 1987 Phys. Fluids 30 90
[115] Scott B.D., Hassam A.B. and Drake J.F. 1985 Phys. Fluids

28 275
[116] Parker R.D. 1993 Proc. 19th EPS-ICPP Conf. (Innsbruck,

Austria, 1992) vol 1, ed K. Bethge (Geneva: European
Physical Society) p 427

[117] Ottaviani M., Porcelli F. and Grasso D. 2004 Phys. Rev. Lett.
93 075001

[118] Fitzpatrick R., Waelbroeck F.L. and Militello F. 2006
Phys. Plasmas 13 122507

[119] Fitzpatrick R. and Hender T.C. 1991 Phys. Fluids B 3 644
[120] Sauter O et al 1997 Phys. Plasmas 4 1654
[121] La Haye R.J. and Sauter O. 1998 Nucl. Fusion 38 987
[122] Günter S., Gude A., Maraschek M., Yu Q. and the ASDEX

Upgrade Team 1999 Plasma Phys. Control. Fusion 41 767
[123] Sauter O. et al 2002 Plasma Phys. Control. Fusion 44 1999
[124] Buttery R.J., Hender T.C., Howell D.F., La Haye R.J.,

Sauter O., Testa D. and contributors to the
EFDA-JET Work programme 2003 Nucl. Fusion 43 69

[125] La Haye R. 2006 Phys. Plasmas 13 055501
[126] Wesson J.A. 1995 Plasma Phys. Control. Fusion 37 A337
[127] Giovannozzi E., Annibaldi S., Buratti P., Frigione D.,

Lazzaro E., Panaccione L. and Tudisco O. 2004
Nucl. Fusion 44 226

[128] Ida K. et al 2002 Phys. Rev. Lett. 88 015002
[129] Tanaka K. et al 2002 Plasma Phys. Control. Fusion 44 A231
[130] Ida K. et al 2004 Plasma Phys. Control. Fusion 44 290
[131] Boozer A.H. 1996 Phys. Plasmas 3 4620
[132] De Bock M., Classen I.G.J., Busch C., Jaspers R.J.E.,

Koslowski H.R., Unterberg B. and the TEXTOR Team
2008 Nucl. Fusion 48 015007

[133] Waelbroeck F.L. 2003 Phys. Plasmas 10 4040
[134] Heyn M.F., Ivanov I.B., Kasilov S.V., Kernbichler W.,

Joseph I., Moyer R.A. and Runov A.M. 2008 Nucl. Fusion
48 024005

[135] Boozer A.H. 2001 Phys. Rev. Lett. 86 5059
[136] Finken K.H. et al 2005 Phys. Rev. Lett. 94 015003
[137] Koslowski H., Liang Y., Krämer-Flecken A., Löwenbrück K.,
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